Properties

Label 180.9.c.b.91.8
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.8
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.b.91.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-12.7138 + 9.71382i) q^{2} +(67.2836 - 247.000i) q^{4} -279.508 q^{5} +3004.85i q^{7} +(1543.88 + 3793.90i) q^{8} +(3553.63 - 2715.09i) q^{10} +831.945i q^{11} -21654.4 q^{13} +(-29188.5 - 38203.2i) q^{14} +(-56481.8 - 33238.1i) q^{16} -20325.2 q^{17} +157797. i q^{19} +(-18806.3 + 69038.6i) q^{20} +(-8081.36 - 10577.2i) q^{22} -32500.8i q^{23} +78125.0 q^{25} +(275311. - 210347. i) q^{26} +(742197. + 202177. i) q^{28} +896260. q^{29} +1.07076e6i q^{31} +(1.04097e6 - 126071. i) q^{32} +(258412. - 197436. i) q^{34} -839881. i q^{35} -2.90012e6 q^{37} +(-1.53281e6 - 2.00621e6i) q^{38} +(-431527. - 1.06043e6i) q^{40} +2.72580e6 q^{41} +3.95277e6i q^{43} +(205490. + 55976.2i) q^{44} +(315707. + 413210. i) q^{46} +2.00923e6i q^{47} -3.26431e6 q^{49} +(-993269. + 758892. i) q^{50} +(-1.45699e6 + 5.34863e6i) q^{52} -1.23248e7 q^{53} -232536. i q^{55} +(-1.14001e7 + 4.63912e6i) q^{56} +(-1.13949e7 + 8.70611e6i) q^{58} +2.93018e6i q^{59} +1.68909e7 q^{61} +(-1.04011e7 - 1.36135e7i) q^{62} +(-1.20101e7 + 1.17146e7i) q^{64} +6.05259e6 q^{65} +9.10735e6i q^{67} +(-1.36756e6 + 5.02033e6i) q^{68} +(8.15845e6 + 1.06781e7i) q^{70} -2.41855e7i q^{71} -2.42567e7 q^{73} +(3.68717e7 - 2.81712e7i) q^{74} +(3.89759e7 + 1.06172e7i) q^{76} -2.49987e6 q^{77} +1.23467e7i q^{79} +(1.57872e7 + 9.29032e6i) q^{80} +(-3.46554e7 + 2.64779e7i) q^{82} -5.46013e7i q^{83} +5.68108e6 q^{85} +(-3.83965e7 - 5.02549e7i) q^{86} +(-3.15631e6 + 1.28442e6i) q^{88} -4.56533e6 q^{89} -6.50682e7i q^{91} +(-8.02770e6 - 2.18677e6i) q^{92} +(-1.95173e7 - 2.55451e7i) q^{94} -4.41056e7i q^{95} -6.48434e7 q^{97} +(4.15020e7 - 3.17089e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 610 q^{4} - 8750 q^{10} - 51392 q^{13} + 11986 q^{16} - 758068 q^{22} + 2500000 q^{25} + 976324 q^{28} - 6117428 q^{34} + 5152064 q^{37} - 96250 q^{40} - 10391752 q^{46} - 11002976 q^{49} + 13976584 q^{52}+ \cdots + 80579520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.7138 + 9.71382i −0.794615 + 0.607113i
\(3\) 0 0
\(4\) 67.2836 247.000i 0.262827 0.964843i
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 3004.85i 1.25150i 0.780024 + 0.625749i \(0.215207\pi\)
−0.780024 + 0.625749i \(0.784793\pi\)
\(8\) 1543.88 + 3793.90i 0.376923 + 0.926244i
\(9\) 0 0
\(10\) 3553.63 2715.09i 0.355363 0.271509i
\(11\) 831.945i 0.0568229i 0.999596 + 0.0284115i \(0.00904487\pi\)
−0.999596 + 0.0284115i \(0.990955\pi\)
\(12\) 0 0
\(13\) −21654.4 −0.758181 −0.379090 0.925360i \(-0.623763\pi\)
−0.379090 + 0.925360i \(0.623763\pi\)
\(14\) −29188.5 38203.2i −0.759802 0.994460i
\(15\) 0 0
\(16\) −56481.8 33238.1i −0.861844 0.507173i
\(17\) −20325.2 −0.243355 −0.121677 0.992570i \(-0.538827\pi\)
−0.121677 + 0.992570i \(0.538827\pi\)
\(18\) 0 0
\(19\) 157797.i 1.21083i 0.795908 + 0.605417i \(0.206994\pi\)
−0.795908 + 0.605417i \(0.793006\pi\)
\(20\) −18806.3 + 69038.6i −0.117540 + 0.431491i
\(21\) 0 0
\(22\) −8081.36 10577.2i −0.0344980 0.0451524i
\(23\) 32500.8i 0.116140i −0.998313 0.0580701i \(-0.981505\pi\)
0.998313 0.0580701i \(-0.0184947\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 275311. 210347.i 0.602462 0.460302i
\(27\) 0 0
\(28\) 742197. + 202177.i 1.20750 + 0.328927i
\(29\) 896260. 1.26719 0.633596 0.773664i \(-0.281578\pi\)
0.633596 + 0.773664i \(0.281578\pi\)
\(30\) 0 0
\(31\) 1.07076e6i 1.15943i 0.814819 + 0.579715i \(0.196836\pi\)
−0.814819 + 0.579715i \(0.803164\pi\)
\(32\) 1.04097e6 126071.i 0.992746 0.120230i
\(33\) 0 0
\(34\) 258412. 197436.i 0.193373 0.147744i
\(35\) 839881.i 0.559687i
\(36\) 0 0
\(37\) −2.90012e6 −1.54742 −0.773712 0.633538i \(-0.781602\pi\)
−0.773712 + 0.633538i \(0.781602\pi\)
\(38\) −1.53281e6 2.00621e6i −0.735114 0.962147i
\(39\) 0 0
\(40\) −431527. 1.06043e6i −0.168565 0.414229i
\(41\) 2.72580e6 0.964626 0.482313 0.875999i \(-0.339797\pi\)
0.482313 + 0.875999i \(0.339797\pi\)
\(42\) 0 0
\(43\) 3.95277e6i 1.15619i 0.815971 + 0.578093i \(0.196203\pi\)
−0.815971 + 0.578093i \(0.803797\pi\)
\(44\) 205490. + 55976.2i 0.0548252 + 0.0149346i
\(45\) 0 0
\(46\) 315707. + 413210.i 0.0705103 + 0.0922868i
\(47\) 2.00923e6i 0.411755i 0.978578 + 0.205878i \(0.0660049\pi\)
−0.978578 + 0.205878i \(0.933995\pi\)
\(48\) 0 0
\(49\) −3.26431e6 −0.566249
\(50\) −993269. + 758892.i −0.158923 + 0.121423i
\(51\) 0 0
\(52\) −1.45699e6 + 5.34863e6i −0.199270 + 0.731526i
\(53\) −1.23248e7 −1.56198 −0.780990 0.624544i \(-0.785285\pi\)
−0.780990 + 0.624544i \(0.785285\pi\)
\(54\) 0 0
\(55\) 232536.i 0.0254120i
\(56\) −1.14001e7 + 4.63912e6i −1.15919 + 0.471719i
\(57\) 0 0
\(58\) −1.13949e7 + 8.70611e6i −1.00693 + 0.769329i
\(59\) 2.93018e6i 0.241817i 0.992664 + 0.120908i \(0.0385807\pi\)
−0.992664 + 0.120908i \(0.961419\pi\)
\(60\) 0 0
\(61\) 1.68909e7 1.21993 0.609964 0.792429i \(-0.291184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(62\) −1.04011e7 1.36135e7i −0.703906 0.921301i
\(63\) 0 0
\(64\) −1.20101e7 + 1.17146e7i −0.715858 + 0.698246i
\(65\) 6.05259e6 0.339069
\(66\) 0 0
\(67\) 9.10735e6i 0.451952i 0.974133 + 0.225976i \(0.0725572\pi\)
−0.974133 + 0.225976i \(0.927443\pi\)
\(68\) −1.36756e6 + 5.02033e6i −0.0639601 + 0.234799i
\(69\) 0 0
\(70\) 8.15845e6 + 1.06781e7i 0.339794 + 0.444736i
\(71\) 2.41855e7i 0.951746i −0.879514 0.475873i \(-0.842132\pi\)
0.879514 0.475873i \(-0.157868\pi\)
\(72\) 0 0
\(73\) −2.42567e7 −0.854164 −0.427082 0.904213i \(-0.640458\pi\)
−0.427082 + 0.904213i \(0.640458\pi\)
\(74\) 3.68717e7 2.81712e7i 1.22961 0.939461i
\(75\) 0 0
\(76\) 3.89759e7 + 1.06172e7i 1.16826 + 0.318239i
\(77\) −2.49987e6 −0.0711138
\(78\) 0 0
\(79\) 1.23467e7i 0.316988i 0.987360 + 0.158494i \(0.0506639\pi\)
−0.987360 + 0.158494i \(0.949336\pi\)
\(80\) 1.57872e7 + 9.29032e6i 0.385429 + 0.226815i
\(81\) 0 0
\(82\) −3.46554e7 + 2.64779e7i −0.766506 + 0.585637i
\(83\) 5.46013e7i 1.15051i −0.817974 0.575256i \(-0.804903\pi\)
0.817974 0.575256i \(-0.195097\pi\)
\(84\) 0 0
\(85\) 5.68108e6 0.108832
\(86\) −3.83965e7 5.02549e7i −0.701936 0.918723i
\(87\) 0 0
\(88\) −3.15631e6 + 1.28442e6i −0.0526319 + 0.0214179i
\(89\) −4.56533e6 −0.0727633 −0.0363817 0.999338i \(-0.511583\pi\)
−0.0363817 + 0.999338i \(0.511583\pi\)
\(90\) 0 0
\(91\) 6.50682e7i 0.948862i
\(92\) −8.02770e6 2.18677e6i −0.112057 0.0305247i
\(93\) 0 0
\(94\) −1.95173e7 2.55451e7i −0.249982 0.327187i
\(95\) 4.41056e7i 0.541501i
\(96\) 0 0
\(97\) −6.48434e7 −0.732451 −0.366226 0.930526i \(-0.619350\pi\)
−0.366226 + 0.930526i \(0.619350\pi\)
\(98\) 4.15020e7 3.17089e7i 0.449950 0.343777i
\(99\) 0 0
\(100\) 5.25653e6 1.92969e7i 0.0525653 0.192969i
\(101\) −2.28685e7 −0.219762 −0.109881 0.993945i \(-0.535047\pi\)
−0.109881 + 0.993945i \(0.535047\pi\)
\(102\) 0 0
\(103\) 2.85108e6i 0.0253315i 0.999920 + 0.0126658i \(0.00403174\pi\)
−0.999920 + 0.0126658i \(0.995968\pi\)
\(104\) −3.34318e7 8.21546e7i −0.285776 0.702261i
\(105\) 0 0
\(106\) 1.56695e8 1.19721e8i 1.24117 0.948299i
\(107\) 2.45987e8i 1.87662i −0.345795 0.938310i \(-0.612391\pi\)
0.345795 0.938310i \(-0.387609\pi\)
\(108\) 0 0
\(109\) −4.12110e7 −0.291949 −0.145975 0.989288i \(-0.546632\pi\)
−0.145975 + 0.989288i \(0.546632\pi\)
\(110\) 2.25881e6 + 2.95642e6i 0.0154280 + 0.0201928i
\(111\) 0 0
\(112\) 9.98754e7 1.69719e8i 0.634726 1.07860i
\(113\) −1.76282e8 −1.08117 −0.540584 0.841290i \(-0.681797\pi\)
−0.540584 + 0.841290i \(0.681797\pi\)
\(114\) 0 0
\(115\) 9.08425e6i 0.0519395i
\(116\) 6.03036e7 2.21376e8i 0.333051 1.22264i
\(117\) 0 0
\(118\) −2.84632e7 3.72538e7i −0.146810 0.192151i
\(119\) 6.10743e7i 0.304558i
\(120\) 0 0
\(121\) 2.13667e8 0.996771
\(122\) −2.14749e8 + 1.64075e8i −0.969373 + 0.740635i
\(123\) 0 0
\(124\) 2.64477e8 + 7.20445e7i 1.11867 + 0.304729i
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 2.66109e8i 1.02293i −0.859305 0.511463i \(-0.829104\pi\)
0.859305 0.511463i \(-0.170896\pi\)
\(128\) 3.89008e7 2.65602e8i 0.144917 0.989444i
\(129\) 0 0
\(130\) −7.69517e7 + 5.87937e7i −0.269429 + 0.205853i
\(131\) 9.42652e7i 0.320086i −0.987110 0.160043i \(-0.948837\pi\)
0.987110 0.160043i \(-0.0511632\pi\)
\(132\) 0 0
\(133\) −4.74156e8 −1.51536
\(134\) −8.84671e7 1.15789e8i −0.274386 0.359128i
\(135\) 0 0
\(136\) −3.13797e7 7.71119e7i −0.0917261 0.225406i
\(137\) 4.24530e8 1.20511 0.602554 0.798078i \(-0.294150\pi\)
0.602554 + 0.798078i \(0.294150\pi\)
\(138\) 0 0
\(139\) 4.84797e8i 1.29868i −0.760500 0.649338i \(-0.775046\pi\)
0.760500 0.649338i \(-0.224954\pi\)
\(140\) −2.07450e8 5.65102e7i −0.540010 0.147101i
\(141\) 0 0
\(142\) 2.34933e8 + 3.07490e8i 0.577818 + 0.756272i
\(143\) 1.80153e7i 0.0430821i
\(144\) 0 0
\(145\) −2.50512e8 −0.566705
\(146\) 3.08396e8 2.35626e8i 0.678731 0.518574i
\(147\) 0 0
\(148\) −1.95131e8 + 7.16329e8i −0.406704 + 1.49302i
\(149\) −8.59503e8 −1.74382 −0.871912 0.489663i \(-0.837120\pi\)
−0.871912 + 0.489663i \(0.837120\pi\)
\(150\) 0 0
\(151\) 4.35660e8i 0.837991i −0.907988 0.418996i \(-0.862382\pi\)
0.907988 0.418996i \(-0.137618\pi\)
\(152\) −5.98666e8 + 2.43619e8i −1.12153 + 0.456392i
\(153\) 0 0
\(154\) 3.17829e7 2.42833e7i 0.0565081 0.0431742i
\(155\) 2.99286e8i 0.518513i
\(156\) 0 0
\(157\) 4.96389e8 0.817003 0.408502 0.912758i \(-0.366051\pi\)
0.408502 + 0.912758i \(0.366051\pi\)
\(158\) −1.19934e8 1.56974e8i −0.192448 0.251884i
\(159\) 0 0
\(160\) −2.90960e8 + 3.52378e7i −0.443970 + 0.0537686i
\(161\) 9.76600e7 0.145349
\(162\) 0 0
\(163\) 8.92254e7i 0.126397i 0.998001 + 0.0631987i \(0.0201302\pi\)
−0.998001 + 0.0631987i \(0.979870\pi\)
\(164\) 1.83402e8 6.73273e8i 0.253529 0.930712i
\(165\) 0 0
\(166\) 5.30387e8 + 6.94193e8i 0.698491 + 0.914214i
\(167\) 7.04032e8i 0.905162i −0.891723 0.452581i \(-0.850503\pi\)
0.891723 0.452581i \(-0.149497\pi\)
\(168\) 0 0
\(169\) −3.46817e8 −0.425162
\(170\) −7.22283e7 + 5.51849e7i −0.0864792 + 0.0660731i
\(171\) 0 0
\(172\) 9.76333e8 + 2.65957e8i 1.11554 + 0.303876i
\(173\) 8.48441e8 0.947191 0.473595 0.880743i \(-0.342956\pi\)
0.473595 + 0.880743i \(0.342956\pi\)
\(174\) 0 0
\(175\) 2.34754e8i 0.250300i
\(176\) 2.76522e7 4.69898e7i 0.0288190 0.0489725i
\(177\) 0 0
\(178\) 5.80429e7 4.43468e7i 0.0578188 0.0441756i
\(179\) 1.79485e9i 1.74830i 0.485660 + 0.874148i \(0.338579\pi\)
−0.485660 + 0.874148i \(0.661421\pi\)
\(180\) 0 0
\(181\) −1.98774e9 −1.85202 −0.926009 0.377500i \(-0.876784\pi\)
−0.926009 + 0.377500i \(0.876784\pi\)
\(182\) 6.32061e8 + 8.27267e8i 0.576067 + 0.753980i
\(183\) 0 0
\(184\) 1.23305e8 5.01773e7i 0.107574 0.0437760i
\(185\) 8.10608e8 0.692029
\(186\) 0 0
\(187\) 1.69095e7i 0.0138281i
\(188\) 4.96280e8 + 1.35188e8i 0.397279 + 0.108220i
\(189\) 0 0
\(190\) 4.28434e8 + 5.60752e8i 0.328753 + 0.430285i
\(191\) 2.15341e9i 1.61805i −0.587772 0.809027i \(-0.699995\pi\)
0.587772 0.809027i \(-0.300005\pi\)
\(192\) 0 0
\(193\) −1.90715e9 −1.37453 −0.687266 0.726406i \(-0.741189\pi\)
−0.687266 + 0.726406i \(0.741189\pi\)
\(194\) 8.24409e8 6.29877e8i 0.582017 0.444681i
\(195\) 0 0
\(196\) −2.19635e8 + 8.06285e8i −0.148825 + 0.546341i
\(197\) −6.77481e8 −0.449813 −0.224907 0.974380i \(-0.572208\pi\)
−0.224907 + 0.974380i \(0.572208\pi\)
\(198\) 0 0
\(199\) 3.02491e8i 0.192885i 0.995339 + 0.0964427i \(0.0307465\pi\)
−0.995339 + 0.0964427i \(0.969254\pi\)
\(200\) 1.20615e8 + 2.96398e8i 0.0753847 + 0.185249i
\(201\) 0 0
\(202\) 2.90747e8 2.22141e8i 0.174626 0.133421i
\(203\) 2.69313e9i 1.58589i
\(204\) 0 0
\(205\) −7.61885e8 −0.431394
\(206\) −2.76949e7 3.62482e7i −0.0153791 0.0201288i
\(207\) 0 0
\(208\) 1.22308e9 + 7.19751e8i 0.653434 + 0.384529i
\(209\) −1.31278e8 −0.0688032
\(210\) 0 0
\(211\) 6.70422e8i 0.338235i −0.985596 0.169117i \(-0.945908\pi\)
0.985596 0.169117i \(-0.0540917\pi\)
\(212\) −8.29255e8 + 3.04422e9i −0.410530 + 1.50707i
\(213\) 0 0
\(214\) 2.38947e9 + 3.12743e9i 1.13932 + 1.49119i
\(215\) 1.10483e9i 0.517062i
\(216\) 0 0
\(217\) −3.21747e9 −1.45103
\(218\) 5.23950e8 4.00316e8i 0.231987 0.177246i
\(219\) 0 0
\(220\) −5.74363e7 1.56458e7i −0.0245186 0.00667895i
\(221\) 4.40131e8 0.184507
\(222\) 0 0
\(223\) 1.95800e9i 0.791759i −0.918302 0.395880i \(-0.870440\pi\)
0.918302 0.395880i \(-0.129560\pi\)
\(224\) 3.78823e8 + 3.12796e9i 0.150468 + 1.24242i
\(225\) 0 0
\(226\) 2.24122e9 1.71237e9i 0.859113 0.656392i
\(227\) 4.48603e9i 1.68950i 0.535160 + 0.844750i \(0.320251\pi\)
−0.535160 + 0.844750i \(0.679749\pi\)
\(228\) 0 0
\(229\) −2.86592e9 −1.04213 −0.521065 0.853517i \(-0.674465\pi\)
−0.521065 + 0.853517i \(0.674465\pi\)
\(230\) −8.82428e7 1.15496e8i −0.0315332 0.0412719i
\(231\) 0 0
\(232\) 1.38372e9 + 3.40032e9i 0.477634 + 1.17373i
\(233\) −4.07226e9 −1.38169 −0.690846 0.723002i \(-0.742762\pi\)
−0.690846 + 0.723002i \(0.742762\pi\)
\(234\) 0 0
\(235\) 5.61598e8i 0.184142i
\(236\) 7.23754e8 + 1.97153e8i 0.233315 + 0.0635558i
\(237\) 0 0
\(238\) 5.93264e8 + 7.76489e8i 0.184901 + 0.242007i
\(239\) 3.15737e9i 0.967685i 0.875155 + 0.483843i \(0.160759\pi\)
−0.875155 + 0.483843i \(0.839241\pi\)
\(240\) 0 0
\(241\) 1.40791e9 0.417356 0.208678 0.977984i \(-0.433084\pi\)
0.208678 + 0.977984i \(0.433084\pi\)
\(242\) −2.71653e9 + 2.07552e9i −0.792049 + 0.605153i
\(243\) 0 0
\(244\) 1.13648e9 4.17206e9i 0.320629 1.17704i
\(245\) 9.12403e8 0.253234
\(246\) 0 0
\(247\) 3.41700e9i 0.918031i
\(248\) −4.06235e9 + 1.65312e9i −1.07392 + 0.437016i
\(249\) 0 0
\(250\) 2.77627e8 2.12117e8i 0.0710725 0.0543019i
\(251\) 1.54170e9i 0.388423i 0.980960 + 0.194211i \(0.0622148\pi\)
−0.980960 + 0.194211i \(0.937785\pi\)
\(252\) 0 0
\(253\) 2.70389e7 0.00659943
\(254\) 2.58493e9 + 3.38327e9i 0.621032 + 0.812833i
\(255\) 0 0
\(256\) 2.08543e9 + 3.75469e9i 0.485552 + 0.874208i
\(257\) 1.96925e9 0.451408 0.225704 0.974196i \(-0.427532\pi\)
0.225704 + 0.974196i \(0.427532\pi\)
\(258\) 0 0
\(259\) 8.71442e9i 1.93660i
\(260\) 4.07240e8 1.49499e9i 0.0891163 0.327148i
\(261\) 0 0
\(262\) 9.15675e8 + 1.19847e9i 0.194328 + 0.254345i
\(263\) 1.76226e9i 0.368338i −0.982895 0.184169i \(-0.941041\pi\)
0.982895 0.184169i \(-0.0589593\pi\)
\(264\) 0 0
\(265\) 3.44488e9 0.698539
\(266\) 6.02835e9 4.60587e9i 1.20413 0.919994i
\(267\) 0 0
\(268\) 2.24951e9 + 6.12775e8i 0.436063 + 0.118785i
\(269\) 4.10833e9 0.784614 0.392307 0.919834i \(-0.371677\pi\)
0.392307 + 0.919834i \(0.371677\pi\)
\(270\) 0 0
\(271\) 5.69300e9i 1.05551i −0.849395 0.527757i \(-0.823033\pi\)
0.849395 0.527757i \(-0.176967\pi\)
\(272\) 1.14801e9 + 6.75572e8i 0.209734 + 0.123423i
\(273\) 0 0
\(274\) −5.39740e9 + 4.12380e9i −0.957596 + 0.731637i
\(275\) 6.49957e7i 0.0113646i
\(276\) 0 0
\(277\) −5.52101e9 −0.937777 −0.468889 0.883257i \(-0.655345\pi\)
−0.468889 + 0.883257i \(0.655345\pi\)
\(278\) 4.70923e9 + 6.16363e9i 0.788443 + 1.03195i
\(279\) 0 0
\(280\) 3.18642e9 1.29667e9i 0.518407 0.210959i
\(281\) 6.98839e9 1.12086 0.560430 0.828202i \(-0.310636\pi\)
0.560430 + 0.828202i \(0.310636\pi\)
\(282\) 0 0
\(283\) 1.06220e10i 1.65600i −0.560726 0.828002i \(-0.689478\pi\)
0.560726 0.828002i \(-0.310522\pi\)
\(284\) −5.97380e9 1.62728e9i −0.918285 0.250144i
\(285\) 0 0
\(286\) 1.74997e8 + 2.29043e8i 0.0261557 + 0.0342337i
\(287\) 8.19062e9i 1.20723i
\(288\) 0 0
\(289\) −6.56264e9 −0.940778
\(290\) 3.18498e9 2.43343e9i 0.450313 0.344054i
\(291\) 0 0
\(292\) −1.63208e9 + 5.99141e9i −0.224497 + 0.824134i
\(293\) 6.36222e9 0.863254 0.431627 0.902052i \(-0.357940\pi\)
0.431627 + 0.902052i \(0.357940\pi\)
\(294\) 0 0
\(295\) 8.19010e8i 0.108144i
\(296\) −4.47743e9 1.10028e10i −0.583260 1.43329i
\(297\) 0 0
\(298\) 1.09276e10 8.34906e9i 1.38567 1.05870i
\(299\) 7.03786e8i 0.0880553i
\(300\) 0 0
\(301\) −1.18775e10 −1.44697
\(302\) 4.23192e9 + 5.53891e9i 0.508756 + 0.665880i
\(303\) 0 0
\(304\) 5.24487e9 8.91267e9i 0.614102 1.04355i
\(305\) −4.72116e9 −0.545568
\(306\) 0 0
\(307\) 1.36857e10i 1.54069i 0.637629 + 0.770344i \(0.279915\pi\)
−0.637629 + 0.770344i \(0.720085\pi\)
\(308\) −1.68200e8 + 6.17467e8i −0.0186906 + 0.0686137i
\(309\) 0 0
\(310\) 2.90721e9 + 3.80508e9i 0.314796 + 0.412018i
\(311\) 1.40040e10i 1.49696i −0.663159 0.748478i \(-0.730785\pi\)
0.663159 0.748478i \(-0.269215\pi\)
\(312\) 0 0
\(313\) 2.00876e9 0.209291 0.104645 0.994510i \(-0.466629\pi\)
0.104645 + 0.994510i \(0.466629\pi\)
\(314\) −6.31102e9 + 4.82183e9i −0.649203 + 0.496014i
\(315\) 0 0
\(316\) 3.04964e9 + 8.30731e8i 0.305844 + 0.0833129i
\(317\) −1.48021e10 −1.46584 −0.732918 0.680317i \(-0.761842\pi\)
−0.732918 + 0.680317i \(0.761842\pi\)
\(318\) 0 0
\(319\) 7.45639e8i 0.0720055i
\(320\) 3.35692e9 3.27434e9i 0.320141 0.312265i
\(321\) 0 0
\(322\) −1.24163e9 + 9.48651e8i −0.115497 + 0.0882436i
\(323\) 3.20726e9i 0.294662i
\(324\) 0 0
\(325\) −1.69175e9 −0.151636
\(326\) −8.66719e8 1.13440e9i −0.0767375 0.100437i
\(327\) 0 0
\(328\) 4.20830e9 + 1.03414e10i 0.363590 + 0.893479i
\(329\) −6.03744e9 −0.515311
\(330\) 0 0
\(331\) 9.55249e9i 0.795801i 0.917428 + 0.397901i \(0.130261\pi\)
−0.917428 + 0.397901i \(0.869739\pi\)
\(332\) −1.34865e10 3.67377e9i −1.11006 0.302385i
\(333\) 0 0
\(334\) 6.83883e9 + 8.95095e9i 0.549536 + 0.719255i
\(335\) 2.54558e9i 0.202119i
\(336\) 0 0
\(337\) 3.83170e9 0.297079 0.148539 0.988906i \(-0.452543\pi\)
0.148539 + 0.988906i \(0.452543\pi\)
\(338\) 4.40938e9 3.36892e9i 0.337840 0.258121i
\(339\) 0 0
\(340\) 3.82243e8 1.40323e9i 0.0286038 0.105005i
\(341\) −8.90812e8 −0.0658823
\(342\) 0 0
\(343\) 7.51359e9i 0.542839i
\(344\) −1.49964e10 + 6.10259e9i −1.07091 + 0.435793i
\(345\) 0 0
\(346\) −1.07870e10 + 8.24160e9i −0.752652 + 0.575052i
\(347\) 2.16493e10i 1.49323i 0.665256 + 0.746615i \(0.268322\pi\)
−0.665256 + 0.746615i \(0.731678\pi\)
\(348\) 0 0
\(349\) −7.79586e8 −0.0525488 −0.0262744 0.999655i \(-0.508364\pi\)
−0.0262744 + 0.999655i \(0.508364\pi\)
\(350\) −2.28035e9 2.98462e9i −0.151960 0.198892i
\(351\) 0 0
\(352\) 1.04884e8 + 8.66029e8i 0.00683184 + 0.0564108i
\(353\) −1.69740e9 −0.109317 −0.0546583 0.998505i \(-0.517407\pi\)
−0.0546583 + 0.998505i \(0.517407\pi\)
\(354\) 0 0
\(355\) 6.76004e9i 0.425634i
\(356\) −3.07172e8 + 1.12764e9i −0.0191241 + 0.0702052i
\(357\) 0 0
\(358\) −1.74348e10 2.28194e10i −1.06141 1.38922i
\(359\) 2.25393e10i 1.35694i −0.734626 0.678472i \(-0.762642\pi\)
0.734626 0.678472i \(-0.237358\pi\)
\(360\) 0 0
\(361\) −7.91636e9 −0.466119
\(362\) 2.52718e10 1.93085e10i 1.47164 1.12439i
\(363\) 0 0
\(364\) −1.60718e10 4.37802e9i −0.915503 0.249386i
\(365\) 6.77997e9 0.381994
\(366\) 0 0
\(367\) 6.10333e9i 0.336436i 0.985750 + 0.168218i \(0.0538013\pi\)
−0.985750 + 0.168218i \(0.946199\pi\)
\(368\) −1.08026e9 + 1.83571e9i −0.0589032 + 0.100095i
\(369\) 0 0
\(370\) −1.03059e10 + 7.87410e9i −0.549897 + 0.420140i
\(371\) 3.70341e10i 1.95482i
\(372\) 0 0
\(373\) −9.43858e8 −0.0487609 −0.0243804 0.999703i \(-0.507761\pi\)
−0.0243804 + 0.999703i \(0.507761\pi\)
\(374\) 1.64256e8 + 2.14984e8i 0.00839525 + 0.0109881i
\(375\) 0 0
\(376\) −7.62283e9 + 3.10201e9i −0.381386 + 0.155200i
\(377\) −1.94080e10 −0.960760
\(378\) 0 0
\(379\) 8.90445e9i 0.431569i −0.976441 0.215784i \(-0.930769\pi\)
0.976441 0.215784i \(-0.0692308\pi\)
\(380\) −1.08941e10 2.96759e9i −0.522464 0.142321i
\(381\) 0 0
\(382\) 2.09178e10 + 2.73781e10i 0.982342 + 1.28573i
\(383\) 1.74695e10i 0.811866i −0.913903 0.405933i \(-0.866947\pi\)
0.913903 0.405933i \(-0.133053\pi\)
\(384\) 0 0
\(385\) 6.98734e8 0.0318031
\(386\) 2.42472e10 1.85257e10i 1.09222 0.834497i
\(387\) 0 0
\(388\) −4.36290e9 + 1.60163e10i −0.192508 + 0.706701i
\(389\) 5.20057e9 0.227118 0.113559 0.993531i \(-0.463775\pi\)
0.113559 + 0.993531i \(0.463775\pi\)
\(390\) 0 0
\(391\) 6.60587e8i 0.0282633i
\(392\) −5.03970e9 1.23845e10i −0.213432 0.524485i
\(393\) 0 0
\(394\) 8.61339e9 6.58093e9i 0.357429 0.273088i
\(395\) 3.45101e9i 0.141761i
\(396\) 0 0
\(397\) 2.61454e10 1.05253 0.526264 0.850321i \(-0.323592\pi\)
0.526264 + 0.850321i \(0.323592\pi\)
\(398\) −2.93834e9 3.84582e9i −0.117103 0.153270i
\(399\) 0 0
\(400\) −4.41264e9 2.59672e9i −0.172369 0.101435i
\(401\) 1.05639e10 0.408553 0.204277 0.978913i \(-0.434516\pi\)
0.204277 + 0.978913i \(0.434516\pi\)
\(402\) 0 0
\(403\) 2.31866e10i 0.879058i
\(404\) −1.53868e9 + 5.64853e9i −0.0577593 + 0.212036i
\(405\) 0 0
\(406\) −2.61605e10 3.42400e10i −0.962814 1.26017i
\(407\) 2.41274e9i 0.0879292i
\(408\) 0 0
\(409\) 2.75141e10 0.983247 0.491623 0.870808i \(-0.336404\pi\)
0.491623 + 0.870808i \(0.336404\pi\)
\(410\) 9.68648e9 7.40081e9i 0.342792 0.261905i
\(411\) 0 0
\(412\) 7.04217e8 + 1.91831e8i 0.0244409 + 0.00665779i
\(413\) −8.80474e9 −0.302633
\(414\) 0 0
\(415\) 1.52615e10i 0.514524i
\(416\) −2.25416e10 + 2.72998e9i −0.752681 + 0.0911563i
\(417\) 0 0
\(418\) 1.66905e9 1.27521e9i 0.0546720 0.0417713i
\(419\) 8.27123e9i 0.268358i 0.990957 + 0.134179i \(0.0428396\pi\)
−0.990957 + 0.134179i \(0.957160\pi\)
\(420\) 0 0
\(421\) 3.35248e10 1.06718 0.533589 0.845744i \(-0.320843\pi\)
0.533589 + 0.845744i \(0.320843\pi\)
\(422\) 6.51235e9 + 8.52364e9i 0.205347 + 0.268767i
\(423\) 0 0
\(424\) −1.90279e10 4.67589e10i −0.588746 1.44677i
\(425\) −1.58791e9 −0.0486710
\(426\) 0 0
\(427\) 5.07547e10i 1.52674i
\(428\) −6.07586e10 1.65509e10i −1.81064 0.493225i
\(429\) 0 0
\(430\) 1.07321e10 + 1.40467e10i 0.313915 + 0.410865i
\(431\) 8.28161e8i 0.0239997i 0.999928 + 0.0119998i \(0.00381976\pi\)
−0.999928 + 0.0119998i \(0.996180\pi\)
\(432\) 0 0
\(433\) 9.93872e9 0.282735 0.141367 0.989957i \(-0.454850\pi\)
0.141367 + 0.989957i \(0.454850\pi\)
\(434\) 4.09064e10 3.12539e10i 1.15301 0.880937i
\(435\) 0 0
\(436\) −2.77282e9 + 1.01791e10i −0.0767320 + 0.281685i
\(437\) 5.12853e9 0.140627
\(438\) 0 0
\(439\) 5.26817e10i 1.41841i −0.705002 0.709205i \(-0.749054\pi\)
0.705002 0.709205i \(-0.250946\pi\)
\(440\) 8.82216e8 3.59007e8i 0.0235377 0.00957837i
\(441\) 0 0
\(442\) −5.59576e9 + 4.27535e9i −0.146612 + 0.112017i
\(443\) 3.82644e9i 0.0993528i 0.998765 + 0.0496764i \(0.0158190\pi\)
−0.998765 + 0.0496764i \(0.984181\pi\)
\(444\) 0 0
\(445\) 1.27605e9 0.0325407
\(446\) 1.90196e10 + 2.48937e10i 0.480688 + 0.629144i
\(447\) 0 0
\(448\) −3.52007e10 3.60885e10i −0.873854 0.895895i
\(449\) 4.83070e10 1.18857 0.594285 0.804255i \(-0.297435\pi\)
0.594285 + 0.804255i \(0.297435\pi\)
\(450\) 0 0
\(451\) 2.26772e9i 0.0548129i
\(452\) −1.18609e10 + 4.35415e10i −0.284160 + 1.04316i
\(453\) 0 0
\(454\) −4.35764e10 5.70346e10i −1.02572 1.34250i
\(455\) 1.81871e10i 0.424344i
\(456\) 0 0
\(457\) 6.09494e10 1.39735 0.698674 0.715440i \(-0.253774\pi\)
0.698674 + 0.715440i \(0.253774\pi\)
\(458\) 3.64368e10 2.78390e10i 0.828092 0.632691i
\(459\) 0 0
\(460\) 2.24381e9 + 6.11221e8i 0.0501135 + 0.0136511i
\(461\) −4.59730e10 −1.01789 −0.508943 0.860800i \(-0.669963\pi\)
−0.508943 + 0.860800i \(0.669963\pi\)
\(462\) 0 0
\(463\) 6.46853e10i 1.40761i 0.710395 + 0.703804i \(0.248516\pi\)
−0.710395 + 0.703804i \(0.751484\pi\)
\(464\) −5.06224e10 2.97900e10i −1.09212 0.642685i
\(465\) 0 0
\(466\) 5.17740e10 3.95572e10i 1.09791 0.838844i
\(467\) 5.92180e10i 1.24505i −0.782601 0.622524i \(-0.786107\pi\)
0.782601 0.622524i \(-0.213893\pi\)
\(468\) 0 0
\(469\) −2.73662e10 −0.565618
\(470\) 5.45526e9 + 7.14007e9i 0.111795 + 0.146322i
\(471\) 0 0
\(472\) −1.11168e10 + 4.52384e9i −0.223981 + 0.0911463i
\(473\) −3.28849e9 −0.0656979
\(474\) 0 0
\(475\) 1.23279e10i 0.242167i
\(476\) −1.50853e10 4.10930e9i −0.293851 0.0800460i
\(477\) 0 0
\(478\) −3.06701e10 4.01423e10i −0.587495 0.768938i
\(479\) 7.06180e10i 1.34145i 0.741707 + 0.670724i \(0.234016\pi\)
−0.741707 + 0.670724i \(0.765984\pi\)
\(480\) 0 0
\(481\) 6.28004e10 1.17323
\(482\) −1.79000e10 + 1.36762e10i −0.331638 + 0.253383i
\(483\) 0 0
\(484\) 1.43763e10 5.27757e10i 0.261978 0.961728i
\(485\) 1.81243e10 0.327562
\(486\) 0 0
\(487\) 9.59650e10i 1.70607i 0.521854 + 0.853035i \(0.325241\pi\)
−0.521854 + 0.853035i \(0.674759\pi\)
\(488\) 2.60775e10 + 6.40825e10i 0.459819 + 1.12995i
\(489\) 0 0
\(490\) −1.16002e10 + 8.86292e9i −0.201224 + 0.153742i
\(491\) 8.92833e10i 1.53619i 0.640337 + 0.768094i \(0.278795\pi\)
−0.640337 + 0.768094i \(0.721205\pi\)
\(492\) 0 0
\(493\) −1.82167e10 −0.308377
\(494\) 3.31921e10 + 4.34432e10i 0.557349 + 0.729482i
\(495\) 0 0
\(496\) 3.55899e10 6.04784e10i 0.588031 0.999249i
\(497\) 7.26736e10 1.19111
\(498\) 0 0
\(499\) 1.56949e10i 0.253137i 0.991958 + 0.126568i \(0.0403963\pi\)
−0.991958 + 0.126568i \(0.959604\pi\)
\(500\) −1.46924e9 + 5.39364e9i −0.0235079 + 0.0862982i
\(501\) 0 0
\(502\) −1.49758e10 1.96009e10i −0.235817 0.308647i
\(503\) 4.98620e10i 0.778928i 0.921042 + 0.389464i \(0.127340\pi\)
−0.921042 + 0.389464i \(0.872660\pi\)
\(504\) 0 0
\(505\) 6.39195e9 0.0982807
\(506\) −3.43768e8 + 2.62651e8i −0.00524401 + 0.00400660i
\(507\) 0 0
\(508\) −6.57288e10 1.79048e10i −0.986964 0.268852i
\(509\) −4.86041e10 −0.724105 −0.362052 0.932158i \(-0.617924\pi\)
−0.362052 + 0.932158i \(0.617924\pi\)
\(510\) 0 0
\(511\) 7.28878e10i 1.06898i
\(512\) −6.29862e10 2.74791e10i −0.916570 0.399874i
\(513\) 0 0
\(514\) −2.50368e10 + 1.91290e10i −0.358695 + 0.274056i
\(515\) 7.96902e8i 0.0113286i
\(516\) 0 0
\(517\) −1.67157e9 −0.0233971
\(518\) 8.46503e10 + 1.10794e11i 1.17573 + 1.53885i
\(519\) 0 0
\(520\) 9.34446e9 + 2.29629e10i 0.127803 + 0.314061i
\(521\) −4.81707e10 −0.653781 −0.326891 0.945062i \(-0.606001\pi\)
−0.326891 + 0.945062i \(0.606001\pi\)
\(522\) 0 0
\(523\) 7.13512e10i 0.953662i −0.878995 0.476831i \(-0.841785\pi\)
0.878995 0.476831i \(-0.158215\pi\)
\(524\) −2.32835e10 6.34250e9i −0.308832 0.0841270i
\(525\) 0 0
\(526\) 1.71182e10 + 2.24051e10i 0.223623 + 0.292687i
\(527\) 2.17634e10i 0.282153i
\(528\) 0 0
\(529\) 7.72547e10 0.986511
\(530\) −4.37976e10 + 3.34629e10i −0.555069 + 0.424092i
\(531\) 0 0
\(532\) −3.19029e10 + 1.17117e11i −0.398276 + 1.46208i
\(533\) −5.90256e10 −0.731361
\(534\) 0 0
\(535\) 6.87553e10i 0.839250i
\(536\) −3.45523e10 + 1.40606e10i −0.418618 + 0.170351i
\(537\) 0 0
\(538\) −5.22327e10 + 3.99076e10i −0.623467 + 0.476350i
\(539\) 2.71573e9i 0.0321759i
\(540\) 0 0
\(541\) 1.33403e11 1.55731 0.778656 0.627451i \(-0.215902\pi\)
0.778656 + 0.627451i \(0.215902\pi\)
\(542\) 5.53008e10 + 7.23800e10i 0.640817 + 0.838728i
\(543\) 0 0
\(544\) −2.11580e10 + 2.56241e9i −0.241590 + 0.0292586i
\(545\) 1.15188e10 0.130564
\(546\) 0 0
\(547\) 1.12962e11i 1.26178i 0.775872 + 0.630891i \(0.217310\pi\)
−0.775872 + 0.630891i \(0.782690\pi\)
\(548\) 2.85639e10 1.04859e11i 0.316734 1.16274i
\(549\) 0 0
\(550\) −6.31356e8 8.26345e8i −0.00689960 0.00903048i
\(551\) 1.41427e11i 1.53436i
\(552\) 0 0
\(553\) −3.71000e10 −0.396710
\(554\) 7.01933e10 5.36301e10i 0.745172 0.569337i
\(555\) 0 0
\(556\) −1.19745e11 3.26189e10i −1.25302 0.341326i
\(557\) 9.91223e10 1.02979 0.514897 0.857252i \(-0.327830\pi\)
0.514897 + 0.857252i \(0.327830\pi\)
\(558\) 0 0
\(559\) 8.55949e10i 0.876598i
\(560\) −2.79160e10 + 4.74380e10i −0.283858 + 0.482363i
\(561\) 0 0
\(562\) −8.88493e10 + 6.78839e10i −0.890653 + 0.680490i
\(563\) 5.62703e10i 0.560075i −0.959989 0.280037i \(-0.909653\pi\)
0.959989 0.280037i \(-0.0903468\pi\)
\(564\) 0 0
\(565\) 4.92722e10 0.483513
\(566\) 1.03180e11 + 1.35047e11i 1.00538 + 1.31589i
\(567\) 0 0
\(568\) 9.17571e10 3.73394e10i 0.881549 0.358735i
\(569\) 2.67326e10 0.255031 0.127515 0.991837i \(-0.459300\pi\)
0.127515 + 0.991837i \(0.459300\pi\)
\(570\) 0 0
\(571\) 1.70013e11i 1.59933i 0.600446 + 0.799666i \(0.294990\pi\)
−0.600446 + 0.799666i \(0.705010\pi\)
\(572\) −4.44977e9 1.21213e9i −0.0415674 0.0113231i
\(573\) 0 0
\(574\) −7.95622e10 1.04134e11i −0.732924 0.959281i
\(575\) 2.53913e9i 0.0232281i
\(576\) 0 0
\(577\) 5.21900e10 0.470852 0.235426 0.971892i \(-0.424352\pi\)
0.235426 + 0.971892i \(0.424352\pi\)
\(578\) 8.34364e10 6.37483e10i 0.747557 0.571159i
\(579\) 0 0
\(580\) −1.68554e10 + 6.18765e10i −0.148945 + 0.546782i
\(581\) 1.64069e11 1.43986
\(582\) 0 0
\(583\) 1.02535e10i 0.0887563i
\(584\) −3.74494e10 9.20276e10i −0.321954 0.791164i
\(585\) 0 0
\(586\) −8.08883e10 + 6.18015e10i −0.685954 + 0.524093i
\(587\) 1.32515e11i 1.11612i −0.829800 0.558060i \(-0.811546\pi\)
0.829800 0.558060i \(-0.188454\pi\)
\(588\) 0 0
\(589\) −1.68963e11 −1.40388
\(590\) 7.95571e9 + 1.04128e10i 0.0656555 + 0.0859326i
\(591\) 0 0
\(592\) 1.63804e11 + 9.63944e10i 1.33364 + 0.784811i
\(593\) −4.90676e10 −0.396804 −0.198402 0.980121i \(-0.563575\pi\)
−0.198402 + 0.980121i \(0.563575\pi\)
\(594\) 0 0
\(595\) 1.70708e10i 0.136203i
\(596\) −5.78305e10 + 2.12297e11i −0.458323 + 1.68252i
\(597\) 0 0
\(598\) −6.83644e9 8.94782e9i −0.0534596 0.0699701i
\(599\) 1.81971e11i 1.41350i 0.707463 + 0.706750i \(0.249840\pi\)
−0.707463 + 0.706750i \(0.750160\pi\)
\(600\) 0 0
\(601\) −2.45349e11 −1.88056 −0.940279 0.340404i \(-0.889436\pi\)
−0.940279 + 0.340404i \(0.889436\pi\)
\(602\) 1.51008e11 1.15376e11i 1.14978 0.878472i
\(603\) 0 0
\(604\) −1.07608e11 2.93127e10i −0.808530 0.220246i
\(605\) −5.97217e10 −0.445770
\(606\) 0 0
\(607\) 2.67477e11i 1.97029i 0.171713 + 0.985147i \(0.445070\pi\)
−0.171713 + 0.985147i \(0.554930\pi\)
\(608\) 1.98936e10 + 1.64262e11i 0.145579 + 1.20205i
\(609\) 0 0
\(610\) 6.00241e10 4.58605e10i 0.433517 0.331222i
\(611\) 4.35088e10i 0.312185i
\(612\) 0 0
\(613\) 1.87562e11 1.32832 0.664159 0.747591i \(-0.268790\pi\)
0.664159 + 0.747591i \(0.268790\pi\)
\(614\) −1.32941e11 1.73998e11i −0.935372 1.22425i
\(615\) 0 0
\(616\) −3.85949e9 9.48424e9i −0.0268045 0.0658688i
\(617\) −4.25269e10 −0.293442 −0.146721 0.989178i \(-0.546872\pi\)
−0.146721 + 0.989178i \(0.546872\pi\)
\(618\) 0 0
\(619\) 2.22095e11i 1.51278i −0.654120 0.756390i \(-0.726961\pi\)
0.654120 0.756390i \(-0.273039\pi\)
\(620\) −7.39236e10 2.01370e10i −0.500284 0.136279i
\(621\) 0 0
\(622\) 1.36032e11 + 1.78044e11i 0.908822 + 1.18950i
\(623\) 1.37181e10i 0.0910632i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −2.55390e10 + 1.95127e10i −0.166306 + 0.127063i
\(627\) 0 0
\(628\) 3.33989e10 1.22608e11i 0.214730 0.788280i
\(629\) 5.89456e10 0.376573
\(630\) 0 0
\(631\) 1.04087e11i 0.656569i −0.944579 0.328285i \(-0.893530\pi\)
0.944579 0.328285i \(-0.106470\pi\)
\(632\) −4.68422e10 + 1.90618e10i −0.293609 + 0.119480i
\(633\) 0 0
\(634\) 1.88191e11 1.43785e11i 1.16478 0.889929i
\(635\) 7.43797e10i 0.457467i
\(636\) 0 0
\(637\) 7.06868e10 0.429319
\(638\) −7.24300e9 9.47994e9i −0.0437155 0.0572167i
\(639\) 0 0
\(640\) −1.08731e10 + 7.42380e10i −0.0648087 + 0.442493i
\(641\) −2.56180e11 −1.51744 −0.758721 0.651415i \(-0.774176\pi\)
−0.758721 + 0.651415i \(0.774176\pi\)
\(642\) 0 0
\(643\) 1.12785e11i 0.659793i −0.944017 0.329897i \(-0.892986\pi\)
0.944017 0.329897i \(-0.107014\pi\)
\(644\) 6.57092e9 2.41220e10i 0.0382017 0.140239i
\(645\) 0 0
\(646\) 3.11548e10 + 4.07767e10i 0.178893 + 0.234143i
\(647\) 7.84013e10i 0.447410i −0.974657 0.223705i \(-0.928185\pi\)
0.974657 0.223705i \(-0.0718153\pi\)
\(648\) 0 0
\(649\) −2.43775e9 −0.0137407
\(650\) 2.15086e10 1.64334e10i 0.120492 0.0920604i
\(651\) 0 0
\(652\) 2.20387e10 + 6.00340e9i 0.121954 + 0.0332206i
\(653\) −4.72264e10 −0.259736 −0.129868 0.991531i \(-0.541455\pi\)
−0.129868 + 0.991531i \(0.541455\pi\)
\(654\) 0 0
\(655\) 2.63479e10i 0.143147i
\(656\) −1.53958e11 9.06004e10i −0.831357 0.489232i
\(657\) 0 0
\(658\) 7.67591e10 5.86466e10i 0.409474 0.312852i
\(659\) 6.47551e10i 0.343346i −0.985154 0.171673i \(-0.945083\pi\)
0.985154 0.171673i \(-0.0549173\pi\)
\(660\) 0 0
\(661\) −2.89406e11 −1.51601 −0.758004 0.652250i \(-0.773825\pi\)
−0.758004 + 0.652250i \(0.773825\pi\)
\(662\) −9.27911e10 1.21449e11i −0.483142 0.632356i
\(663\) 0 0
\(664\) 2.07152e11 8.42978e10i 1.06565 0.433655i
\(665\) 1.32531e11 0.677688
\(666\) 0 0
\(667\) 2.91292e10i 0.147172i
\(668\) −1.73896e11 4.73698e10i −0.873339 0.237901i
\(669\) 0 0
\(670\) 2.47273e10 + 3.23641e10i 0.122709 + 0.160607i
\(671\) 1.40523e10i 0.0693199i
\(672\) 0 0
\(673\) −2.02037e11 −0.984850 −0.492425 0.870355i \(-0.663889\pi\)
−0.492425 + 0.870355i \(0.663889\pi\)
\(674\) −4.87156e10 + 3.72204e10i −0.236063 + 0.180360i
\(675\) 0 0
\(676\) −2.33351e10 + 8.56639e10i −0.111744 + 0.410214i
\(677\) −1.05704e11 −0.503194 −0.251597 0.967832i \(-0.580956\pi\)
−0.251597 + 0.967832i \(0.580956\pi\)
\(678\) 0 0
\(679\) 1.94845e11i 0.916662i
\(680\) 8.77089e9 + 2.15534e10i 0.0410212 + 0.100805i
\(681\) 0 0
\(682\) 1.13256e10 8.65318e9i 0.0523510 0.0399980i
\(683\) 2.21093e11i 1.01600i −0.861358 0.507999i \(-0.830385\pi\)
0.861358 0.507999i \(-0.169615\pi\)
\(684\) 0 0
\(685\) −1.18660e11 −0.538940
\(686\) −7.29856e10 9.55266e10i −0.329565 0.431348i
\(687\) 0 0
\(688\) 1.31382e11 2.23260e11i 0.586386 0.996452i
\(689\) 2.66886e11 1.18426
\(690\) 0 0
\(691\) 6.28628e10i 0.275728i −0.990451 0.137864i \(-0.955976\pi\)
0.990451 0.137864i \(-0.0440237\pi\)
\(692\) 5.70862e10 2.09565e11i 0.248947 0.913890i
\(693\) 0 0
\(694\) −2.10298e11 2.75246e11i −0.906560 1.18654i
\(695\) 1.35505e11i 0.580785i
\(696\) 0 0
\(697\) −5.54026e10 −0.234746
\(698\) 9.91154e9 7.57276e9i 0.0417560 0.0319031i
\(699\) 0 0
\(700\) 5.79841e10 + 1.57951e10i 0.241500 + 0.0657854i
\(701\) −3.50718e11 −1.45240 −0.726200 0.687484i \(-0.758715\pi\)
−0.726200 + 0.687484i \(0.758715\pi\)
\(702\) 0 0
\(703\) 4.57631e11i 1.87367i
\(704\) −9.74592e9 9.99174e9i −0.0396764 0.0406771i
\(705\) 0 0
\(706\) 2.15805e10 1.64883e10i 0.0868646 0.0663676i
\(707\) 6.87165e10i 0.275032i
\(708\) 0 0
\(709\) 6.64455e10 0.262955 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(710\) −6.56658e10 8.59461e10i −0.258408 0.338215i
\(711\) 0 0
\(712\) −7.04832e9 1.73204e10i −0.0274262 0.0673966i
\(713\) 3.48005e10 0.134657
\(714\) 0 0
\(715\) 5.03542e9i 0.0192669i
\(716\) 4.43326e11 + 1.20764e11i 1.68683 + 0.459498i
\(717\) 0 0
\(718\) 2.18942e11 + 2.86561e11i 0.823819 + 1.07825i
\(719\) 5.29534e11i 1.98143i −0.135969 0.990713i \(-0.543415\pi\)
0.135969 0.990713i \(-0.456585\pi\)
\(720\) 0 0
\(721\) −8.56708e9 −0.0317024
\(722\) 1.00647e11 7.68981e10i 0.370385 0.282987i
\(723\) 0 0
\(724\) −1.33742e11 + 4.90972e11i −0.486760 + 1.78691i
\(725\) 7.00203e10 0.253438
\(726\) 0 0
\(727\) 5.50891e10i 0.197210i 0.995127 + 0.0986048i \(0.0314380\pi\)
−0.995127 + 0.0986048i \(0.968562\pi\)
\(728\) 2.46862e11 1.00457e11i 0.878879 0.357648i
\(729\) 0 0
\(730\) −8.61994e10 + 6.58593e10i −0.303538 + 0.231913i
\(731\) 8.03410e10i 0.281363i
\(732\) 0 0
\(733\) 1.00150e11 0.346925 0.173462 0.984840i \(-0.444504\pi\)
0.173462 + 0.984840i \(0.444504\pi\)
\(734\) −5.92867e10 7.75968e10i −0.204255 0.267337i
\(735\) 0 0
\(736\) −4.09739e9 3.38324e10i −0.0139636 0.115298i
\(737\) −7.57681e9 −0.0256813
\(738\) 0 0
\(739\) 3.32835e11i 1.11597i −0.829852 0.557984i \(-0.811575\pi\)
0.829852 0.557984i \(-0.188425\pi\)
\(740\) 5.45406e10 2.00220e11i 0.181883 0.667699i
\(741\) 0 0
\(742\) 3.59742e11 + 4.70845e11i 1.18679 + 1.55333i
\(743\) 3.73853e11i 1.22672i −0.789803 0.613361i \(-0.789817\pi\)
0.789803 0.613361i \(-0.210183\pi\)
\(744\) 0 0
\(745\) 2.40238e11 0.779862
\(746\) 1.20001e10 9.16847e9i 0.0387461 0.0296034i
\(747\) 0 0
\(748\) −4.17664e9 1.13773e9i −0.0133420 0.00363440i
\(749\) 7.39152e11 2.34859
\(750\) 0 0
\(751\) 3.24815e11i 1.02112i −0.859843 0.510559i \(-0.829438\pi\)
0.859843 0.510559i \(-0.170562\pi\)
\(752\) 6.67830e10 1.13485e11i 0.208831 0.354869i
\(753\) 0 0
\(754\) 2.46750e11 1.88526e11i 0.763435 0.583290i
\(755\) 1.21771e11i 0.374761i
\(756\) 0 0
\(757\) −1.97773e11 −0.602261 −0.301130 0.953583i \(-0.597364\pi\)
−0.301130 + 0.953583i \(0.597364\pi\)
\(758\) 8.64961e10 + 1.13210e11i 0.262011 + 0.342931i
\(759\) 0 0
\(760\) 1.67332e11 6.80937e10i 0.501563 0.204105i
\(761\) −3.73737e10 −0.111436 −0.0557182 0.998447i \(-0.517745\pi\)
−0.0557182 + 0.998447i \(0.517745\pi\)
\(762\) 0 0
\(763\) 1.23833e11i 0.365374i
\(764\) −5.31891e11 1.44889e11i −1.56117 0.425267i
\(765\) 0 0
\(766\) 1.69695e11 + 2.22104e11i 0.492895 + 0.645121i
\(767\) 6.34513e10i 0.183341i
\(768\) 0 0
\(769\) −5.76381e11 −1.64818 −0.824089 0.566461i \(-0.808312\pi\)
−0.824089 + 0.566461i \(0.808312\pi\)
\(770\) −8.88360e9 + 6.78738e9i −0.0252712 + 0.0193081i
\(771\) 0 0
\(772\) −1.28320e11 + 4.71065e11i −0.361264 + 1.32621i
\(773\) −6.50692e11 −1.82246 −0.911229 0.411901i \(-0.864865\pi\)
−0.911229 + 0.411901i \(0.864865\pi\)
\(774\) 0 0
\(775\) 8.36530e10i 0.231886i
\(776\) −1.00110e11 2.46009e11i −0.276078 0.678429i
\(777\) 0 0
\(778\) −6.61192e10 + 5.05174e10i −0.180472 + 0.137887i
\(779\) 4.30124e11i 1.16800i
\(780\) 0 0
\(781\) 2.01210e10 0.0540810
\(782\) −6.41682e9 8.39860e9i −0.0171590 0.0224584i
\(783\) 0 0
\(784\) 1.84374e11 + 1.08499e11i 0.488019 + 0.287186i
\(785\) −1.38745e11 −0.365375
\(786\) 0 0
\(787\) 4.70164e10i 0.122560i 0.998121 + 0.0612802i \(0.0195183\pi\)
−0.998121 + 0.0612802i \(0.980482\pi\)
\(788\) −4.55834e10 + 1.67338e11i −0.118223 + 0.433999i
\(789\) 0 0
\(790\) 3.35225e10 + 4.38756e10i 0.0860653 + 0.112646i
\(791\) 5.29700e11i 1.35308i
\(792\) 0 0
\(793\) −3.65763e11 −0.924926
\(794\) −3.32409e11 + 2.53972e11i −0.836355 + 0.639004i
\(795\) 0 0
\(796\) 7.47151e10 + 2.03527e10i 0.186104 + 0.0506954i
\(797\) −6.03770e11 −1.49637 −0.748184 0.663491i \(-0.769074\pi\)
−0.748184 + 0.663491i \(0.769074\pi\)
\(798\) 0 0
\(799\) 4.08382e10i 0.100203i
\(800\) 8.13258e10 9.84926e9i 0.198549 0.0240460i
\(801\) 0 0
\(802\) −1.34308e11 + 1.02616e11i −0.324643 + 0.248038i
\(803\) 2.01803e10i 0.0485361i
\(804\) 0 0
\(805\) −2.72968e10 −0.0650022
\(806\) 2.25231e11 + 2.94791e11i 0.533688 + 0.698513i
\(807\) 0 0
\(808\) −3.53062e10 8.67609e10i −0.0828335 0.203554i
\(809\) −7.70557e10 −0.179891 −0.0899457 0.995947i \(-0.528669\pi\)
−0.0899457 + 0.995947i \(0.528669\pi\)
\(810\) 0 0
\(811\) 1.94344e11i 0.449249i 0.974445 + 0.224625i \(0.0721156\pi\)
−0.974445 + 0.224625i \(0.927884\pi\)
\(812\) 6.65202e11 + 1.81203e11i 1.53013 + 0.416814i
\(813\) 0 0
\(814\) 2.34369e10 + 3.06752e10i 0.0533830 + 0.0698698i
\(815\) 2.49393e10i 0.0565266i
\(816\) 0 0
\(817\) −6.23736e11 −1.39995
\(818\) −3.49810e11 + 2.67267e11i −0.781303 + 0.596942i
\(819\) 0 0
\(820\) −5.12623e10 + 1.88185e11i −0.113382 + 0.416227i
\(821\) 3.09723e11 0.681711 0.340855 0.940116i \(-0.389283\pi\)
0.340855 + 0.940116i \(0.389283\pi\)
\(822\) 0 0
\(823\) 2.51180e11i 0.547501i 0.961801 + 0.273751i \(0.0882643\pi\)
−0.961801 + 0.273751i \(0.911736\pi\)
\(824\) −1.08167e10 + 4.40173e9i −0.0234632 + 0.00954804i
\(825\) 0 0
\(826\) 1.11942e11 8.55277e10i 0.240477 0.183733i
\(827\) 7.61654e11i 1.62830i 0.580652 + 0.814152i \(0.302798\pi\)
−0.580652 + 0.814152i \(0.697202\pi\)
\(828\) 0 0
\(829\) −5.23232e11 −1.10784 −0.553919 0.832570i \(-0.686868\pi\)
−0.553919 + 0.832570i \(0.686868\pi\)
\(830\) −1.48248e11 1.94033e11i −0.312375 0.408849i
\(831\) 0 0
\(832\) 2.60072e11 2.53673e11i 0.542750 0.529397i
\(833\) 6.63479e10 0.137799
\(834\) 0 0
\(835\) 1.96783e11i 0.404801i
\(836\) −8.83289e9 + 3.24258e10i −0.0180833 + 0.0663843i
\(837\) 0 0
\(838\) −8.03452e10 1.05159e11i −0.162923 0.213241i
\(839\) 6.98976e11i 1.41063i 0.708892 + 0.705317i \(0.249195\pi\)
−0.708892 + 0.705317i \(0.750805\pi\)
\(840\) 0 0
\(841\) 3.03036e11 0.605774
\(842\) −4.26228e11 + 3.25653e11i −0.847996 + 0.647899i
\(843\) 0 0
\(844\) −1.65594e11 4.51084e10i −0.326344 0.0888971i
\(845\) 9.69384e10 0.190138
\(846\) 0 0
\(847\) 6.42036e11i 1.24746i
\(848\) 6.96126e11 + 4.09652e11i 1.34618 + 0.792193i
\(849\) 0 0
\(850\) 2.01884e10 1.54247e10i 0.0386747 0.0295488i
\(851\) 9.42563e10i 0.179718i
\(852\) 0 0
\(853\) −7.55391e11 −1.42684 −0.713421 0.700736i \(-0.752855\pi\)
−0.713421 + 0.700736i \(0.752855\pi\)
\(854\) −4.93022e11 6.45287e11i −0.926903 1.21317i
\(855\) 0 0
\(856\) 9.33248e11 3.79773e11i 1.73821 0.707342i
\(857\) 8.88963e10 0.164801 0.0824006 0.996599i \(-0.473741\pi\)
0.0824006 + 0.996599i \(0.473741\pi\)
\(858\) 0 0
\(859\) 9.88172e10i 0.181493i −0.995874 0.0907465i \(-0.971075\pi\)
0.995874 0.0907465i \(-0.0289253\pi\)
\(860\) −2.72893e11 7.43371e10i −0.498884 0.135898i
\(861\) 0 0
\(862\) −8.04460e9 1.05291e10i −0.0145705 0.0190705i
\(863\) 7.06320e11i 1.27338i −0.771119 0.636691i \(-0.780303\pi\)
0.771119 0.636691i \(-0.219697\pi\)
\(864\) 0 0
\(865\) −2.37147e11 −0.423597
\(866\) −1.26359e11 + 9.65429e10i −0.224665 + 0.171652i
\(867\) 0 0
\(868\) −2.16483e11 + 7.94714e11i −0.381368 + 1.40001i
\(869\) −1.02718e10 −0.0180122
\(870\) 0 0
\(871\) 1.97214e11i 0.342662i
\(872\) −6.36248e10 1.56350e11i −0.110042 0.270416i
\(873\) 0 0
\(874\) −6.52034e10 + 4.98176e10i −0.111744 + 0.0853763i
\(875\) 6.56157e10i 0.111937i
\(876\) 0 0
\(877\) 8.57602e11 1.44973 0.724865 0.688891i \(-0.241902\pi\)
0.724865 + 0.688891i \(0.241902\pi\)
\(878\) 5.11741e11 + 6.69787e11i 0.861136 + 1.12709i
\(879\) 0 0
\(880\) −7.72904e9 + 1.31340e10i −0.0128883 + 0.0219012i
\(881\) 6.85802e11 1.13840 0.569201 0.822199i \(-0.307253\pi\)
0.569201 + 0.822199i \(0.307253\pi\)
\(882\) 0 0
\(883\) 4.88217e11i 0.803101i 0.915837 + 0.401551i \(0.131529\pi\)
−0.915837 + 0.401551i \(0.868471\pi\)
\(884\) 2.96136e10 1.08712e11i 0.0484933 0.178020i
\(885\) 0 0
\(886\) −3.71693e10 4.86487e10i −0.0603184 0.0789472i
\(887\) 1.02206e12i 1.65113i 0.564308 + 0.825564i \(0.309143\pi\)
−0.564308 + 0.825564i \(0.690857\pi\)
\(888\) 0 0
\(889\) 7.99617e11 1.28019
\(890\) −1.62235e10 + 1.23953e10i −0.0258574 + 0.0197559i
\(891\) 0 0
\(892\) −4.83625e11 1.31741e11i −0.763923 0.208095i
\(893\) −3.17051e11 −0.498567
\(894\) 0 0
\(895\) 5.01674e11i 0.781862i
\(896\) 7.98093e11 + 1.16891e11i 1.23829 + 0.181363i
\(897\) 0 0
\(898\) −6.14167e11 + 4.69245e11i −0.944455 + 0.721597i
\(899\) 9.59678e11i 1.46922i
\(900\) 0 0
\(901\) 2.50504e11 0.380115
\(902\) −2.20282e10 2.88314e10i −0.0332776 0.0435551i
\(903\) 0 0
\(904\) −2.72157e11 6.68794e11i −0.407517 1.00143i
\(905\) 5.55590e11 0.828248
\(906\) 0 0
\(907\) 7.83608e11i 1.15790i −0.815364 0.578949i \(-0.803463\pi\)
0.815364 0.578949i \(-0.196537\pi\)
\(908\) 1.10805e12 + 3.01836e11i 1.63010 + 0.444046i
\(909\) 0 0
\(910\) −1.76666e11 2.31228e11i −0.257625 0.337190i
\(911\) 7.34304e11i 1.06611i −0.846080 0.533056i \(-0.821044\pi\)
0.846080 0.533056i \(-0.178956\pi\)
\(912\) 0 0
\(913\) 4.54253e10 0.0653754
\(914\) −7.74901e11 + 5.92051e11i −1.11035 + 0.848349i
\(915\) 0 0
\(916\) −1.92829e11 + 7.07881e11i −0.273899 + 1.00549i
\(917\) 2.83253e11 0.400587
\(918\) 0 0
\(919\) 4.92475e11i 0.690434i 0.938523 + 0.345217i \(0.112195\pi\)
−0.938523 + 0.345217i \(0.887805\pi\)
\(920\) −3.44647e10 + 1.40250e10i −0.0481087 + 0.0195772i
\(921\) 0 0
\(922\) 5.84493e11 4.46573e11i 0.808827 0.617972i
\(923\) 5.23722e11i 0.721595i
\(924\) 0 0
\(925\) −2.26572e11 −0.309485
\(926\) −6.28341e11 8.22398e11i −0.854577 1.11851i
\(927\) 0 0
\(928\) 9.32980e11 1.12992e11i 1.25800 0.152355i
\(929\) 1.45211e12 1.94956 0.974779 0.223173i \(-0.0716415\pi\)
0.974779 + 0.223173i \(0.0716415\pi\)
\(930\) 0 0
\(931\) 5.15099e11i 0.685634i
\(932\) −2.73996e11 + 1.00585e12i −0.363146 + 1.33312i
\(933\) 0 0
\(934\) 5.75233e11 + 7.52888e11i 0.755886 + 0.989334i
\(935\) 4.72634e9i 0.00618413i
\(936\) 0 0
\(937\) 9.33377e10 0.121087 0.0605437 0.998166i \(-0.480717\pi\)
0.0605437 + 0.998166i \(0.480717\pi\)
\(938\) 3.47930e11 2.65830e11i 0.449448 0.343394i
\(939\) 0 0
\(940\) −1.38715e11 3.77863e10i −0.177669 0.0483975i
\(941\) −1.02235e12 −1.30389 −0.651946 0.758265i \(-0.726047\pi\)
−0.651946 + 0.758265i \(0.726047\pi\)
\(942\) 0 0
\(943\) 8.85908e10i 0.112032i
\(944\) 9.73935e10 1.65502e11i 0.122643 0.208408i
\(945\) 0 0
\(946\) 4.18093e10 3.19437e10i 0.0522045 0.0398861i
\(947\) 1.02824e11i 0.127849i −0.997955 0.0639243i \(-0.979638\pi\)
0.997955 0.0639243i \(-0.0203616\pi\)
\(948\) 0 0
\(949\) 5.25265e11 0.647611
\(950\) −1.19751e11 1.56735e11i −0.147023 0.192429i
\(951\) 0 0
\(952\) 2.31710e11 9.42912e10i 0.282095 0.114795i
\(953\) −1.13956e12 −1.38154 −0.690771 0.723074i \(-0.742729\pi\)
−0.690771 + 0.723074i \(0.742729\pi\)
\(954\) 0 0
\(955\) 6.01896e11i 0.723615i
\(956\) 7.79871e11 + 2.12439e11i 0.933665 + 0.254333i
\(957\) 0 0
\(958\) −6.85970e11 8.97827e11i −0.814411 1.06593i
\(959\) 1.27565e12i 1.50819i
\(960\) 0 0
\(961\) −2.93633e11 −0.344279
\(962\) −7.98434e11 + 6.10031e11i −0.932264 + 0.712282i
\(963\) 0 0
\(964\) 9.47293e10 3.47754e11i 0.109692 0.402683i
\(965\) 5.33064e11 0.614710
\(966\) 0 0
\(967\) 1.18968e12i 1.36058i −0.732942 0.680291i \(-0.761853\pi\)
0.732942 0.680291i \(-0.238147\pi\)
\(968\) 3.29875e11 + 8.10630e11i 0.375706 + 0.923254i
\(969\) 0 0
\(970\) −2.30429e11 + 1.76056e11i −0.260286 + 0.198867i
\(971\) 8.30442e11i 0.934184i −0.884209 0.467092i \(-0.845302\pi\)
0.884209 0.467092i \(-0.154698\pi\)
\(972\) 0 0
\(973\) 1.45674e12 1.62529
\(974\) −9.32186e11 1.22008e12i −1.03578 1.35567i
\(975\) 0 0
\(976\) −9.54031e11 5.61422e11i −1.05139 0.618714i
\(977\) 6.84728e10 0.0751518 0.0375759 0.999294i \(-0.488036\pi\)
0.0375759 + 0.999294i \(0.488036\pi\)
\(978\) 0 0
\(979\) 3.79811e9i 0.00413463i
\(980\) 6.13898e10 2.25363e11i 0.0665567 0.244331i
\(981\) 0 0
\(982\) −8.67282e11 1.13513e12i −0.932640 1.22068i
\(983\) 7.69855e11i 0.824508i 0.911069 + 0.412254i \(0.135258\pi\)
−0.911069 + 0.412254i \(0.864742\pi\)
\(984\) 0 0
\(985\) 1.89362e11 0.201163
\(986\) 2.31604e11 1.76954e11i 0.245041 0.187220i
\(987\) 0 0
\(988\) −8.43999e11 2.29908e11i −0.885756 0.241283i
\(989\) 1.28468e11 0.134280
\(990\) 0 0
\(991\) 5.04152e11i 0.522717i 0.965242 + 0.261359i \(0.0841705\pi\)
−0.965242 + 0.261359i \(0.915829\pi\)
\(992\) 1.34991e11 + 1.11463e12i 0.139399 + 1.15102i
\(993\) 0 0
\(994\) −9.23961e11 + 7.05938e11i −0.946473 + 0.723138i
\(995\) 8.45487e10i 0.0862610i
\(996\) 0 0
\(997\) 3.36752e11 0.340823 0.170412 0.985373i \(-0.445490\pi\)
0.170412 + 0.985373i \(0.445490\pi\)
\(998\) −1.52457e11 1.99542e11i −0.153683 0.201146i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.b.91.8 yes 32
3.2 odd 2 inner 180.9.c.b.91.25 yes 32
4.3 odd 2 inner 180.9.c.b.91.7 32
12.11 even 2 inner 180.9.c.b.91.26 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.9.c.b.91.7 32 4.3 odd 2 inner
180.9.c.b.91.8 yes 32 1.1 even 1 trivial
180.9.c.b.91.25 yes 32 3.2 odd 2 inner
180.9.c.b.91.26 yes 32 12.11 even 2 inner