Properties

Label 190.4.a
Level $190$
Weight $4$
Character orbit 190.a
Rep. character $\chi_{190}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $9$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 190.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(190))\).

Total New Old
Modular forms 94 18 76
Cusp forms 86 18 68
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(15\)\(2\)\(13\)\(14\)\(2\)\(12\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(13\)\(3\)\(10\)\(12\)\(3\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(14\)\(3\)\(11\)\(13\)\(3\)\(10\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(9\)\(2\)\(7\)\(8\)\(2\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(11\)\(3\)\(8\)\(10\)\(3\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(13\)\(1\)\(12\)\(12\)\(1\)\(11\)\(1\)\(0\)\(1\)
Plus space\(+\)\(48\)\(10\)\(38\)\(44\)\(10\)\(34\)\(4\)\(0\)\(4\)
Minus space\(-\)\(46\)\(8\)\(38\)\(42\)\(8\)\(34\)\(4\)\(0\)\(4\)

Trace form

\( 18 q + 72 q^{4} - 10 q^{5} - 8 q^{6} + 126 q^{9} - 96 q^{11} - 32 q^{13} + 88 q^{14} + 80 q^{15} + 288 q^{16} - 72 q^{17} - 224 q^{18} - 40 q^{20} - 232 q^{21} - 128 q^{23} - 32 q^{24} + 450 q^{25} + 160 q^{26}+ \cdots - 3520 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(190))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 19
190.4.a.a 190.a 1.a $1$ $11.210$ \(\Q\) None 190.4.a.a \(-2\) \(-2\) \(5\) \(8\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-2q^{3}+4q^{4}+5q^{5}+4q^{6}+\cdots\)
190.4.a.b 190.a 1.a $1$ $11.210$ \(\Q\) None 190.4.a.b \(-2\) \(2\) \(5\) \(-12\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{3}+4q^{4}+5q^{5}-4q^{6}+\cdots\)
190.4.a.c 190.a 1.a $1$ $11.210$ \(\Q\) None 190.4.a.c \(2\) \(-4\) \(5\) \(-20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-4q^{3}+4q^{4}+5q^{5}-8q^{6}+\cdots\)
190.4.a.d 190.a 1.a $2$ $11.210$ \(\Q(\sqrt{313}) \) None 190.4.a.d \(-4\) \(1\) \(10\) \(-27\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta q^{3}+4q^{4}+5q^{5}-2\beta q^{6}+\cdots\)
190.4.a.e 190.a 1.a $2$ $11.210$ \(\Q(\sqrt{3}) \) None 190.4.a.e \(-4\) \(2\) \(-10\) \(8\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+3\beta )q^{3}+4q^{4}-5q^{5}+\cdots\)
190.4.a.f 190.a 1.a $2$ $11.210$ \(\Q(\sqrt{34}) \) None 190.4.a.f \(4\) \(0\) \(-10\) \(24\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta q^{3}+4q^{4}-5q^{5}+2\beta q^{6}+\cdots\)
190.4.a.g 190.a 1.a $3$ $11.210$ 3.3.126168.1 None 190.4.a.g \(-6\) \(-1\) \(-15\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}-5q^{5}+2\beta _{1}q^{6}+\cdots\)
190.4.a.h 190.a 1.a $3$ $11.210$ 3.3.5468.1 None 190.4.a.h \(6\) \(-9\) \(-15\) \(-11\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-3-\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
190.4.a.i 190.a 1.a $3$ $11.210$ 3.3.15357.1 None 190.4.a.i \(6\) \(11\) \(15\) \(29\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(4-\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(190))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(190)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)