Properties

Label 190.4.a.h
Level $190$
Weight $4$
Character orbit 190.a
Self dual yes
Analytic conductor $11.210$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [190,4,Mod(1,190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("190.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2103629011\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.5468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 23x - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_1 - 3) q^{3} + 4 q^{4} - 5 q^{5} + ( - 2 \beta_1 - 6) q^{6} + (\beta_{2} + 7 \beta_1 - 4) q^{7} + 8 q^{8} + (\beta_{2} + 9 \beta_1 - 3) q^{9} - 10 q^{10} + ( - 14 \beta_{2} - 10 \beta_1 - 18) q^{11}+ \cdots + (314 \beta_{2} - 238 \beta_1 - 826) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 9 q^{3} + 12 q^{4} - 15 q^{5} - 18 q^{6} - 11 q^{7} + 24 q^{8} - 8 q^{9} - 30 q^{10} - 68 q^{11} - 36 q^{12} - 121 q^{13} - 22 q^{14} + 45 q^{15} + 48 q^{16} - 103 q^{17} - 16 q^{18} - 57 q^{19}+ \cdots - 2164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 23x - 40 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.50184
−2.20569
−3.29616
2.00000 −8.50184 4.00000 −5.00000 −17.0037 33.2777 8.00000 45.2814 −10.0000
1.2 2.00000 −0.794314 4.00000 −5.00000 −1.58863 −22.9577 8.00000 −26.3691 −10.0000
1.3 2.00000 0.296159 4.00000 −5.00000 0.592317 −21.3200 8.00000 −26.9123 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 190.4.a.h 3
3.b odd 2 1 1710.4.a.x 3
4.b odd 2 1 1520.4.a.p 3
5.b even 2 1 950.4.a.m 3
5.c odd 4 2 950.4.b.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.h 3 1.a even 1 1 trivial
950.4.a.m 3 5.b even 2 1
950.4.b.j 6 5.c odd 4 2
1520.4.a.p 3 4.b odd 2 1
1710.4.a.x 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 9T_{3}^{2} + 4T_{3} - 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(190))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 9 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 11 T^{2} + \cdots - 16288 \) Copy content Toggle raw display
$11$ \( T^{3} + 68 T^{2} + \cdots - 194816 \) Copy content Toggle raw display
$13$ \( T^{3} + 121 T^{2} + \cdots + 942 \) Copy content Toggle raw display
$17$ \( T^{3} + 103 T^{2} + \cdots - 1782324 \) Copy content Toggle raw display
$19$ \( (T + 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 203 T^{2} + \cdots - 2255976 \) Copy content Toggle raw display
$29$ \( T^{3} - 91 T^{2} + \cdots + 61620 \) Copy content Toggle raw display
$31$ \( T^{3} + 154 T^{2} + \cdots - 2514272 \) Copy content Toggle raw display
$37$ \( T^{3} + 304 T^{2} + \cdots - 3608532 \) Copy content Toggle raw display
$41$ \( T^{3} - 282 T^{2} + \cdots - 749864 \) Copy content Toggle raw display
$43$ \( T^{3} + 214 T^{2} + \cdots - 14445824 \) Copy content Toggle raw display
$47$ \( T^{3} + 1144 T^{2} + \cdots + 51801600 \) Copy content Toggle raw display
$53$ \( T^{3} - 795 T^{2} + \cdots + 7559654 \) Copy content Toggle raw display
$59$ \( T^{3} + 609 T^{2} + \cdots - 12873880 \) Copy content Toggle raw display
$61$ \( T^{3} - 792 T^{2} + \cdots - 6609824 \) Copy content Toggle raw display
$67$ \( T^{3} + 865 T^{2} + \cdots - 57516042 \) Copy content Toggle raw display
$71$ \( T^{3} + 312 T^{2} + \cdots - 40935424 \) Copy content Toggle raw display
$73$ \( T^{3} - 79 T^{2} + \cdots + 356614884 \) Copy content Toggle raw display
$79$ \( T^{3} - 1806 T^{2} + \cdots - 89460880 \) Copy content Toggle raw display
$83$ \( T^{3} + 34 T^{2} + \cdots - 212872272 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 1232043000 \) Copy content Toggle raw display
$97$ \( T^{3} + 1120 T^{2} + \cdots + 38577204 \) Copy content Toggle raw display
show more
show less