Properties

Label 180.9.c.b.91.5
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.5
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.b.91.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-14.6346 - 6.46742i) q^{2} +(172.345 + 189.297i) q^{4} +279.508 q^{5} +1279.81i q^{7} +(-1297.94 - 3884.91i) q^{8} +(-4090.50 - 1807.70i) q^{10} +3918.81i q^{11} +33391.7 q^{13} +(8277.07 - 18729.5i) q^{14} +(-6130.49 + 65248.6i) q^{16} -81036.2 q^{17} -50011.0i q^{19} +(48171.9 + 52910.0i) q^{20} +(25344.6 - 57350.4i) q^{22} -519530. i q^{23} +78125.0 q^{25} +(-488675. - 215958. i) q^{26} +(-242264. + 220568. i) q^{28} +851423. q^{29} -617163. i q^{31} +(511708. - 915241. i) q^{32} +(1.18593e6 + 524095. i) q^{34} +357717. i q^{35} -2.77393e6 q^{37} +(-323442. + 731892. i) q^{38} +(-362786. - 1.08587e6i) q^{40} -1.07328e6 q^{41} +6.23975e6i q^{43} +(-741818. + 675387. i) q^{44} +(-3.36002e6 + 7.60313e6i) q^{46} -3.81873e6i q^{47} +4.12689e6 q^{49} +(-1.14333e6 - 505267. i) q^{50} +(5.75488e6 + 6.32093e6i) q^{52} +7.88378e6 q^{53} +1.09534e6i q^{55} +(4.97195e6 - 1.66112e6i) q^{56} +(-1.24603e7 - 5.50651e6i) q^{58} +6.36280e6i q^{59} -7.65342e6 q^{61} +(-3.99146e6 + 9.03196e6i) q^{62} +(-1.34079e7 + 1.00848e7i) q^{64} +9.33325e6 q^{65} +2.21100e7i q^{67} +(-1.39662e7 - 1.53399e7i) q^{68} +(2.31351e6 - 5.23506e6i) q^{70} -2.48940e6i q^{71} +1.34278e7 q^{73} +(4.05955e7 + 1.79402e7i) q^{74} +(9.46691e6 - 8.61913e6i) q^{76} -5.01533e6 q^{77} -426407. i q^{79} +(-1.71352e6 + 1.82375e7i) q^{80} +(1.57071e7 + 6.94137e6i) q^{82} -7.39202e7i q^{83} -2.26503e7 q^{85} +(4.03551e7 - 9.13164e7i) q^{86} +(1.52243e7 - 5.08639e6i) q^{88} +5.04683e7 q^{89} +4.27349e7i q^{91} +(9.83454e7 - 8.95384e7i) q^{92} +(-2.46974e7 + 5.58857e7i) q^{94} -1.39785e7i q^{95} +5.32622e7 q^{97} +(-6.03955e7 - 2.66903e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 610 q^{4} - 8750 q^{10} - 51392 q^{13} + 11986 q^{16} - 758068 q^{22} + 2500000 q^{25} + 976324 q^{28} - 6117428 q^{34} + 5152064 q^{37} - 96250 q^{40} - 10391752 q^{46} - 11002976 q^{49} + 13976584 q^{52}+ \cdots + 80579520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.6346 6.46742i −0.914664 0.404214i
\(3\) 0 0
\(4\) 172.345 + 189.297i 0.673222 + 0.739440i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 1279.81i 0.533032i 0.963831 + 0.266516i \(0.0858725\pi\)
−0.963831 + 0.266516i \(0.914128\pi\)
\(8\) −1297.94 3884.91i −0.316880 0.948466i
\(9\) 0 0
\(10\) −4090.50 1807.70i −0.409050 0.180770i
\(11\) 3918.81i 0.267660i 0.991004 + 0.133830i \(0.0427276\pi\)
−0.991004 + 0.133830i \(0.957272\pi\)
\(12\) 0 0
\(13\) 33391.7 1.16913 0.584567 0.811345i \(-0.301264\pi\)
0.584567 + 0.811345i \(0.301264\pi\)
\(14\) 8277.07 18729.5i 0.215459 0.487545i
\(15\) 0 0
\(16\) −6130.49 + 65248.6i −0.0935439 + 0.995615i
\(17\) −81036.2 −0.970249 −0.485125 0.874445i \(-0.661226\pi\)
−0.485125 + 0.874445i \(0.661226\pi\)
\(18\) 0 0
\(19\) 50011.0i 0.383752i −0.981419 0.191876i \(-0.938543\pi\)
0.981419 0.191876i \(-0.0614572\pi\)
\(20\) 48171.9 + 52910.0i 0.301074 + 0.330688i
\(21\) 0 0
\(22\) 25344.6 57350.4i 0.108192 0.244819i
\(23\) 519530.i 1.85652i −0.371933 0.928260i \(-0.621305\pi\)
0.371933 0.928260i \(-0.378695\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −488675. 215958.i −1.06937 0.472581i
\(27\) 0 0
\(28\) −242264. + 220568.i −0.394145 + 0.358849i
\(29\) 851423. 1.20380 0.601899 0.798573i \(-0.294411\pi\)
0.601899 + 0.798573i \(0.294411\pi\)
\(30\) 0 0
\(31\) 617163.i 0.668272i −0.942525 0.334136i \(-0.891555\pi\)
0.942525 0.334136i \(-0.108445\pi\)
\(32\) 511708. 915241.i 0.488003 0.872842i
\(33\) 0 0
\(34\) 1.18593e6 + 524095.i 0.887453 + 0.392188i
\(35\) 357717.i 0.238379i
\(36\) 0 0
\(37\) −2.77393e6 −1.48009 −0.740047 0.672555i \(-0.765197\pi\)
−0.740047 + 0.672555i \(0.765197\pi\)
\(38\) −323442. + 731892.i −0.155118 + 0.351004i
\(39\) 0 0
\(40\) −362786. 1.08587e6i −0.141713 0.424167i
\(41\) −1.07328e6 −0.379821 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(42\) 0 0
\(43\) 6.23975e6i 1.82513i 0.408934 + 0.912564i \(0.365901\pi\)
−0.408934 + 0.912564i \(0.634099\pi\)
\(44\) −741818. + 675387.i −0.197919 + 0.180195i
\(45\) 0 0
\(46\) −3.36002e6 + 7.60313e6i −0.750431 + 1.69809i
\(47\) 3.81873e6i 0.782578i −0.920268 0.391289i \(-0.872029\pi\)
0.920268 0.391289i \(-0.127971\pi\)
\(48\) 0 0
\(49\) 4.12689e6 0.715877
\(50\) −1.14333e6 505267.i −0.182933 0.0808428i
\(51\) 0 0
\(52\) 5.75488e6 + 6.32093e6i 0.787088 + 0.864505i
\(53\) 7.88378e6 0.999151 0.499576 0.866270i \(-0.333489\pi\)
0.499576 + 0.866270i \(0.333489\pi\)
\(54\) 0 0
\(55\) 1.09534e6i 0.119701i
\(56\) 4.97195e6 1.66112e6i 0.505562 0.168907i
\(57\) 0 0
\(58\) −1.24603e7 5.50651e6i −1.10107 0.486592i
\(59\) 6.36280e6i 0.525098i 0.964919 + 0.262549i \(0.0845631\pi\)
−0.964919 + 0.262549i \(0.915437\pi\)
\(60\) 0 0
\(61\) −7.65342e6 −0.552759 −0.276380 0.961049i \(-0.589135\pi\)
−0.276380 + 0.961049i \(0.589135\pi\)
\(62\) −3.99146e6 + 9.03196e6i −0.270125 + 0.611245i
\(63\) 0 0
\(64\) −1.34079e7 + 1.00848e7i −0.799174 + 0.601100i
\(65\) 9.33325e6 0.522853
\(66\) 0 0
\(67\) 2.21100e7i 1.09721i 0.836082 + 0.548605i \(0.184841\pi\)
−0.836082 + 0.548605i \(0.815159\pi\)
\(68\) −1.39662e7 1.53399e7i −0.653193 0.717441i
\(69\) 0 0
\(70\) 2.31351e6 5.23506e6i 0.0963561 0.218037i
\(71\) 2.48940e6i 0.0979628i −0.998800 0.0489814i \(-0.984402\pi\)
0.998800 0.0489814i \(-0.0155975\pi\)
\(72\) 0 0
\(73\) 1.34278e7 0.472840 0.236420 0.971651i \(-0.424026\pi\)
0.236420 + 0.971651i \(0.424026\pi\)
\(74\) 4.05955e7 + 1.79402e7i 1.35379 + 0.598275i
\(75\) 0 0
\(76\) 9.46691e6 8.61913e6i 0.283762 0.258350i
\(77\) −5.01533e6 −0.142671
\(78\) 0 0
\(79\) 426407.i 0.0109475i −0.999985 0.00547376i \(-0.998258\pi\)
0.999985 0.00547376i \(-0.00174236\pi\)
\(80\) −1.71352e6 + 1.82375e7i −0.0418341 + 0.445253i
\(81\) 0 0
\(82\) 1.57071e7 + 6.94137e6i 0.347409 + 0.153529i
\(83\) 7.39202e7i 1.55758i −0.627283 0.778791i \(-0.715833\pi\)
0.627283 0.778791i \(-0.284167\pi\)
\(84\) 0 0
\(85\) −2.26503e7 −0.433909
\(86\) 4.03551e7 9.13164e7i 0.737742 1.66938i
\(87\) 0 0
\(88\) 1.52243e7 5.08639e6i 0.253866 0.0848162i
\(89\) 5.04683e7 0.804375 0.402188 0.915557i \(-0.368250\pi\)
0.402188 + 0.915557i \(0.368250\pi\)
\(90\) 0 0
\(91\) 4.27349e7i 0.623186i
\(92\) 9.83454e7 8.95384e7i 1.37278 1.24985i
\(93\) 0 0
\(94\) −2.46974e7 + 5.58857e7i −0.316329 + 0.715797i
\(95\) 1.39785e7i 0.171619i
\(96\) 0 0
\(97\) 5.32622e7 0.601634 0.300817 0.953682i \(-0.402741\pi\)
0.300817 + 0.953682i \(0.402741\pi\)
\(98\) −6.03955e7 2.66903e7i −0.654788 0.289368i
\(99\) 0 0
\(100\) 1.34644e7 + 1.47888e7i 0.134644 + 0.147888i
\(101\) −4.08680e7 −0.392733 −0.196367 0.980531i \(-0.562914\pi\)
−0.196367 + 0.980531i \(0.562914\pi\)
\(102\) 0 0
\(103\) 2.18144e8i 1.93818i −0.246707 0.969090i \(-0.579348\pi\)
0.246707 0.969090i \(-0.420652\pi\)
\(104\) −4.33404e7 1.29724e8i −0.370476 1.10888i
\(105\) 0 0
\(106\) −1.15376e8 5.09878e7i −0.913888 0.403871i
\(107\) 1.41164e8i 1.07693i −0.842648 0.538465i \(-0.819004\pi\)
0.842648 0.538465i \(-0.180996\pi\)
\(108\) 0 0
\(109\) 4.33116e7 0.306830 0.153415 0.988162i \(-0.450973\pi\)
0.153415 + 0.988162i \(0.450973\pi\)
\(110\) 7.08404e6 1.60299e7i 0.0483849 0.109487i
\(111\) 0 0
\(112\) −8.35058e7 7.84586e6i −0.530694 0.0498619i
\(113\) 2.45194e8 1.50382 0.751910 0.659266i \(-0.229133\pi\)
0.751910 + 0.659266i \(0.229133\pi\)
\(114\) 0 0
\(115\) 1.45213e8i 0.830261i
\(116\) 1.46738e8 + 1.61172e8i 0.810423 + 0.890136i
\(117\) 0 0
\(118\) 4.11509e7 9.31172e7i 0.212252 0.480288i
\(119\) 1.03711e8i 0.517174i
\(120\) 0 0
\(121\) 1.99002e8 0.928358
\(122\) 1.12005e8 + 4.94979e7i 0.505589 + 0.223433i
\(123\) 0 0
\(124\) 1.16827e8 1.06365e8i 0.494147 0.449896i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 6.73587e7i 0.258928i −0.991584 0.129464i \(-0.958674\pi\)
0.991584 0.129464i \(-0.0413257\pi\)
\(128\) 2.61442e8 6.08725e7i 0.973949 0.226768i
\(129\) 0 0
\(130\) −1.36589e8 6.03621e7i −0.478235 0.211344i
\(131\) 5.91573e7i 0.200874i −0.994943 0.100437i \(-0.967976\pi\)
0.994943 0.100437i \(-0.0320241\pi\)
\(132\) 0 0
\(133\) 6.40045e7 0.204552
\(134\) 1.42995e8 3.23572e8i 0.443507 1.00358i
\(135\) 0 0
\(136\) 1.05180e8 + 3.14819e8i 0.307453 + 0.920248i
\(137\) 2.22966e8 0.632930 0.316465 0.948604i \(-0.397504\pi\)
0.316465 + 0.948604i \(0.397504\pi\)
\(138\) 0 0
\(139\) 2.02348e8i 0.542050i −0.962572 0.271025i \(-0.912637\pi\)
0.962572 0.271025i \(-0.0873627\pi\)
\(140\) −6.77147e7 + 6.16508e7i −0.176267 + 0.160482i
\(141\) 0 0
\(142\) −1.61000e7 + 3.64314e7i −0.0395979 + 0.0896031i
\(143\) 1.30856e8i 0.312931i
\(144\) 0 0
\(145\) 2.37980e8 0.538354
\(146\) −1.96511e8 8.68435e7i −0.432490 0.191129i
\(147\) 0 0
\(148\) −4.78073e8 5.25097e8i −0.996432 1.09444i
\(149\) 2.20219e8 0.446797 0.223398 0.974727i \(-0.428285\pi\)
0.223398 + 0.974727i \(0.428285\pi\)
\(150\) 0 0
\(151\) 3.07054e8i 0.590618i 0.955402 + 0.295309i \(0.0954225\pi\)
−0.955402 + 0.295309i \(0.904577\pi\)
\(152\) −1.94288e8 + 6.49113e7i −0.363976 + 0.121603i
\(153\) 0 0
\(154\) 7.33975e7 + 3.24363e7i 0.130496 + 0.0576698i
\(155\) 1.72502e8i 0.298860i
\(156\) 0 0
\(157\) 6.79416e8 1.11824 0.559122 0.829085i \(-0.311138\pi\)
0.559122 + 0.829085i \(0.311138\pi\)
\(158\) −2.75775e6 + 6.24031e6i −0.00442514 + 0.0100133i
\(159\) 0 0
\(160\) 1.43027e8 2.55818e8i 0.218241 0.390347i
\(161\) 6.64899e8 0.989583
\(162\) 0 0
\(163\) 2.29685e8i 0.325373i −0.986678 0.162687i \(-0.947984\pi\)
0.986678 0.162687i \(-0.0520160\pi\)
\(164\) −1.84975e8 2.03169e8i −0.255704 0.280855i
\(165\) 0 0
\(166\) −4.78074e8 + 1.08180e9i −0.629597 + 1.42467i
\(167\) 1.19746e9i 1.53956i −0.638309 0.769780i \(-0.720366\pi\)
0.638309 0.769780i \(-0.279634\pi\)
\(168\) 0 0
\(169\) 2.99272e8 0.366876
\(170\) 3.31479e8 + 1.46489e8i 0.396881 + 0.175392i
\(171\) 0 0
\(172\) −1.18116e9 + 1.07539e9i −1.34957 + 1.22872i
\(173\) −5.29600e8 −0.591240 −0.295620 0.955306i \(-0.595526\pi\)
−0.295620 + 0.955306i \(0.595526\pi\)
\(174\) 0 0
\(175\) 9.99851e7i 0.106606i
\(176\) −2.55697e8 2.40243e7i −0.266487 0.0250380i
\(177\) 0 0
\(178\) −7.38585e8 3.26400e8i −0.735733 0.325140i
\(179\) 3.30454e8i 0.321884i −0.986964 0.160942i \(-0.948547\pi\)
0.986964 0.160942i \(-0.0514531\pi\)
\(180\) 0 0
\(181\) 6.27215e8 0.584389 0.292195 0.956359i \(-0.405615\pi\)
0.292195 + 0.956359i \(0.405615\pi\)
\(182\) 2.76385e8 6.25410e8i 0.251900 0.570006i
\(183\) 0 0
\(184\) −2.01833e9 + 6.74320e8i −1.76084 + 0.588294i
\(185\) −7.75338e8 −0.661918
\(186\) 0 0
\(187\) 3.17566e8i 0.259697i
\(188\) 7.22874e8 6.58139e8i 0.578670 0.526849i
\(189\) 0 0
\(190\) −9.04048e7 + 2.04570e8i −0.0693709 + 0.156974i
\(191\) 1.72241e9i 1.29420i 0.762404 + 0.647102i \(0.224019\pi\)
−0.762404 + 0.647102i \(0.775981\pi\)
\(192\) 0 0
\(193\) 1.52665e9 1.10030 0.550149 0.835066i \(-0.314571\pi\)
0.550149 + 0.835066i \(0.314571\pi\)
\(194\) −7.79473e8 3.44469e8i −0.550293 0.243189i
\(195\) 0 0
\(196\) 7.11248e8 + 7.81207e8i 0.481944 + 0.529349i
\(197\) −4.12733e8 −0.274034 −0.137017 0.990569i \(-0.543751\pi\)
−0.137017 + 0.990569i \(0.543751\pi\)
\(198\) 0 0
\(199\) 7.19579e8i 0.458845i 0.973327 + 0.229423i \(0.0736838\pi\)
−0.973327 + 0.229423i \(0.926316\pi\)
\(200\) −1.01402e8 3.03509e8i −0.0633761 0.189693i
\(201\) 0 0
\(202\) 5.98088e8 + 2.64310e8i 0.359219 + 0.158748i
\(203\) 1.08966e9i 0.641662i
\(204\) 0 0
\(205\) −2.99992e8 −0.169861
\(206\) −1.41083e9 + 3.19246e9i −0.783440 + 1.77278i
\(207\) 0 0
\(208\) −2.04707e8 + 2.17876e9i −0.109365 + 1.16401i
\(209\) 1.95984e8 0.102715
\(210\) 0 0
\(211\) 1.87773e8i 0.0947333i 0.998878 + 0.0473666i \(0.0150829\pi\)
−0.998878 + 0.0473666i \(0.984917\pi\)
\(212\) 1.35873e9 + 1.49237e9i 0.672651 + 0.738813i
\(213\) 0 0
\(214\) −9.12965e8 + 2.06588e9i −0.435310 + 0.985030i
\(215\) 1.74406e9i 0.816222i
\(216\) 0 0
\(217\) 7.89851e8 0.356210
\(218\) −6.33850e8 2.80115e8i −0.280647 0.124025i
\(219\) 0 0
\(220\) −2.07345e8 + 1.88777e8i −0.0885120 + 0.0805856i
\(221\) −2.70593e9 −1.13435
\(222\) 0 0
\(223\) 3.73114e9i 1.50877i −0.656435 0.754383i \(-0.727936\pi\)
0.656435 0.754383i \(-0.272064\pi\)
\(224\) 1.17133e9 + 6.54889e8i 0.465252 + 0.260121i
\(225\) 0 0
\(226\) −3.58832e9 1.58577e9i −1.37549 0.607865i
\(227\) 1.52473e9i 0.574234i −0.957895 0.287117i \(-0.907303\pi\)
0.957895 0.287117i \(-0.0926969\pi\)
\(228\) 0 0
\(229\) 4.21607e9 1.53308 0.766541 0.642195i \(-0.221976\pi\)
0.766541 + 0.642195i \(0.221976\pi\)
\(230\) −9.39155e8 + 2.12514e9i −0.335603 + 0.759410i
\(231\) 0 0
\(232\) −1.10510e9 3.30771e9i −0.381460 1.14176i
\(233\) −2.82357e9 −0.958022 −0.479011 0.877809i \(-0.659005\pi\)
−0.479011 + 0.877809i \(0.659005\pi\)
\(234\) 0 0
\(235\) 1.06737e9i 0.349980i
\(236\) −1.20446e9 + 1.09660e9i −0.388278 + 0.353507i
\(237\) 0 0
\(238\) −6.70742e8 + 1.51777e9i −0.209049 + 0.473040i
\(239\) 4.33879e9i 1.32977i 0.746946 + 0.664885i \(0.231520\pi\)
−0.746946 + 0.664885i \(0.768480\pi\)
\(240\) 0 0
\(241\) 5.45496e9 1.61705 0.808526 0.588461i \(-0.200266\pi\)
0.808526 + 0.588461i \(0.200266\pi\)
\(242\) −2.91232e9 1.28703e9i −0.849136 0.375255i
\(243\) 0 0
\(244\) −1.31903e9 1.44877e9i −0.372130 0.408732i
\(245\) 1.15350e9 0.320150
\(246\) 0 0
\(247\) 1.66995e9i 0.448658i
\(248\) −2.39763e9 + 8.01042e8i −0.633833 + 0.211762i
\(249\) 0 0
\(250\) −3.19571e8 1.41227e8i −0.0818101 0.0361540i
\(251\) 6.01395e9i 1.51518i 0.652729 + 0.757591i \(0.273624\pi\)
−0.652729 + 0.757591i \(0.726376\pi\)
\(252\) 0 0
\(253\) 2.03594e9 0.496916
\(254\) −4.35637e8 + 9.85770e8i −0.104662 + 0.236832i
\(255\) 0 0
\(256\) −4.21980e9 8.00013e8i −0.982499 0.186267i
\(257\) 1.93062e8 0.0442552 0.0221276 0.999755i \(-0.492956\pi\)
0.0221276 + 0.999755i \(0.492956\pi\)
\(258\) 0 0
\(259\) 3.55011e9i 0.788937i
\(260\) 1.60854e9 + 1.76675e9i 0.351996 + 0.386619i
\(261\) 0 0
\(262\) −3.82596e8 + 8.65746e8i −0.0811960 + 0.183732i
\(263\) 3.41514e9i 0.713814i −0.934140 0.356907i \(-0.883831\pi\)
0.934140 0.356907i \(-0.116169\pi\)
\(264\) 0 0
\(265\) 2.20358e9 0.446834
\(266\) −9.36682e8 4.13944e8i −0.187096 0.0826828i
\(267\) 0 0
\(268\) −4.18535e9 + 3.81055e9i −0.811321 + 0.738666i
\(269\) −1.38303e9 −0.264133 −0.132067 0.991241i \(-0.542161\pi\)
−0.132067 + 0.991241i \(0.542161\pi\)
\(270\) 0 0
\(271\) 9.60020e9i 1.77993i −0.456028 0.889965i \(-0.650728\pi\)
0.456028 0.889965i \(-0.349272\pi\)
\(272\) 4.96792e8 5.28750e9i 0.0907609 0.965995i
\(273\) 0 0
\(274\) −3.26302e9 1.44201e9i −0.578918 0.255839i
\(275\) 3.06157e8i 0.0535320i
\(276\) 0 0
\(277\) 1.11200e10 1.88880 0.944399 0.328801i \(-0.106645\pi\)
0.944399 + 0.328801i \(0.106645\pi\)
\(278\) −1.30867e9 + 2.96129e9i −0.219104 + 0.495794i
\(279\) 0 0
\(280\) 1.38970e9 4.64296e8i 0.226094 0.0755376i
\(281\) −6.81089e9 −1.09239 −0.546196 0.837657i \(-0.683925\pi\)
−0.546196 + 0.837657i \(0.683925\pi\)
\(282\) 0 0
\(283\) 1.07587e10i 1.67732i 0.544657 + 0.838659i \(0.316660\pi\)
−0.544657 + 0.838659i \(0.683340\pi\)
\(284\) 4.71235e8 4.29035e8i 0.0724376 0.0659507i
\(285\) 0 0
\(286\) 8.46299e8 1.91502e9i 0.126491 0.286227i
\(287\) 1.37360e9i 0.202456i
\(288\) 0 0
\(289\) −4.08894e8 −0.0586164
\(290\) −3.48275e9 1.53912e9i −0.492414 0.217610i
\(291\) 0 0
\(292\) 2.31422e9 + 2.54185e9i 0.318327 + 0.349637i
\(293\) 1.10554e10 1.50004 0.750022 0.661413i \(-0.230043\pi\)
0.750022 + 0.661413i \(0.230043\pi\)
\(294\) 0 0
\(295\) 1.77846e9i 0.234831i
\(296\) 3.60040e9 + 1.07765e10i 0.469013 + 1.40382i
\(297\) 0 0
\(298\) −3.22283e9 1.42425e9i −0.408669 0.180601i
\(299\) 1.73480e10i 2.17052i
\(300\) 0 0
\(301\) −7.98569e9 −0.972851
\(302\) 1.98585e9 4.49362e9i 0.238736 0.540217i
\(303\) 0 0
\(304\) 3.26315e9 + 3.06592e8i 0.382069 + 0.0358977i
\(305\) −2.13920e9 −0.247201
\(306\) 0 0
\(307\) 1.65673e10i 1.86508i −0.361066 0.932540i \(-0.617587\pi\)
0.361066 0.932540i \(-0.382413\pi\)
\(308\) −8.64367e8 9.49386e8i −0.0960495 0.105497i
\(309\) 0 0
\(310\) −1.11565e9 + 2.52451e9i −0.120804 + 0.273357i
\(311\) 1.08723e10i 1.16220i 0.813833 + 0.581099i \(0.197377\pi\)
−0.813833 + 0.581099i \(0.802623\pi\)
\(312\) 0 0
\(313\) 6.57086e9 0.684613 0.342307 0.939588i \(-0.388792\pi\)
0.342307 + 0.939588i \(0.388792\pi\)
\(314\) −9.94300e9 4.39407e9i −1.02282 0.452010i
\(315\) 0 0
\(316\) 8.07174e7 7.34891e7i 0.00809504 0.00737012i
\(317\) 2.30028e9 0.227795 0.113897 0.993493i \(-0.463667\pi\)
0.113897 + 0.993493i \(0.463667\pi\)
\(318\) 0 0
\(319\) 3.33657e9i 0.322209i
\(320\) −3.74763e9 + 2.81878e9i −0.357401 + 0.268820i
\(321\) 0 0
\(322\) −9.73056e9 4.30019e9i −0.905137 0.400003i
\(323\) 4.05270e9i 0.372335i
\(324\) 0 0
\(325\) 2.60872e9 0.233827
\(326\) −1.48547e9 + 3.36135e9i −0.131520 + 0.297608i
\(327\) 0 0
\(328\) 1.39306e9 + 4.16961e9i 0.120358 + 0.360247i
\(329\) 4.88725e9 0.417139
\(330\) 0 0
\(331\) 4.15455e9i 0.346108i −0.984912 0.173054i \(-0.944636\pi\)
0.984912 0.173054i \(-0.0553636\pi\)
\(332\) 1.39929e10 1.27398e10i 1.15174 1.04860i
\(333\) 0 0
\(334\) −7.74451e9 + 1.75244e10i −0.622312 + 1.40818i
\(335\) 6.17993e9i 0.490687i
\(336\) 0 0
\(337\) 7.45299e9 0.577844 0.288922 0.957353i \(-0.406703\pi\)
0.288922 + 0.957353i \(0.406703\pi\)
\(338\) −4.37974e9 1.93552e9i −0.335569 0.148297i
\(339\) 0 0
\(340\) −3.90366e9 4.28763e9i −0.292117 0.320850i
\(341\) 2.41855e9 0.178870
\(342\) 0 0
\(343\) 1.26595e10i 0.914617i
\(344\) 2.42409e10 8.09883e9i 1.73107 0.578347i
\(345\) 0 0
\(346\) 7.75050e9 + 3.42515e9i 0.540786 + 0.238987i
\(347\) 1.43423e10i 0.989238i −0.869110 0.494619i \(-0.835308\pi\)
0.869110 0.494619i \(-0.164692\pi\)
\(348\) 0 0
\(349\) −1.53420e10 −1.03414 −0.517071 0.855943i \(-0.672978\pi\)
−0.517071 + 0.855943i \(0.672978\pi\)
\(350\) 6.46646e8 1.46324e9i 0.0430918 0.0975090i
\(351\) 0 0
\(352\) 3.58666e9 + 2.00529e9i 0.233625 + 0.130619i
\(353\) −1.05428e10 −0.678978 −0.339489 0.940610i \(-0.610254\pi\)
−0.339489 + 0.940610i \(0.610254\pi\)
\(354\) 0 0
\(355\) 6.95808e8i 0.0438103i
\(356\) 8.69795e9 + 9.55348e9i 0.541523 + 0.594787i
\(357\) 0 0
\(358\) −2.13719e9 + 4.83607e9i −0.130110 + 0.294415i
\(359\) 4.69543e9i 0.282681i −0.989961 0.141341i \(-0.954859\pi\)
0.989961 0.141341i \(-0.0451413\pi\)
\(360\) 0 0
\(361\) 1.44825e10 0.852734
\(362\) −9.17906e9 4.05646e9i −0.534520 0.236218i
\(363\) 0 0
\(364\) −8.08959e9 + 7.36515e9i −0.460809 + 0.419543i
\(365\) 3.75319e9 0.211461
\(366\) 0 0
\(367\) 4.20349e9i 0.231711i 0.993266 + 0.115855i \(0.0369609\pi\)
−0.993266 + 0.115855i \(0.963039\pi\)
\(368\) 3.38986e10 + 3.18498e9i 1.84838 + 0.173666i
\(369\) 0 0
\(370\) 1.13468e10 + 5.01444e9i 0.605433 + 0.267557i
\(371\) 1.00897e10i 0.532579i
\(372\) 0 0
\(373\) −2.03230e10 −1.04991 −0.524956 0.851130i \(-0.675918\pi\)
−0.524956 + 0.851130i \(0.675918\pi\)
\(374\) −2.05383e9 + 4.64746e9i −0.104973 + 0.237536i
\(375\) 0 0
\(376\) −1.48355e10 + 4.95649e9i −0.742249 + 0.247984i
\(377\) 2.84304e10 1.40740
\(378\) 0 0
\(379\) 2.99459e10i 1.45138i 0.688024 + 0.725688i \(0.258478\pi\)
−0.688024 + 0.725688i \(0.741522\pi\)
\(380\) 2.64608e9 2.40912e9i 0.126902 0.115538i
\(381\) 0 0
\(382\) 1.11395e10 2.52068e10i 0.523135 1.18376i
\(383\) 2.45977e10i 1.14314i −0.820554 0.571569i \(-0.806335\pi\)
0.820554 0.571569i \(-0.193665\pi\)
\(384\) 0 0
\(385\) −1.40183e9 −0.0638046
\(386\) −2.23420e10 9.87350e9i −1.00640 0.444756i
\(387\) 0 0
\(388\) 9.17947e9 + 1.00824e10i 0.405033 + 0.444872i
\(389\) 2.48604e9 0.108570 0.0542851 0.998525i \(-0.482712\pi\)
0.0542851 + 0.998525i \(0.482712\pi\)
\(390\) 0 0
\(391\) 4.21007e10i 1.80129i
\(392\) −5.35646e9 1.60326e10i −0.226847 0.678985i
\(393\) 0 0
\(394\) 6.04019e9 + 2.66932e9i 0.250649 + 0.110768i
\(395\) 1.19184e8i 0.00489588i
\(396\) 0 0
\(397\) −2.18098e10 −0.877992 −0.438996 0.898489i \(-0.644666\pi\)
−0.438996 + 0.898489i \(0.644666\pi\)
\(398\) 4.65382e9 1.05308e10i 0.185472 0.419690i
\(399\) 0 0
\(400\) −4.78945e8 + 5.09755e9i −0.0187088 + 0.199123i
\(401\) 1.42753e10 0.552088 0.276044 0.961145i \(-0.410976\pi\)
0.276044 + 0.961145i \(0.410976\pi\)
\(402\) 0 0
\(403\) 2.06081e10i 0.781300i
\(404\) −7.04338e9 7.73617e9i −0.264397 0.290403i
\(405\) 0 0
\(406\) 7.04728e9 1.59467e10i 0.259369 0.586905i
\(407\) 1.08705e10i 0.396162i
\(408\) 0 0
\(409\) −2.26795e10 −0.810474 −0.405237 0.914212i \(-0.632811\pi\)
−0.405237 + 0.914212i \(0.632811\pi\)
\(410\) 4.39027e9 + 1.94017e9i 0.155366 + 0.0686602i
\(411\) 0 0
\(412\) 4.12939e10 3.75960e10i 1.43317 1.30483i
\(413\) −8.14317e9 −0.279894
\(414\) 0 0
\(415\) 2.06613e10i 0.696572i
\(416\) 1.70868e10 3.05614e10i 0.570541 1.02047i
\(417\) 0 0
\(418\) −2.86815e9 1.26751e9i −0.0939499 0.0415189i
\(419\) 3.50541e10i 1.13732i −0.822572 0.568661i \(-0.807462\pi\)
0.822572 0.568661i \(-0.192538\pi\)
\(420\) 0 0
\(421\) −1.90869e10 −0.607586 −0.303793 0.952738i \(-0.598253\pi\)
−0.303793 + 0.952738i \(0.598253\pi\)
\(422\) 1.21441e9 2.74798e9i 0.0382925 0.0866491i
\(423\) 0 0
\(424\) −1.02327e10 3.06278e10i −0.316611 0.947660i
\(425\) −6.33095e9 −0.194050
\(426\) 0 0
\(427\) 9.79491e9i 0.294638i
\(428\) 2.67218e10 2.43288e10i 0.796326 0.725013i
\(429\) 0 0
\(430\) 1.12796e10 2.55237e10i 0.329928 0.746569i
\(431\) 4.67409e10i 1.35453i −0.735740 0.677264i \(-0.763166\pi\)
0.735740 0.677264i \(-0.236834\pi\)
\(432\) 0 0
\(433\) −2.73439e10 −0.777873 −0.388937 0.921265i \(-0.627157\pi\)
−0.388937 + 0.921265i \(0.627157\pi\)
\(434\) −1.15592e10 5.10830e9i −0.325813 0.143985i
\(435\) 0 0
\(436\) 7.46454e9 + 8.19875e9i 0.206565 + 0.226883i
\(437\) −2.59822e10 −0.712443
\(438\) 0 0
\(439\) 1.20747e10i 0.325100i −0.986700 0.162550i \(-0.948028\pi\)
0.986700 0.162550i \(-0.0519719\pi\)
\(440\) 4.25531e9 1.42169e9i 0.113533 0.0379310i
\(441\) 0 0
\(442\) 3.96003e10 + 1.75004e10i 1.03755 + 0.458521i
\(443\) 3.74276e10i 0.971801i 0.874014 + 0.485900i \(0.161508\pi\)
−0.874014 + 0.485900i \(0.838492\pi\)
\(444\) 0 0
\(445\) 1.41063e10 0.359728
\(446\) −2.41308e10 + 5.46038e10i −0.609864 + 1.38001i
\(447\) 0 0
\(448\) −1.29066e10 1.71596e10i −0.320405 0.425985i
\(449\) 4.43873e10 1.09213 0.546063 0.837744i \(-0.316126\pi\)
0.546063 + 0.837744i \(0.316126\pi\)
\(450\) 0 0
\(451\) 4.20599e9i 0.101663i
\(452\) 4.22579e10 + 4.64144e10i 1.01240 + 1.11198i
\(453\) 0 0
\(454\) −9.86107e9 + 2.23138e10i −0.232114 + 0.525232i
\(455\) 1.19448e10i 0.278697i
\(456\) 0 0
\(457\) 4.57924e10 1.04985 0.524926 0.851148i \(-0.324093\pi\)
0.524926 + 0.851148i \(0.324093\pi\)
\(458\) −6.17006e10 2.72671e10i −1.40226 0.619693i
\(459\) 0 0
\(460\) 2.74884e10 2.50267e10i 0.613928 0.558950i
\(461\) 6.96170e9 0.154139 0.0770693 0.997026i \(-0.475444\pi\)
0.0770693 + 0.997026i \(0.475444\pi\)
\(462\) 0 0
\(463\) 2.79510e9i 0.0608237i 0.999537 + 0.0304118i \(0.00968188\pi\)
−0.999537 + 0.0304118i \(0.990318\pi\)
\(464\) −5.21964e9 + 5.55542e10i −0.112608 + 1.19852i
\(465\) 0 0
\(466\) 4.13220e10 + 1.82612e10i 0.876269 + 0.387246i
\(467\) 2.10272e10i 0.442094i 0.975263 + 0.221047i \(0.0709474\pi\)
−0.975263 + 0.221047i \(0.929053\pi\)
\(468\) 0 0
\(469\) −2.82966e10 −0.584847
\(470\) −6.90312e9 + 1.56205e10i −0.141467 + 0.320114i
\(471\) 0 0
\(472\) 2.47189e10 8.25854e9i 0.498037 0.166393i
\(473\) −2.44524e10 −0.488514
\(474\) 0 0
\(475\) 3.90711e9i 0.0767504i
\(476\) 1.96321e10 1.78740e10i 0.382419 0.348173i
\(477\) 0 0
\(478\) 2.80608e10 6.34965e10i 0.537512 1.21629i
\(479\) 1.01174e11i 1.92188i 0.276749 + 0.960942i \(0.410743\pi\)
−0.276749 + 0.960942i \(0.589257\pi\)
\(480\) 0 0
\(481\) −9.26263e10 −1.73043
\(482\) −7.98314e10 3.52796e10i −1.47906 0.653635i
\(483\) 0 0
\(484\) 3.42969e10 + 3.76704e10i 0.624991 + 0.686465i
\(485\) 1.48872e10 0.269059
\(486\) 0 0
\(487\) 6.69576e10i 1.19038i −0.803587 0.595188i \(-0.797078\pi\)
0.803587 0.595188i \(-0.202922\pi\)
\(488\) 9.93369e9 + 2.97329e10i 0.175159 + 0.524273i
\(489\) 0 0
\(490\) −1.68811e10 7.46018e9i −0.292830 0.129409i
\(491\) 4.99684e10i 0.859745i 0.902890 + 0.429873i \(0.141442\pi\)
−0.902890 + 0.429873i \(0.858558\pi\)
\(492\) 0 0
\(493\) −6.89961e10 −1.16798
\(494\) −1.08003e10 + 2.44391e10i −0.181354 + 0.410372i
\(495\) 0 0
\(496\) 4.02691e10 + 3.78352e9i 0.665342 + 0.0625128i
\(497\) 3.18595e9 0.0522173
\(498\) 0 0
\(499\) 1.20214e11i 1.93889i 0.245317 + 0.969443i \(0.421108\pi\)
−0.245317 + 0.969443i \(0.578892\pi\)
\(500\) 3.76343e9 + 4.13360e9i 0.0602148 + 0.0661376i
\(501\) 0 0
\(502\) 3.88948e10 8.80119e10i 0.612458 1.38588i
\(503\) 2.09154e10i 0.326734i −0.986565 0.163367i \(-0.947765\pi\)
0.986565 0.163367i \(-0.0522354\pi\)
\(504\) 0 0
\(505\) −1.14229e10 −0.175636
\(506\) −2.97953e10 1.31673e10i −0.454512 0.200861i
\(507\) 0 0
\(508\) 1.27508e10 1.16089e10i 0.191462 0.174316i
\(509\) −1.68591e10 −0.251167 −0.125584 0.992083i \(-0.540080\pi\)
−0.125584 + 0.992083i \(0.540080\pi\)
\(510\) 0 0
\(511\) 1.71851e10i 0.252039i
\(512\) 5.65812e10 + 3.89991e10i 0.823365 + 0.567512i
\(513\) 0 0
\(514\) −2.82539e9 1.24861e9i −0.0404787 0.0178886i
\(515\) 6.09731e10i 0.866781i
\(516\) 0 0
\(517\) 1.49649e10 0.209465
\(518\) −2.29600e10 + 5.19545e10i −0.318899 + 0.721613i
\(519\) 0 0
\(520\) −1.21140e10 3.62589e10i −0.165682 0.495908i
\(521\) −1.13266e11 −1.53726 −0.768630 0.639693i \(-0.779061\pi\)
−0.768630 + 0.639693i \(0.779061\pi\)
\(522\) 0 0
\(523\) 6.37613e10i 0.852218i 0.904672 + 0.426109i \(0.140116\pi\)
−0.904672 + 0.426109i \(0.859884\pi\)
\(524\) 1.11983e10 1.01955e10i 0.148534 0.135233i
\(525\) 0 0
\(526\) −2.20871e10 + 4.99793e10i −0.288534 + 0.652900i
\(527\) 5.00126e10i 0.648391i
\(528\) 0 0
\(529\) −1.91601e11 −2.44666
\(530\) −3.22486e10 1.42515e10i −0.408703 0.180617i
\(531\) 0 0
\(532\) 1.10308e10 + 1.21158e10i 0.137709 + 0.151254i
\(533\) −3.58387e10 −0.444062
\(534\) 0 0
\(535\) 3.94564e10i 0.481618i
\(536\) 8.58955e10 2.86975e10i 1.04067 0.347684i
\(537\) 0 0
\(538\) 2.02402e10 + 8.94465e9i 0.241593 + 0.106766i
\(539\) 1.61725e10i 0.191612i
\(540\) 0 0
\(541\) 1.34348e9 0.0156835 0.00784176 0.999969i \(-0.497504\pi\)
0.00784176 + 0.999969i \(0.497504\pi\)
\(542\) −6.20886e10 + 1.40495e11i −0.719473 + 1.62804i
\(543\) 0 0
\(544\) −4.14669e10 + 7.41677e10i −0.473484 + 0.846874i
\(545\) 1.21060e10 0.137219
\(546\) 0 0
\(547\) 2.97384e10i 0.332176i −0.986111 0.166088i \(-0.946886\pi\)
0.986111 0.166088i \(-0.0531135\pi\)
\(548\) 3.84270e10 + 4.22066e10i 0.426102 + 0.468014i
\(549\) 0 0
\(550\) 1.98005e9 4.48050e9i 0.0216384 0.0489639i
\(551\) 4.25805e10i 0.461960i
\(552\) 0 0
\(553\) 5.45720e8 0.00583538
\(554\) −1.62737e11 7.19177e10i −1.72762 0.763479i
\(555\) 0 0
\(556\) 3.83038e10 3.48736e10i 0.400814 0.364920i
\(557\) −1.67715e11 −1.74241 −0.871207 0.490917i \(-0.836662\pi\)
−0.871207 + 0.490917i \(0.836662\pi\)
\(558\) 0 0
\(559\) 2.08356e11i 2.13382i
\(560\) −2.33406e10 2.19298e9i −0.237334 0.0222989i
\(561\) 0 0
\(562\) 9.96749e10 + 4.40489e10i 0.999173 + 0.441560i
\(563\) 1.43083e11i 1.42415i 0.702105 + 0.712074i \(0.252244\pi\)
−0.702105 + 0.712074i \(0.747756\pi\)
\(564\) 0 0
\(565\) 6.85338e10 0.672529
\(566\) 6.95813e10 1.57450e11i 0.677996 1.53418i
\(567\) 0 0
\(568\) −9.67110e9 + 3.23109e9i −0.0929143 + 0.0310425i
\(569\) −6.35929e10 −0.606680 −0.303340 0.952882i \(-0.598102\pi\)
−0.303340 + 0.952882i \(0.598102\pi\)
\(570\) 0 0
\(571\) 9.56419e10i 0.899712i 0.893101 + 0.449856i \(0.148525\pi\)
−0.893101 + 0.449856i \(0.851475\pi\)
\(572\) −2.47706e10 + 2.25523e10i −0.231394 + 0.210672i
\(573\) 0 0
\(574\) −8.88363e9 + 2.01021e10i −0.0818357 + 0.185180i
\(575\) 4.05883e10i 0.371304i
\(576\) 0 0
\(577\) 1.18749e11 1.07134 0.535670 0.844427i \(-0.320059\pi\)
0.535670 + 0.844427i \(0.320059\pi\)
\(578\) 5.98401e9 + 2.64449e9i 0.0536143 + 0.0236936i
\(579\) 0 0
\(580\) 4.10146e10 + 4.50488e10i 0.362432 + 0.398081i
\(581\) 9.46038e10 0.830241
\(582\) 0 0
\(583\) 3.08951e10i 0.267433i
\(584\) −1.74285e10 5.21660e10i −0.149834 0.448473i
\(585\) 0 0
\(586\) −1.61792e11 7.14999e10i −1.37204 0.606339i
\(587\) 1.11850e11i 0.942069i 0.882115 + 0.471034i \(0.156119\pi\)
−0.882115 + 0.471034i \(0.843881\pi\)
\(588\) 0 0
\(589\) −3.08649e10 −0.256451
\(590\) 1.15020e10 2.60271e10i 0.0949219 0.214791i
\(591\) 0 0
\(592\) 1.70056e10 1.80995e11i 0.138454 1.47360i
\(593\) 1.05296e11 0.851516 0.425758 0.904837i \(-0.360007\pi\)
0.425758 + 0.904837i \(0.360007\pi\)
\(594\) 0 0
\(595\) 2.89881e10i 0.231287i
\(596\) 3.79536e10 + 4.16867e10i 0.300793 + 0.330379i
\(597\) 0 0
\(598\) −1.12197e11 + 2.53881e11i −0.877355 + 1.98530i
\(599\) 9.40591e10i 0.730623i −0.930885 0.365312i \(-0.880962\pi\)
0.930885 0.365312i \(-0.119038\pi\)
\(600\) 0 0
\(601\) 4.09050e10 0.313529 0.156765 0.987636i \(-0.449894\pi\)
0.156765 + 0.987636i \(0.449894\pi\)
\(602\) 1.16868e11 + 5.16468e10i 0.889832 + 0.393240i
\(603\) 0 0
\(604\) −5.81242e10 + 5.29191e10i −0.436726 + 0.397617i
\(605\) 5.56227e10 0.415174
\(606\) 0 0
\(607\) 6.17741e10i 0.455043i −0.973773 0.227521i \(-0.926938\pi\)
0.973773 0.227521i \(-0.0730621\pi\)
\(608\) −4.57721e10 2.55910e10i −0.334955 0.187272i
\(609\) 0 0
\(610\) 3.13063e10 + 1.38351e10i 0.226106 + 0.0999223i
\(611\) 1.27514e11i 0.914940i
\(612\) 0 0
\(613\) −2.30900e11 −1.63524 −0.817620 0.575758i \(-0.804707\pi\)
−0.817620 + 0.575758i \(0.804707\pi\)
\(614\) −1.07148e11 + 2.42456e11i −0.753891 + 1.70592i
\(615\) 0 0
\(616\) 6.50961e9 + 1.94841e10i 0.0452097 + 0.135319i
\(617\) −4.96773e10 −0.342781 −0.171391 0.985203i \(-0.554826\pi\)
−0.171391 + 0.985203i \(0.554826\pi\)
\(618\) 0 0
\(619\) 1.90142e11i 1.29514i −0.762008 0.647568i \(-0.775786\pi\)
0.762008 0.647568i \(-0.224214\pi\)
\(620\) 3.26541e10 2.97299e10i 0.220989 0.201199i
\(621\) 0 0
\(622\) 7.03158e10 1.59112e11i 0.469777 1.06302i
\(623\) 6.45898e10i 0.428757i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −9.61622e10 4.24966e10i −0.626191 0.276730i
\(627\) 0 0
\(628\) 1.17094e11 + 1.28611e11i 0.752827 + 0.826875i
\(629\) 2.24789e11 1.43606
\(630\) 0 0
\(631\) 5.46424e10i 0.344677i −0.985038 0.172339i \(-0.944868\pi\)
0.985038 0.172339i \(-0.0551323\pi\)
\(632\) −1.65655e9 + 5.53451e8i −0.0103834 + 0.00346906i
\(633\) 0 0
\(634\) −3.36637e10 1.48769e10i −0.208356 0.0920778i
\(635\) 1.88273e10i 0.115796i
\(636\) 0 0
\(637\) 1.37804e11 0.836957
\(638\) 2.15790e10 4.88294e10i 0.130241 0.294713i
\(639\) 0 0
\(640\) 7.30754e10 1.70144e10i 0.435563 0.101414i
\(641\) −1.04680e11 −0.620055 −0.310028 0.950728i \(-0.600338\pi\)
−0.310028 + 0.950728i \(0.600338\pi\)
\(642\) 0 0
\(643\) 1.54907e11i 0.906208i 0.891458 + 0.453104i \(0.149683\pi\)
−0.891458 + 0.453104i \(0.850317\pi\)
\(644\) 1.14592e11 + 1.25863e11i 0.666209 + 0.731738i
\(645\) 0 0
\(646\) 2.62105e10 5.93097e10i 0.150503 0.340562i
\(647\) 2.90218e10i 0.165618i 0.996565 + 0.0828088i \(0.0263891\pi\)
−0.996565 + 0.0828088i \(0.973611\pi\)
\(648\) 0 0
\(649\) −2.49346e10 −0.140548
\(650\) −3.81777e10 1.68717e10i −0.213873 0.0945161i
\(651\) 0 0
\(652\) 4.34786e10 3.95850e10i 0.240594 0.219049i
\(653\) −3.00413e11 −1.65221 −0.826106 0.563515i \(-0.809449\pi\)
−0.826106 + 0.563515i \(0.809449\pi\)
\(654\) 0 0
\(655\) 1.65350e10i 0.0898335i
\(656\) 6.57975e9 7.00302e10i 0.0355299 0.378155i
\(657\) 0 0
\(658\) −7.15231e10 3.16079e10i −0.381542 0.168613i
\(659\) 1.24478e11i 0.660013i 0.943979 + 0.330006i \(0.107051\pi\)
−0.943979 + 0.330006i \(0.892949\pi\)
\(660\) 0 0
\(661\) −1.42995e10 −0.0749055 −0.0374528 0.999298i \(-0.511924\pi\)
−0.0374528 + 0.999298i \(0.511924\pi\)
\(662\) −2.68692e10 + 6.08003e10i −0.139902 + 0.316573i
\(663\) 0 0
\(664\) −2.87174e11 + 9.59442e10i −1.47731 + 0.493567i
\(665\) 1.78898e10 0.0914784
\(666\) 0 0
\(667\) 4.42340e11i 2.23487i
\(668\) 2.26676e11 2.06377e11i 1.13841 1.03647i
\(669\) 0 0
\(670\) 3.99682e10 9.04410e10i 0.198343 0.448814i
\(671\) 2.99923e10i 0.147952i
\(672\) 0 0
\(673\) 3.61252e11 1.76096 0.880481 0.474082i \(-0.157220\pi\)
0.880481 + 0.474082i \(0.157220\pi\)
\(674\) −1.09072e11 4.82016e10i −0.528534 0.233573i
\(675\) 0 0
\(676\) 5.15781e10 + 5.66513e10i 0.246989 + 0.271283i
\(677\) 3.59458e11 1.71117 0.855587 0.517659i \(-0.173197\pi\)
0.855587 + 0.517659i \(0.173197\pi\)
\(678\) 0 0
\(679\) 6.81655e10i 0.320690i
\(680\) 2.93988e10 + 8.79945e10i 0.137497 + 0.411547i
\(681\) 0 0
\(682\) −3.53946e10 1.56418e10i −0.163606 0.0723017i
\(683\) 2.44203e11i 1.12220i −0.827749 0.561098i \(-0.810379\pi\)
0.827749 0.561098i \(-0.189621\pi\)
\(684\) 0 0
\(685\) 6.23208e10 0.283055
\(686\) 8.18742e10 1.85267e11i 0.369701 0.836568i
\(687\) 0 0
\(688\) −4.07135e11 3.82527e10i −1.81712 0.170730i
\(689\) 2.63253e11 1.16814
\(690\) 0 0
\(691\) 2.33912e11i 1.02598i −0.858393 0.512992i \(-0.828537\pi\)
0.858393 0.512992i \(-0.171463\pi\)
\(692\) −9.12738e10 1.00252e11i −0.398036 0.437186i
\(693\) 0 0
\(694\) −9.27577e10 + 2.09894e11i −0.399864 + 0.904820i
\(695\) 5.65580e10i 0.242412i
\(696\) 0 0
\(697\) 8.69747e10 0.368521
\(698\) 2.24524e11 + 9.92231e10i 0.945892 + 0.418014i
\(699\) 0 0
\(700\) −1.89268e10 + 1.72319e10i −0.0788290 + 0.0717697i
\(701\) 4.15300e11 1.71985 0.859924 0.510422i \(-0.170511\pi\)
0.859924 + 0.510422i \(0.170511\pi\)
\(702\) 0 0
\(703\) 1.38727e11i 0.567989i
\(704\) −3.95204e10 5.25431e10i −0.160891 0.213907i
\(705\) 0 0
\(706\) 1.54289e11 + 6.81845e10i 0.621037 + 0.274452i
\(707\) 5.23032e10i 0.209339i
\(708\) 0 0
\(709\) 3.09619e11 1.22530 0.612650 0.790355i \(-0.290104\pi\)
0.612650 + 0.790355i \(0.290104\pi\)
\(710\) −4.50009e9 + 1.01829e10i −0.0177087 + 0.0400717i
\(711\) 0 0
\(712\) −6.55049e10 1.96065e11i −0.254891 0.762922i
\(713\) −3.20635e11 −1.24066
\(714\) 0 0
\(715\) 3.65753e10i 0.139947i
\(716\) 6.25538e10 5.69520e10i 0.238014 0.216699i
\(717\) 0 0
\(718\) −3.03673e10 + 6.87159e10i −0.114264 + 0.258559i
\(719\) 4.00141e11i 1.49726i −0.662988 0.748630i \(-0.730712\pi\)
0.662988 0.748630i \(-0.269288\pi\)
\(720\) 0 0
\(721\) 2.79183e11 1.03311
\(722\) −2.11946e11 9.36642e10i −0.779966 0.344687i
\(723\) 0 0
\(724\) 1.08097e11 + 1.18730e11i 0.393424 + 0.432121i
\(725\) 6.65174e10 0.240759
\(726\) 0 0
\(727\) 3.98461e11i 1.42642i −0.700950 0.713211i \(-0.747240\pi\)
0.700950 0.713211i \(-0.252760\pi\)
\(728\) 1.66022e11 5.54675e10i 0.591070 0.197475i
\(729\) 0 0
\(730\) −5.49266e10 2.42735e10i −0.193416 0.0854754i
\(731\) 5.05645e11i 1.77083i
\(732\) 0 0
\(733\) 2.50341e11 0.867195 0.433597 0.901107i \(-0.357244\pi\)
0.433597 + 0.901107i \(0.357244\pi\)
\(734\) 2.71858e10 6.15165e10i 0.0936606 0.211937i
\(735\) 0 0
\(736\) −4.75495e11 2.65848e11i −1.62045 0.905987i
\(737\) −8.66450e10 −0.293679
\(738\) 0 0
\(739\) 1.17998e11i 0.395636i 0.980239 + 0.197818i \(0.0633854\pi\)
−0.980239 + 0.197818i \(0.936615\pi\)
\(740\) −1.33626e11 1.46769e11i −0.445618 0.489449i
\(741\) 0 0
\(742\) 6.52546e10 1.47660e11i 0.215276 0.487131i
\(743\) 1.74300e11i 0.571929i 0.958240 + 0.285965i \(0.0923140\pi\)
−0.958240 + 0.285965i \(0.907686\pi\)
\(744\) 0 0
\(745\) 6.15531e10 0.199814
\(746\) 2.97420e11 + 1.31437e11i 0.960316 + 0.424389i
\(747\) 0 0
\(748\) 6.01141e10 5.47308e10i 0.192031 0.174834i
\(749\) 1.80662e11 0.574038
\(750\) 0 0
\(751\) 4.00985e11i 1.26057i −0.776362 0.630287i \(-0.782937\pi\)
0.776362 0.630287i \(-0.217063\pi\)
\(752\) 2.49167e11 + 2.34107e10i 0.779147 + 0.0732054i
\(753\) 0 0
\(754\) −4.16069e11 1.83872e11i −1.28730 0.568891i
\(755\) 8.58241e10i 0.264132i
\(756\) 0 0
\(757\) 5.64071e11 1.71771 0.858855 0.512218i \(-0.171176\pi\)
0.858855 + 0.512218i \(0.171176\pi\)
\(758\) 1.93673e11 4.38247e11i 0.586666 1.32752i
\(759\) 0 0
\(760\) −5.43052e10 + 1.81433e10i −0.162775 + 0.0543827i
\(761\) −3.24502e11 −0.967561 −0.483781 0.875189i \(-0.660737\pi\)
−0.483781 + 0.875189i \(0.660737\pi\)
\(762\) 0 0
\(763\) 5.54306e10i 0.163550i
\(764\) −3.26046e11 + 2.96848e11i −0.956986 + 0.871286i
\(765\) 0 0
\(766\) −1.59084e11 + 3.59978e11i −0.462072 + 1.04559i
\(767\) 2.12464e11i 0.613910i
\(768\) 0 0
\(769\) −5.53794e11 −1.58359 −0.791796 0.610786i \(-0.790854\pi\)
−0.791796 + 0.610786i \(0.790854\pi\)
\(770\) 2.05152e10 + 9.06621e9i 0.0583598 + 0.0257907i
\(771\) 0 0
\(772\) 2.63110e11 + 2.88990e11i 0.740745 + 0.813605i
\(773\) −1.03435e10 −0.0289699 −0.0144850 0.999895i \(-0.504611\pi\)
−0.0144850 + 0.999895i \(0.504611\pi\)
\(774\) 0 0
\(775\) 4.82159e10i 0.133654i
\(776\) −6.91313e10 2.06919e11i −0.190646 0.570629i
\(777\) 0 0
\(778\) −3.63823e10 1.60783e10i −0.0993052 0.0438856i
\(779\) 5.36759e10i 0.145757i
\(780\) 0 0
\(781\) 9.75549e9 0.0262207
\(782\) 2.72283e11 6.16129e11i 0.728105 1.64757i
\(783\) 0 0
\(784\) −2.52999e10 + 2.69274e11i −0.0669659 + 0.712738i
\(785\) 1.89902e11 0.500094
\(786\) 0 0
\(787\) 3.10807e11i 0.810199i 0.914273 + 0.405100i \(0.132763\pi\)
−0.914273 + 0.405100i \(0.867237\pi\)
\(788\) −7.11323e10 7.81289e10i −0.184485 0.202631i
\(789\) 0 0
\(790\) −7.70816e8 + 1.74422e9i −0.00197898 + 0.00447809i
\(791\) 3.13801e11i 0.801583i
\(792\) 0 0
\(793\) −2.55560e11 −0.646250
\(794\) 3.19179e11 + 1.41053e11i 0.803068 + 0.354897i
\(795\) 0 0
\(796\) −1.36214e11 + 1.24016e11i −0.339289 + 0.308905i
\(797\) −3.11127e11 −0.771089 −0.385544 0.922689i \(-0.625986\pi\)
−0.385544 + 0.922689i \(0.625986\pi\)
\(798\) 0 0
\(799\) 3.09456e11i 0.759296i
\(800\) 3.99772e10 7.15032e10i 0.0976006 0.174568i
\(801\) 0 0
\(802\) −2.08914e11 9.23246e10i −0.504976 0.223162i
\(803\) 5.26212e10i 0.126561i
\(804\) 0 0
\(805\) 1.85845e11 0.442555
\(806\) −1.33281e11 + 3.01592e11i −0.315812 + 0.714628i
\(807\) 0 0
\(808\) 5.30442e10 + 1.58769e11i 0.124449 + 0.372494i
\(809\) 6.49886e11 1.51720 0.758601 0.651556i \(-0.225883\pi\)
0.758601 + 0.651556i \(0.225883\pi\)
\(810\) 0 0
\(811\) 5.51208e11i 1.27418i 0.770788 + 0.637091i \(0.219863\pi\)
−0.770788 + 0.637091i \(0.780137\pi\)
\(812\) −2.06269e11 + 1.87797e11i −0.474471 + 0.431981i
\(813\) 0 0
\(814\) −7.03043e10 + 1.59086e11i −0.160134 + 0.362356i
\(815\) 6.41989e10i 0.145511i
\(816\) 0 0
\(817\) 3.12056e11 0.700397
\(818\) 3.31905e11 + 1.46678e11i 0.741312 + 0.327605i
\(819\) 0 0
\(820\) −5.17020e10 5.67874e10i −0.114354 0.125602i
\(821\) −6.49196e11 −1.42891 −0.714453 0.699684i \(-0.753324\pi\)
−0.714453 + 0.699684i \(0.753324\pi\)
\(822\) 0 0
\(823\) 5.51911e11i 1.20301i −0.798869 0.601506i \(-0.794568\pi\)
0.798869 0.601506i \(-0.205432\pi\)
\(824\) −8.47470e11 + 2.83138e11i −1.83830 + 0.614171i
\(825\) 0 0
\(826\) 1.19172e11 + 5.26653e10i 0.256009 + 0.113137i
\(827\) 2.53430e11i 0.541797i −0.962608 0.270898i \(-0.912679\pi\)
0.962608 0.270898i \(-0.0873207\pi\)
\(828\) 0 0
\(829\) 4.64664e11 0.983833 0.491916 0.870642i \(-0.336297\pi\)
0.491916 + 0.870642i \(0.336297\pi\)
\(830\) −1.33626e11 + 3.02371e11i −0.281564 + 0.637130i
\(831\) 0 0
\(832\) −4.47712e11 + 3.36748e11i −0.934342 + 0.702767i
\(833\) −3.34427e11 −0.694579
\(834\) 0 0
\(835\) 3.34701e11i 0.688512i
\(836\) 3.37768e10 + 3.70991e10i 0.0691501 + 0.0759517i
\(837\) 0 0
\(838\) −2.26710e11 + 5.13004e11i −0.459721 + 1.04027i
\(839\) 8.01655e11i 1.61785i −0.587909 0.808927i \(-0.700049\pi\)
0.587909 0.808927i \(-0.299951\pi\)
\(840\) 0 0
\(841\) 2.24674e11 0.449127
\(842\) 2.79330e11 + 1.23443e11i 0.555738 + 0.245595i
\(843\) 0 0
\(844\) −3.55447e10 + 3.23617e10i −0.0700496 + 0.0637765i
\(845\) 8.36492e10 0.164072
\(846\) 0 0
\(847\) 2.54684e11i 0.494844i
\(848\) −4.83315e10 + 5.14406e11i −0.0934645 + 0.994770i
\(849\) 0 0
\(850\) 9.26512e10 + 4.09449e10i 0.177491 + 0.0784377i
\(851\) 1.44114e12i 2.74782i
\(852\) 0 0
\(853\) −2.92765e11 −0.552997 −0.276499 0.961014i \(-0.589174\pi\)
−0.276499 + 0.961014i \(0.589174\pi\)
\(854\) −6.33478e10 + 1.43345e11i −0.119097 + 0.269495i
\(855\) 0 0
\(856\) −5.48408e11 + 1.83222e11i −1.02143 + 0.341258i
\(857\) 2.44583e11 0.453423 0.226712 0.973962i \(-0.427203\pi\)
0.226712 + 0.973962i \(0.427203\pi\)
\(858\) 0 0
\(859\) 5.81097e9i 0.0106727i 0.999986 + 0.00533637i \(0.00169863\pi\)
−0.999986 + 0.00533637i \(0.998301\pi\)
\(860\) −3.30145e11 + 3.00580e11i −0.603547 + 0.549499i
\(861\) 0 0
\(862\) −3.02293e11 + 6.84036e11i −0.547519 + 1.23894i
\(863\) 5.81147e11i 1.04771i 0.851806 + 0.523857i \(0.175507\pi\)
−0.851806 + 0.523857i \(0.824493\pi\)
\(864\) 0 0
\(865\) −1.48028e11 −0.264410
\(866\) 4.00168e11 + 1.76845e11i 0.711493 + 0.314427i
\(867\) 0 0
\(868\) 1.36127e11 + 1.49516e11i 0.239809 + 0.263396i
\(869\) 1.67101e9 0.00293022
\(870\) 0 0
\(871\) 7.38290e11i 1.28279i
\(872\) −5.62160e10 1.68262e11i −0.0972285 0.291018i
\(873\) 0 0
\(874\) 3.80240e11 + 1.68038e11i 0.651646 + 0.287979i
\(875\) 2.79467e10i 0.0476758i
\(876\) 0 0
\(877\) 1.69423e11 0.286401 0.143200 0.989694i \(-0.454261\pi\)
0.143200 + 0.989694i \(0.454261\pi\)
\(878\) −7.80920e10 + 1.76708e11i −0.131410 + 0.297357i
\(879\) 0 0
\(880\) −7.14695e10 6.71498e9i −0.119176 0.0111973i
\(881\) −2.75321e11 −0.457020 −0.228510 0.973542i \(-0.573385\pi\)
−0.228510 + 0.973542i \(0.573385\pi\)
\(882\) 0 0
\(883\) 6.38716e11i 1.05067i −0.850896 0.525333i \(-0.823941\pi\)
0.850896 0.525333i \(-0.176059\pi\)
\(884\) −4.66354e11 5.12224e11i −0.763671 0.838786i
\(885\) 0 0
\(886\) 2.42060e11 5.47739e11i 0.392815 0.888872i
\(887\) 2.03717e11i 0.329103i 0.986368 + 0.164552i \(0.0526177\pi\)
−0.986368 + 0.164552i \(0.947382\pi\)
\(888\) 0 0
\(889\) 8.62063e10 0.138017
\(890\) −2.06441e11 9.12315e10i −0.329030 0.145407i
\(891\) 0 0
\(892\) 7.06292e11 6.43042e11i 1.11564 1.01573i
\(893\) −1.90978e11 −0.300316
\(894\) 0 0
\(895\) 9.23647e10i 0.143951i
\(896\) 7.79051e10 + 3.34596e11i 0.120874 + 0.519146i
\(897\) 0 0
\(898\) −6.49591e11 2.87071e11i −0.998929 0.441453i
\(899\) 5.25467e11i 0.804464i
\(900\) 0 0
\(901\) −6.38872e11 −0.969426
\(902\) −2.72019e10 + 6.15532e10i −0.0410936 + 0.0929875i
\(903\) 0 0
\(904\) −3.18247e11 9.52557e11i −0.476531 1.42632i
\(905\) 1.75312e11 0.261347
\(906\) 0 0
\(907\) 4.30286e11i 0.635811i −0.948122 0.317906i \(-0.897020\pi\)
0.948122 0.317906i \(-0.102980\pi\)
\(908\) 2.88626e11 2.62779e11i 0.424612 0.386587i
\(909\) 0 0
\(910\) 7.72520e10 1.74807e11i 0.112653 0.254914i
\(911\) 8.13793e11i 1.18152i 0.806848 + 0.590759i \(0.201172\pi\)
−0.806848 + 0.590759i \(0.798828\pi\)
\(912\) 0 0
\(913\) 2.89680e11 0.416903
\(914\) −6.70155e11 2.96159e11i −0.960263 0.424365i
\(915\) 0 0
\(916\) 7.26617e11 + 7.98087e11i 1.03210 + 1.13362i
\(917\) 7.57101e10 0.107072
\(918\) 0 0
\(919\) 4.72727e11i 0.662748i −0.943500 0.331374i \(-0.892488\pi\)
0.943500 0.331374i \(-0.107512\pi\)
\(920\) −5.64140e11 + 1.88478e11i −0.787474 + 0.263093i
\(921\) 0 0
\(922\) −1.01882e11 4.50242e10i −0.140985 0.0623050i
\(923\) 8.31252e10i 0.114532i
\(924\) 0 0
\(925\) −2.16714e11 −0.296019
\(926\) 1.80771e10 4.09052e10i 0.0245858 0.0556333i
\(927\) 0 0
\(928\) 4.35680e11 7.79257e11i 0.587456 1.05072i
\(929\) 2.08893e11 0.280453 0.140227 0.990119i \(-0.455217\pi\)
0.140227 + 0.990119i \(0.455217\pi\)
\(930\) 0 0
\(931\) 2.06390e11i 0.274719i
\(932\) −4.86628e11 5.34493e11i −0.644962 0.708400i
\(933\) 0 0
\(934\) 1.35992e11 3.07726e11i 0.178701 0.404368i
\(935\) 8.87623e10i 0.116140i
\(936\) 0 0
\(937\) −1.00252e12 −1.30058 −0.650288 0.759688i \(-0.725352\pi\)
−0.650288 + 0.759688i \(0.725352\pi\)
\(938\) 4.14110e11 + 1.83006e11i 0.534939 + 0.236403i
\(939\) 0 0
\(940\) 2.02049e11 1.83955e11i 0.258789 0.235614i
\(941\) −1.13207e12 −1.44383 −0.721913 0.691983i \(-0.756737\pi\)
−0.721913 + 0.691983i \(0.756737\pi\)
\(942\) 0 0
\(943\) 5.57603e11i 0.705145i
\(944\) −4.15164e11 3.90071e10i −0.522795 0.0491197i
\(945\) 0 0
\(946\) 3.57852e11 + 1.58144e11i 0.446826 + 0.197464i
\(947\) 1.05689e12i 1.31411i −0.753844 0.657053i \(-0.771803\pi\)
0.753844 0.657053i \(-0.228197\pi\)
\(948\) 0 0
\(949\) 4.48378e11 0.552814
\(950\) −2.52689e10 + 5.71791e10i −0.0310236 + 0.0702009i
\(951\) 0 0
\(952\) −4.02908e11 + 1.34611e11i −0.490521 + 0.163882i
\(953\) −1.31887e12 −1.59893 −0.799464 0.600714i \(-0.794883\pi\)
−0.799464 + 0.600714i \(0.794883\pi\)
\(954\) 0 0
\(955\) 4.81428e11i 0.578785i
\(956\) −8.21318e11 + 7.47768e11i −0.983286 + 0.895231i
\(957\) 0 0
\(958\) 6.54336e11 1.48065e12i 0.776853 1.75788i
\(959\) 2.85353e11i 0.337372i
\(960\) 0 0
\(961\) 4.72000e11 0.553412
\(962\) 1.35555e12 + 5.99053e11i 1.58276 + 0.699464i
\(963\) 0 0
\(964\) 9.40135e11 + 1.03261e12i 1.08863 + 1.19571i
\(965\) 4.26712e11 0.492069
\(966\) 0 0
\(967\) 1.10518e12i 1.26395i 0.774990 + 0.631973i \(0.217755\pi\)
−0.774990 + 0.631973i \(0.782245\pi\)
\(968\) −2.58293e11 7.73105e11i −0.294178 0.880516i
\(969\) 0 0
\(970\) −2.17869e11 9.62821e10i −0.246099 0.108757i
\(971\) 3.17367e11i 0.357013i −0.983939 0.178507i \(-0.942873\pi\)
0.983939 0.178507i \(-0.0571266\pi\)
\(972\) 0 0
\(973\) 2.58967e11 0.288930
\(974\) −4.33043e11 + 9.79900e11i −0.481166 + 1.08879i
\(975\) 0 0
\(976\) 4.69192e10 4.99375e11i 0.0517073 0.550336i
\(977\) −1.27398e12 −1.39825 −0.699125 0.714999i \(-0.746427\pi\)
−0.699125 + 0.714999i \(0.746427\pi\)
\(978\) 0 0
\(979\) 1.97776e11i 0.215299i
\(980\) 1.98800e11 + 2.18354e11i 0.215532 + 0.236732i
\(981\) 0 0
\(982\) 3.23167e11 7.31270e11i 0.347521 0.786378i
\(983\) 9.79210e11i 1.04873i 0.851495 + 0.524363i \(0.175696\pi\)
−0.851495 + 0.524363i \(0.824304\pi\)
\(984\) 0 0
\(985\) −1.15362e11 −0.122552
\(986\) 1.00973e12 + 4.46227e11i 1.06831 + 0.472115i
\(987\) 0 0
\(988\) 3.16116e11 2.87807e11i 0.331756 0.302046i
\(989\) 3.24174e12 3.38838
\(990\) 0 0
\(991\) 1.05272e12i 1.09149i −0.837952 0.545744i \(-0.816247\pi\)
0.837952 0.545744i \(-0.183753\pi\)
\(992\) −5.64853e11 3.15807e11i −0.583296 0.326119i
\(993\) 0 0
\(994\) −4.66253e10 2.06049e10i −0.0477613 0.0211069i
\(995\) 2.01129e11i 0.205202i
\(996\) 0 0
\(997\) −1.91731e12 −1.94049 −0.970245 0.242126i \(-0.922155\pi\)
−0.970245 + 0.242126i \(0.922155\pi\)
\(998\) 7.77474e11 1.75928e12i 0.783725 1.77343i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.b.91.5 32
3.2 odd 2 inner 180.9.c.b.91.28 yes 32
4.3 odd 2 inner 180.9.c.b.91.6 yes 32
12.11 even 2 inner 180.9.c.b.91.27 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.9.c.b.91.5 32 1.1 even 1 trivial
180.9.c.b.91.6 yes 32 4.3 odd 2 inner
180.9.c.b.91.27 yes 32 12.11 even 2 inner
180.9.c.b.91.28 yes 32 3.2 odd 2 inner