Properties

Label 180.9.c.b.91.3
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.3
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.b.91.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-15.8926 - 1.85034i) q^{2} +(249.152 + 58.8137i) q^{4} +279.508 q^{5} -4368.38i q^{7} +(-3850.87 - 1395.72i) q^{8} +(-4442.13 - 517.186i) q^{10} +12642.2i q^{11} -40361.3 q^{13} +(-8083.00 + 69425.2i) q^{14} +(58617.9 + 29307.1i) q^{16} +124816. q^{17} +203639. i q^{19} +(69640.2 + 16438.9i) q^{20} +(23392.4 - 200918. i) q^{22} -226436. i q^{23} +78125.0 q^{25} +(641447. + 74682.1i) q^{26} +(256921. - 1.08839e6i) q^{28} -25415.0 q^{29} +1.29831e6i q^{31} +(-877366. - 574231. i) q^{32} +(-1.98365e6 - 230952. i) q^{34} -1.22100e6i q^{35} +1.08541e6 q^{37} +(376802. - 3.23637e6i) q^{38} +(-1.07635e6 - 390116. i) q^{40} +4.60203e6 q^{41} +2.89375e6i q^{43} +(-743535. + 3.14984e6i) q^{44} +(-418985. + 3.59867e6i) q^{46} +3.71574e6i q^{47} -1.33180e7 q^{49} +(-1.24161e6 - 144558. i) q^{50} +(-1.00561e7 - 2.37379e6i) q^{52} -50193.3 q^{53} +3.53361e6i q^{55} +(-6.09705e6 + 1.68221e7i) q^{56} +(403912. + 47026.4i) q^{58} +9.55718e6i q^{59} -5.54455e6 q^{61} +(2.40232e6 - 2.06336e7i) q^{62} +(1.28811e7 + 1.07495e7i) q^{64} -1.12813e7 q^{65} -2.75178e7i q^{67} +(3.10982e7 + 7.34088e6i) q^{68} +(-2.25927e6 + 1.94049e7i) q^{70} -4.03081e7i q^{71} -4.73829e6 q^{73} +(-1.72500e7 - 2.00838e6i) q^{74} +(-1.19768e7 + 5.07373e7i) q^{76} +5.52261e7 q^{77} -5.91316e7i q^{79} +(1.63842e7 + 8.19159e6i) q^{80} +(-7.31385e7 - 8.51533e6i) q^{82} -2.39189e7i q^{83} +3.48871e7 q^{85} +(5.35442e6 - 4.59893e7i) q^{86} +(1.76450e7 - 4.86835e7i) q^{88} +2.09673e7 q^{89} +1.76313e8i q^{91} +(1.33176e7 - 5.64172e7i) q^{92} +(6.87538e6 - 5.90529e7i) q^{94} +5.69189e7i q^{95} +2.09675e7 q^{97} +(2.11658e8 + 2.46428e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 610 q^{4} - 8750 q^{10} - 51392 q^{13} + 11986 q^{16} - 758068 q^{22} + 2500000 q^{25} + 976324 q^{28} - 6117428 q^{34} + 5152064 q^{37} - 96250 q^{40} - 10391752 q^{46} - 11002976 q^{49} + 13976584 q^{52}+ \cdots + 80579520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −15.8926 1.85034i −0.993290 0.115646i
\(3\) 0 0
\(4\) 249.152 + 58.8137i 0.973252 + 0.229741i
\(5\) 279.508 0.447214
\(6\) 0 0
\(7\) 4368.38i 1.81940i −0.415264 0.909701i \(-0.636311\pi\)
0.415264 0.909701i \(-0.363689\pi\)
\(8\) −3850.87 1395.72i −0.940153 0.340752i
\(9\) 0 0
\(10\) −4442.13 517.186i −0.444213 0.0517186i
\(11\) 12642.2i 0.863481i 0.901998 + 0.431740i \(0.142100\pi\)
−0.901998 + 0.431740i \(0.857900\pi\)
\(12\) 0 0
\(13\) −40361.3 −1.41316 −0.706580 0.707633i \(-0.749763\pi\)
−0.706580 + 0.707633i \(0.749763\pi\)
\(14\) −8083.00 + 69425.2i −0.210407 + 1.80719i
\(15\) 0 0
\(16\) 58617.9 + 29307.1i 0.894438 + 0.447191i
\(17\) 124816. 1.49443 0.747213 0.664585i \(-0.231392\pi\)
0.747213 + 0.664585i \(0.231392\pi\)
\(18\) 0 0
\(19\) 203639.i 1.56260i 0.624157 + 0.781299i \(0.285443\pi\)
−0.624157 + 0.781299i \(0.714557\pi\)
\(20\) 69640.2 + 16438.9i 0.435251 + 0.102743i
\(21\) 0 0
\(22\) 23392.4 200918.i 0.0998584 0.857687i
\(23\) 226436.i 0.809161i −0.914502 0.404580i \(-0.867418\pi\)
0.914502 0.404580i \(-0.132582\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) 641447. + 74682.1i 1.40368 + 0.163427i
\(27\) 0 0
\(28\) 256921. 1.08839e6i 0.417991 1.77074i
\(29\) −25415.0 −0.0359334 −0.0179667 0.999839i \(-0.505719\pi\)
−0.0179667 + 0.999839i \(0.505719\pi\)
\(30\) 0 0
\(31\) 1.29831e6i 1.40583i 0.711274 + 0.702915i \(0.248118\pi\)
−0.711274 + 0.702915i \(0.751882\pi\)
\(32\) −877366. 574231.i −0.836721 0.547629i
\(33\) 0 0
\(34\) −1.98365e6 230952.i −1.48440 0.172825i
\(35\) 1.22100e6i 0.813661i
\(36\) 0 0
\(37\) 1.08541e6 0.579145 0.289572 0.957156i \(-0.406487\pi\)
0.289572 + 0.957156i \(0.406487\pi\)
\(38\) 376802. 3.23637e6i 0.180709 1.55211i
\(39\) 0 0
\(40\) −1.07635e6 390116.i −0.420449 0.152389i
\(41\) 4.60203e6 1.62860 0.814300 0.580445i \(-0.197121\pi\)
0.814300 + 0.580445i \(0.197121\pi\)
\(42\) 0 0
\(43\) 2.89375e6i 0.846422i 0.906031 + 0.423211i \(0.139097\pi\)
−0.906031 + 0.423211i \(0.860903\pi\)
\(44\) −743535. + 3.14984e6i −0.198377 + 0.840384i
\(45\) 0 0
\(46\) −418985. + 3.59867e6i −0.0935765 + 0.803732i
\(47\) 3.71574e6i 0.761471i 0.924684 + 0.380736i \(0.124329\pi\)
−0.924684 + 0.380736i \(0.875671\pi\)
\(48\) 0 0
\(49\) −1.33180e7 −2.31022
\(50\) −1.24161e6 144558.i −0.198658 0.0231293i
\(51\) 0 0
\(52\) −1.00561e7 2.37379e6i −1.37536 0.324661i
\(53\) −50193.3 −0.00636125 −0.00318062 0.999995i \(-0.501012\pi\)
−0.00318062 + 0.999995i \(0.501012\pi\)
\(54\) 0 0
\(55\) 3.53361e6i 0.386160i
\(56\) −6.09705e6 + 1.68221e7i −0.619966 + 1.71052i
\(57\) 0 0
\(58\) 403912. + 47026.4i 0.0356923 + 0.00415557i
\(59\) 9.55718e6i 0.788718i 0.918956 + 0.394359i \(0.129033\pi\)
−0.918956 + 0.394359i \(0.870967\pi\)
\(60\) 0 0
\(61\) −5.54455e6 −0.400449 −0.200225 0.979750i \(-0.564167\pi\)
−0.200225 + 0.979750i \(0.564167\pi\)
\(62\) 2.40232e6 2.06336e7i 0.162579 1.39640i
\(63\) 0 0
\(64\) 1.28811e7 + 1.07495e7i 0.767776 + 0.640719i
\(65\) −1.12813e7 −0.631984
\(66\) 0 0
\(67\) 2.75178e7i 1.36557i −0.730618 0.682787i \(-0.760768\pi\)
0.730618 0.682787i \(-0.239232\pi\)
\(68\) 3.10982e7 + 7.34088e6i 1.45445 + 0.343330i
\(69\) 0 0
\(70\) −2.25927e6 + 1.94049e7i −0.0940970 + 0.808202i
\(71\) 4.03081e7i 1.58620i −0.609089 0.793102i \(-0.708465\pi\)
0.609089 0.793102i \(-0.291535\pi\)
\(72\) 0 0
\(73\) −4.73829e6 −0.166852 −0.0834258 0.996514i \(-0.526586\pi\)
−0.0834258 + 0.996514i \(0.526586\pi\)
\(74\) −1.72500e7 2.00838e6i −0.575259 0.0669760i
\(75\) 0 0
\(76\) −1.19768e7 + 5.07373e7i −0.358993 + 1.52080i
\(77\) 5.52261e7 1.57102
\(78\) 0 0
\(79\) 5.91316e7i 1.51814i −0.651010 0.759069i \(-0.725655\pi\)
0.651010 0.759069i \(-0.274345\pi\)
\(80\) 1.63842e7 + 8.19159e6i 0.400005 + 0.199990i
\(81\) 0 0
\(82\) −7.31385e7 8.51533e6i −1.61767 0.188342i
\(83\) 2.39189e7i 0.503997i −0.967728 0.251999i \(-0.918912\pi\)
0.967728 0.251999i \(-0.0810878\pi\)
\(84\) 0 0
\(85\) 3.48871e7 0.668327
\(86\) 5.35442e6 4.59893e7i 0.0978856 0.840743i
\(87\) 0 0
\(88\) 1.76450e7 4.86835e7i 0.294233 0.811804i
\(89\) 2.09673e7 0.334182 0.167091 0.985942i \(-0.446563\pi\)
0.167091 + 0.985942i \(0.446563\pi\)
\(90\) 0 0
\(91\) 1.76313e8i 2.57111i
\(92\) 1.33176e7 5.64172e7i 0.185897 0.787517i
\(93\) 0 0
\(94\) 6.87538e6 5.90529e7i 0.0880614 0.756362i
\(95\) 5.69189e7i 0.698815i
\(96\) 0 0
\(97\) 2.09675e7 0.236843 0.118421 0.992963i \(-0.462217\pi\)
0.118421 + 0.992963i \(0.462217\pi\)
\(98\) 2.11658e8 + 2.46428e7i 2.29472 + 0.267169i
\(99\) 0 0
\(100\) 1.94650e7 + 4.59482e6i 0.194650 + 0.0459482i
\(101\) 1.97668e8 1.89955 0.949774 0.312937i \(-0.101313\pi\)
0.949774 + 0.312937i \(0.101313\pi\)
\(102\) 0 0
\(103\) 1.16938e7i 0.103898i −0.998650 0.0519489i \(-0.983457\pi\)
0.998650 0.0519489i \(-0.0165433\pi\)
\(104\) 1.55426e8 + 5.63331e7i 1.32859 + 0.481538i
\(105\) 0 0
\(106\) 797704. + 92874.7i 0.00631856 + 0.000735655i
\(107\) 1.59457e8i 1.21649i 0.793750 + 0.608245i \(0.208126\pi\)
−0.793750 + 0.608245i \(0.791874\pi\)
\(108\) 0 0
\(109\) 9.43814e7 0.668622 0.334311 0.942463i \(-0.391496\pi\)
0.334311 + 0.942463i \(0.391496\pi\)
\(110\) 6.53838e6 5.61584e7i 0.0446580 0.383569i
\(111\) 0 0
\(112\) 1.28025e8 2.56066e8i 0.813621 1.62734i
\(113\) −3.56175e7 −0.218449 −0.109224 0.994017i \(-0.534837\pi\)
−0.109224 + 0.994017i \(0.534837\pi\)
\(114\) 0 0
\(115\) 6.32909e7i 0.361868i
\(116\) −6.33221e6 1.49475e6i −0.0349722 0.00825537i
\(117\) 0 0
\(118\) 1.76841e7 1.51889e8i 0.0912124 0.783426i
\(119\) 5.45244e8i 2.71896i
\(120\) 0 0
\(121\) 5.45330e7 0.254401
\(122\) 8.81176e7 + 1.02593e7i 0.397762 + 0.0463105i
\(123\) 0 0
\(124\) −7.63585e7 + 3.23478e8i −0.322976 + 1.36823i
\(125\) 2.18366e7 0.0894427
\(126\) 0 0
\(127\) 4.09021e7i 0.157228i 0.996905 + 0.0786142i \(0.0250495\pi\)
−0.996905 + 0.0786142i \(0.974950\pi\)
\(128\) −1.84825e8 1.94672e8i −0.688527 0.725210i
\(129\) 0 0
\(130\) 1.79290e8 + 2.08743e7i 0.627744 + 0.0730867i
\(131\) 3.07316e8i 1.04352i 0.853093 + 0.521759i \(0.174724\pi\)
−0.853093 + 0.521759i \(0.825276\pi\)
\(132\) 0 0
\(133\) 8.89575e8 2.84299
\(134\) −5.09174e7 + 4.37331e8i −0.157924 + 1.35641i
\(135\) 0 0
\(136\) −4.80649e8 1.74208e8i −1.40499 0.509229i
\(137\) 4.97786e8 1.41306 0.706529 0.707684i \(-0.250260\pi\)
0.706529 + 0.707684i \(0.250260\pi\)
\(138\) 0 0
\(139\) 1.74953e8i 0.468663i −0.972157 0.234332i \(-0.924710\pi\)
0.972157 0.234332i \(-0.0752902\pi\)
\(140\) 7.18115e7 3.04215e8i 0.186931 0.791897i
\(141\) 0 0
\(142\) −7.45838e7 + 6.40603e8i −0.183439 + 1.57556i
\(143\) 5.10256e8i 1.22024i
\(144\) 0 0
\(145\) −7.10371e6 −0.0160699
\(146\) 7.53040e7 + 8.76746e6i 0.165732 + 0.0192958i
\(147\) 0 0
\(148\) 2.70433e8 + 6.38369e7i 0.563654 + 0.133053i
\(149\) 6.94152e8 1.40835 0.704174 0.710028i \(-0.251318\pi\)
0.704174 + 0.710028i \(0.251318\pi\)
\(150\) 0 0
\(151\) 6.69606e8i 1.28799i −0.765031 0.643994i \(-0.777276\pi\)
0.765031 0.643994i \(-0.222724\pi\)
\(152\) 2.84224e8 7.84188e8i 0.532459 1.46908i
\(153\) 0 0
\(154\) −8.77689e8 1.02187e8i −1.56048 0.181683i
\(155\) 3.62889e8i 0.628706i
\(156\) 0 0
\(157\) −1.47338e8 −0.242502 −0.121251 0.992622i \(-0.538691\pi\)
−0.121251 + 0.992622i \(0.538691\pi\)
\(158\) −1.09414e8 + 9.39757e8i −0.175567 + 1.50795i
\(159\) 0 0
\(160\) −2.45231e8 1.60502e8i −0.374193 0.244907i
\(161\) −9.89161e8 −1.47219
\(162\) 0 0
\(163\) 2.50170e8i 0.354393i −0.984175 0.177197i \(-0.943297\pi\)
0.984175 0.177197i \(-0.0567028\pi\)
\(164\) 1.14661e9 + 2.70662e8i 1.58504 + 0.374156i
\(165\) 0 0
\(166\) −4.42581e7 + 3.80134e8i −0.0582854 + 0.500616i
\(167\) 1.42570e9i 1.83301i 0.400028 + 0.916503i \(0.369000\pi\)
−0.400028 + 0.916503i \(0.631000\pi\)
\(168\) 0 0
\(169\) 8.13301e8 0.997021
\(170\) −5.54448e8 6.45531e7i −0.663843 0.0772896i
\(171\) 0 0
\(172\) −1.70192e8 + 7.20984e8i −0.194458 + 0.823782i
\(173\) 1.04922e9 1.17134 0.585668 0.810551i \(-0.300832\pi\)
0.585668 + 0.810551i \(0.300832\pi\)
\(174\) 0 0
\(175\) 3.41280e8i 0.363880i
\(176\) −3.70507e8 + 7.41061e8i −0.386141 + 0.772330i
\(177\) 0 0
\(178\) −3.33226e8 3.87967e7i −0.331939 0.0386469i
\(179\) 1.18529e9i 1.15455i −0.816551 0.577273i \(-0.804117\pi\)
0.816551 0.577273i \(-0.195883\pi\)
\(180\) 0 0
\(181\) −5.14430e8 −0.479305 −0.239652 0.970859i \(-0.577033\pi\)
−0.239652 + 0.970859i \(0.577033\pi\)
\(182\) 3.26240e8 2.80209e9i 0.297339 2.55386i
\(183\) 0 0
\(184\) −3.16042e8 + 8.71976e8i −0.275724 + 0.760735i
\(185\) 3.03381e8 0.259001
\(186\) 0 0
\(187\) 1.57795e9i 1.29041i
\(188\) −2.18536e8 + 9.25785e8i −0.174941 + 0.741103i
\(189\) 0 0
\(190\) 1.05319e8 9.04593e8i 0.0808154 0.694127i
\(191\) 1.69019e9i 1.27000i −0.772513 0.634999i \(-0.781000\pi\)
0.772513 0.634999i \(-0.219000\pi\)
\(192\) 0 0
\(193\) 4.15397e8 0.299388 0.149694 0.988732i \(-0.452171\pi\)
0.149694 + 0.988732i \(0.452171\pi\)
\(194\) −3.33229e8 3.87971e7i −0.235254 0.0273900i
\(195\) 0 0
\(196\) −3.31821e9 7.83279e8i −2.24843 0.530753i
\(197\) −2.42620e8 −0.161088 −0.0805439 0.996751i \(-0.525666\pi\)
−0.0805439 + 0.996751i \(0.525666\pi\)
\(198\) 0 0
\(199\) 2.32340e9i 1.48154i 0.671760 + 0.740769i \(0.265539\pi\)
−0.671760 + 0.740769i \(0.734461\pi\)
\(200\) −3.00849e8 1.09041e8i −0.188031 0.0681505i
\(201\) 0 0
\(202\) −3.14146e9 3.65753e8i −1.88680 0.219676i
\(203\) 1.11023e8i 0.0653773i
\(204\) 0 0
\(205\) 1.28631e9 0.728332
\(206\) −2.16375e7 + 1.85845e8i −0.0120154 + 0.103201i
\(207\) 0 0
\(208\) −2.36589e9 1.18287e9i −1.26398 0.631953i
\(209\) −2.57446e9 −1.34927
\(210\) 0 0
\(211\) 1.49574e8i 0.0754617i 0.999288 + 0.0377309i \(0.0120130\pi\)
−0.999288 + 0.0377309i \(0.987987\pi\)
\(212\) −1.25058e7 2.95205e6i −0.00619109 0.00146144i
\(213\) 0 0
\(214\) 2.95050e8 2.53419e9i 0.140683 1.20833i
\(215\) 8.08827e8i 0.378531i
\(216\) 0 0
\(217\) 5.67153e9 2.55777
\(218\) −1.49997e9 1.74638e8i −0.664135 0.0773236i
\(219\) 0 0
\(220\) −2.07824e8 + 8.80407e8i −0.0887168 + 0.375831i
\(221\) −5.03773e9 −2.11186
\(222\) 0 0
\(223\) 1.40993e9i 0.570134i −0.958508 0.285067i \(-0.907984\pi\)
0.958508 0.285067i \(-0.0920158\pi\)
\(224\) −2.50846e9 + 3.83267e9i −0.996358 + 1.52233i
\(225\) 0 0
\(226\) 5.66056e8 + 6.59045e7i 0.216983 + 0.0252628i
\(227\) 3.59996e9i 1.35580i 0.735156 + 0.677898i \(0.237109\pi\)
−0.735156 + 0.677898i \(0.762891\pi\)
\(228\) 0 0
\(229\) 3.59311e7 0.0130656 0.00653280 0.999979i \(-0.497921\pi\)
0.00653280 + 0.999979i \(0.497921\pi\)
\(230\) −1.17110e8 + 1.00586e9i −0.0418487 + 0.359440i
\(231\) 0 0
\(232\) 9.78698e7 + 3.54723e7i 0.0337829 + 0.0122444i
\(233\) −1.95989e9 −0.664980 −0.332490 0.943107i \(-0.607889\pi\)
−0.332490 + 0.943107i \(0.607889\pi\)
\(234\) 0 0
\(235\) 1.03858e9i 0.340540i
\(236\) −5.62093e8 + 2.38120e9i −0.181201 + 0.767621i
\(237\) 0 0
\(238\) −1.00889e9 + 8.66537e9i −0.314438 + 2.70072i
\(239\) 1.44446e9i 0.442703i −0.975194 0.221352i \(-0.928953\pi\)
0.975194 0.221352i \(-0.0710468\pi\)
\(240\) 0 0
\(241\) 6.55022e9 1.94172 0.970862 0.239639i \(-0.0770292\pi\)
0.970862 + 0.239639i \(0.0770292\pi\)
\(242\) −8.66674e8 1.00905e8i −0.252694 0.0294205i
\(243\) 0 0
\(244\) −1.38144e9 3.26095e8i −0.389738 0.0919995i
\(245\) −3.72249e9 −1.03316
\(246\) 0 0
\(247\) 8.21914e9i 2.20820i
\(248\) 1.81208e9 4.99963e9i 0.479040 1.32169i
\(249\) 0 0
\(250\) −3.47041e8 4.04052e7i −0.0888426 0.0103437i
\(251\) 7.57863e9i 1.90939i 0.297579 + 0.954697i \(0.403821\pi\)
−0.297579 + 0.954697i \(0.596179\pi\)
\(252\) 0 0
\(253\) 2.86266e9 0.698695
\(254\) 7.56829e7 6.50043e8i 0.0181829 0.156174i
\(255\) 0 0
\(256\) 2.57715e9 + 3.43585e9i 0.600040 + 0.799970i
\(257\) 4.60039e9 1.05454 0.527269 0.849698i \(-0.323216\pi\)
0.527269 + 0.849698i \(0.323216\pi\)
\(258\) 0 0
\(259\) 4.74149e9i 1.05370i
\(260\) −2.81077e9 6.63495e8i −0.615080 0.145193i
\(261\) 0 0
\(262\) 5.68639e8 4.88406e9i 0.120679 1.03652i
\(263\) 4.62139e9i 0.965938i −0.875637 0.482969i \(-0.839558\pi\)
0.875637 0.482969i \(-0.160442\pi\)
\(264\) 0 0
\(265\) −1.40295e7 −0.00284484
\(266\) −1.41377e10 1.64602e9i −2.82392 0.328782i
\(267\) 0 0
\(268\) 1.61842e9 6.85614e9i 0.313728 1.32905i
\(269\) 3.50882e9 0.670120 0.335060 0.942197i \(-0.391243\pi\)
0.335060 + 0.942197i \(0.391243\pi\)
\(270\) 0 0
\(271\) 2.00636e9i 0.371990i 0.982551 + 0.185995i \(0.0595509\pi\)
−0.982551 + 0.185995i \(0.940449\pi\)
\(272\) 7.31645e9 + 3.65800e9i 1.33667 + 0.668294i
\(273\) 0 0
\(274\) −7.91113e9 9.21074e8i −1.40358 0.163415i
\(275\) 9.87674e8i 0.172696i
\(276\) 0 0
\(277\) 5.03028e9 0.854423 0.427211 0.904152i \(-0.359496\pi\)
0.427211 + 0.904152i \(0.359496\pi\)
\(278\) −3.23722e8 + 2.78046e9i −0.0541992 + 0.465519i
\(279\) 0 0
\(280\) −1.70418e9 + 4.70191e9i −0.277257 + 0.764966i
\(281\) −5.15967e8 −0.0827555 −0.0413778 0.999144i \(-0.513175\pi\)
−0.0413778 + 0.999144i \(0.513175\pi\)
\(282\) 0 0
\(283\) 1.20680e9i 0.188143i −0.995565 0.0940715i \(-0.970012\pi\)
0.995565 0.0940715i \(-0.0299882\pi\)
\(284\) 2.37067e9 1.00429e10i 0.364416 1.54378i
\(285\) 0 0
\(286\) −9.44148e8 + 8.10932e9i −0.141116 + 1.21205i
\(287\) 2.01034e10i 2.96308i
\(288\) 0 0
\(289\) 8.60325e9 1.23331
\(290\) 1.12897e8 + 1.31443e7i 0.0159621 + 0.00185843i
\(291\) 0 0
\(292\) −1.18056e9 2.78676e8i −0.162389 0.0383326i
\(293\) −6.72328e9 −0.912244 −0.456122 0.889917i \(-0.650762\pi\)
−0.456122 + 0.889917i \(0.650762\pi\)
\(294\) 0 0
\(295\) 2.67131e9i 0.352726i
\(296\) −4.17977e9 1.51493e9i −0.544485 0.197345i
\(297\) 0 0
\(298\) −1.10319e10 1.28442e9i −1.39890 0.162870i
\(299\) 9.13926e9i 1.14347i
\(300\) 0 0
\(301\) 1.26410e10 1.53998
\(302\) −1.23900e9 + 1.06418e10i −0.148951 + 1.27935i
\(303\) 0 0
\(304\) −5.96809e9 + 1.19369e10i −0.698781 + 1.39765i
\(305\) −1.54975e9 −0.179086
\(306\) 0 0
\(307\) 4.05556e9i 0.456559i 0.973596 + 0.228280i \(0.0733100\pi\)
−0.973596 + 0.228280i \(0.926690\pi\)
\(308\) 1.37597e10 + 3.24805e9i 1.52900 + 0.360927i
\(309\) 0 0
\(310\) 6.71469e8 5.76727e9i 0.0727075 0.624488i
\(311\) 2.64705e8i 0.0282957i −0.999900 0.0141479i \(-0.995496\pi\)
0.999900 0.0141479i \(-0.00450356\pi\)
\(312\) 0 0
\(313\) −2.46207e9 −0.256521 −0.128260 0.991741i \(-0.540939\pi\)
−0.128260 + 0.991741i \(0.540939\pi\)
\(314\) 2.34159e9 + 2.72626e8i 0.240875 + 0.0280445i
\(315\) 0 0
\(316\) 3.47774e9 1.47328e10i 0.348778 1.47753i
\(317\) 1.05210e10 1.04188 0.520942 0.853592i \(-0.325581\pi\)
0.520942 + 0.853592i \(0.325581\pi\)
\(318\) 0 0
\(319\) 3.21302e8i 0.0310278i
\(320\) 3.60039e9 + 3.00457e9i 0.343360 + 0.286538i
\(321\) 0 0
\(322\) 1.57204e10 + 1.83029e9i 1.46231 + 0.170253i
\(323\) 2.54174e10i 2.33519i
\(324\) 0 0
\(325\) −3.15322e9 −0.282632
\(326\) −4.62900e8 + 3.97587e9i −0.0409843 + 0.352015i
\(327\) 0 0
\(328\) −1.77218e10 6.42316e9i −1.53113 0.554949i
\(329\) 1.62318e10 1.38542
\(330\) 0 0
\(331\) 1.35452e9i 0.112842i −0.998407 0.0564212i \(-0.982031\pi\)
0.998407 0.0564212i \(-0.0179690\pi\)
\(332\) 1.40676e9 5.95944e9i 0.115789 0.490516i
\(333\) 0 0
\(334\) 2.63804e9 2.26582e10i 0.211980 1.82071i
\(335\) 7.69147e9i 0.610703i
\(336\) 0 0
\(337\) 4.60152e9 0.356765 0.178382 0.983961i \(-0.442914\pi\)
0.178382 + 0.983961i \(0.442914\pi\)
\(338\) −1.29255e10 1.50488e9i −0.990332 0.115302i
\(339\) 0 0
\(340\) 8.69221e9 + 2.05184e9i 0.650451 + 0.153542i
\(341\) −1.64136e10 −1.21391
\(342\) 0 0
\(343\) 3.29952e10i 2.38382i
\(344\) 4.03887e9 1.11434e10i 0.288420 0.795766i
\(345\) 0 0
\(346\) −1.66748e10 1.94141e9i −1.16348 0.135461i
\(347\) 1.95596e10i 1.34910i −0.738231 0.674548i \(-0.764339\pi\)
0.738231 0.674548i \(-0.235661\pi\)
\(348\) 0 0
\(349\) −1.63778e10 −1.10396 −0.551979 0.833858i \(-0.686127\pi\)
−0.551979 + 0.833858i \(0.686127\pi\)
\(350\) −6.31485e8 + 5.42384e9i −0.0420814 + 0.361439i
\(351\) 0 0
\(352\) 7.25956e9 1.10919e10i 0.472868 0.722493i
\(353\) 1.06945e10 0.688749 0.344374 0.938832i \(-0.388091\pi\)
0.344374 + 0.938832i \(0.388091\pi\)
\(354\) 0 0
\(355\) 1.12665e10i 0.709372i
\(356\) 5.22406e9 + 1.23316e9i 0.325243 + 0.0767752i
\(357\) 0 0
\(358\) −2.19318e9 + 1.88373e10i −0.133519 + 1.14680i
\(359\) 1.20508e10i 0.725502i 0.931886 + 0.362751i \(0.118162\pi\)
−0.931886 + 0.362751i \(0.881838\pi\)
\(360\) 0 0
\(361\) −2.44854e10 −1.44171
\(362\) 8.17565e9 + 9.51870e8i 0.476089 + 0.0554298i
\(363\) 0 0
\(364\) −1.03696e10 + 4.39289e10i −0.590688 + 2.50233i
\(365\) −1.32439e9 −0.0746183
\(366\) 0 0
\(367\) 1.44305e9i 0.0795456i 0.999209 + 0.0397728i \(0.0126634\pi\)
−0.999209 + 0.0397728i \(0.987337\pi\)
\(368\) 6.63620e9 1.32732e10i 0.361850 0.723745i
\(369\) 0 0
\(370\) −4.82153e9 5.61359e8i −0.257264 0.0299526i
\(371\) 2.19264e8i 0.0115737i
\(372\) 0 0
\(373\) −3.11346e10 −1.60845 −0.804225 0.594325i \(-0.797419\pi\)
−0.804225 + 0.594325i \(0.797419\pi\)
\(374\) 2.91975e9 2.50778e10i 0.149231 1.28175i
\(375\) 0 0
\(376\) 5.18614e9 1.43088e10i 0.259473 0.715900i
\(377\) 1.02578e9 0.0507796
\(378\) 0 0
\(379\) 3.66642e9i 0.177699i 0.996045 + 0.0888496i \(0.0283190\pi\)
−0.996045 + 0.0888496i \(0.971681\pi\)
\(380\) −3.34761e9 + 1.41815e10i −0.160546 + 0.680123i
\(381\) 0 0
\(382\) −3.12744e9 + 2.68617e10i −0.146871 + 1.26148i
\(383\) 1.86782e10i 0.868039i −0.900904 0.434019i \(-0.857095\pi\)
0.900904 0.434019i \(-0.142905\pi\)
\(384\) 0 0
\(385\) 1.54362e10 0.702581
\(386\) −6.60176e9 7.68627e8i −0.297379 0.0346231i
\(387\) 0 0
\(388\) 5.22411e9 + 1.23318e9i 0.230508 + 0.0544125i
\(389\) 2.09415e10 0.914553 0.457276 0.889325i \(-0.348825\pi\)
0.457276 + 0.889325i \(0.348825\pi\)
\(390\) 0 0
\(391\) 2.82629e10i 1.20923i
\(392\) 5.12858e10 + 1.85882e10i 2.17196 + 0.787214i
\(393\) 0 0
\(394\) 3.85588e9 + 4.48931e8i 0.160007 + 0.0186292i
\(395\) 1.65278e10i 0.678932i
\(396\) 0 0
\(397\) 3.24559e10 1.30657 0.653284 0.757113i \(-0.273391\pi\)
0.653284 + 0.757113i \(0.273391\pi\)
\(398\) 4.29909e9 3.69251e10i 0.171334 1.47160i
\(399\) 0 0
\(400\) 4.57952e9 + 2.28962e9i 0.178888 + 0.0894383i
\(401\) −3.03188e9 −0.117256 −0.0586279 0.998280i \(-0.518673\pi\)
−0.0586279 + 0.998280i \(0.518673\pi\)
\(402\) 0 0
\(403\) 5.24015e10i 1.98666i
\(404\) 4.92494e10 + 1.16256e10i 1.84874 + 0.436404i
\(405\) 0 0
\(406\) 2.05430e8 1.76444e9i 0.00756064 0.0649386i
\(407\) 1.37220e10i 0.500080i
\(408\) 0 0
\(409\) −4.74551e10 −1.69586 −0.847929 0.530110i \(-0.822150\pi\)
−0.847929 + 0.530110i \(0.822150\pi\)
\(410\) −2.04428e10 2.38011e9i −0.723445 0.0842289i
\(411\) 0 0
\(412\) 6.87754e8 2.91354e9i 0.0238696 0.101119i
\(413\) 4.17494e10 1.43500
\(414\) 0 0
\(415\) 6.68553e9i 0.225394i
\(416\) 3.54116e10 + 2.31767e10i 1.18242 + 0.773888i
\(417\) 0 0
\(418\) 4.09149e10 + 4.76362e9i 1.34022 + 0.156039i
\(419\) 1.14560e9i 0.0371685i −0.999827 0.0185843i \(-0.994084\pi\)
0.999827 0.0185843i \(-0.00591590\pi\)
\(420\) 0 0
\(421\) −2.44199e10 −0.777348 −0.388674 0.921375i \(-0.627067\pi\)
−0.388674 + 0.921375i \(0.627067\pi\)
\(422\) 2.76763e8 2.37713e9i 0.00872687 0.0749554i
\(423\) 0 0
\(424\) 1.93288e8 + 7.00559e7i 0.00598054 + 0.00216761i
\(425\) 9.75124e9 0.298885
\(426\) 0 0
\(427\) 2.42207e10i 0.728578i
\(428\) −9.37824e9 + 3.97291e10i −0.279477 + 1.18395i
\(429\) 0 0
\(430\) 1.49661e9 1.28544e10i 0.0437758 0.375992i
\(431\) 8.40599e9i 0.243601i 0.992555 + 0.121801i \(0.0388669\pi\)
−0.992555 + 0.121801i \(0.961133\pi\)
\(432\) 0 0
\(433\) 6.24569e9 0.177676 0.0888381 0.996046i \(-0.471685\pi\)
0.0888381 + 0.996046i \(0.471685\pi\)
\(434\) −9.01356e10 1.04943e10i −2.54061 0.295797i
\(435\) 0 0
\(436\) 2.35154e10 + 5.55091e9i 0.650737 + 0.153610i
\(437\) 4.61114e10 1.26439
\(438\) 0 0
\(439\) 2.74130e10i 0.738071i 0.929415 + 0.369036i \(0.120312\pi\)
−0.929415 + 0.369036i \(0.879688\pi\)
\(440\) 4.93194e9 1.36075e10i 0.131585 0.363050i
\(441\) 0 0
\(442\) 8.00628e10 + 9.32152e9i 2.09769 + 0.244229i
\(443\) 2.85603e10i 0.741564i −0.928720 0.370782i \(-0.879090\pi\)
0.928720 0.370782i \(-0.120910\pi\)
\(444\) 0 0
\(445\) 5.86054e9 0.149451
\(446\) −2.60884e9 + 2.24074e10i −0.0659339 + 0.566308i
\(447\) 0 0
\(448\) 4.69578e10 5.62698e10i 1.16573 1.39689i
\(449\) −2.90101e10 −0.713780 −0.356890 0.934146i \(-0.616163\pi\)
−0.356890 + 0.934146i \(0.616163\pi\)
\(450\) 0 0
\(451\) 5.81799e10i 1.40626i
\(452\) −8.87419e9 2.09480e9i −0.212606 0.0501866i
\(453\) 0 0
\(454\) 6.66116e9 5.72129e10i 0.156793 1.34670i
\(455\) 4.92811e10i 1.14983i
\(456\) 0 0
\(457\) 2.85196e10 0.653851 0.326926 0.945050i \(-0.393987\pi\)
0.326926 + 0.945050i \(0.393987\pi\)
\(458\) −5.71041e8 6.64849e7i −0.0129779 0.00151099i
\(459\) 0 0
\(460\) 3.72237e9 1.57691e10i 0.0831358 0.352188i
\(461\) −2.22816e10 −0.493336 −0.246668 0.969100i \(-0.579336\pi\)
−0.246668 + 0.969100i \(0.579336\pi\)
\(462\) 0 0
\(463\) 3.04341e10i 0.662272i 0.943583 + 0.331136i \(0.107432\pi\)
−0.943583 + 0.331136i \(0.892568\pi\)
\(464\) −1.48977e9 7.44841e8i −0.0321402 0.0160691i
\(465\) 0 0
\(466\) 3.11479e10 + 3.62647e9i 0.660519 + 0.0769025i
\(467\) 1.21705e10i 0.255883i −0.991782 0.127942i \(-0.959163\pi\)
0.991782 0.127942i \(-0.0408370\pi\)
\(468\) 0 0
\(469\) −1.20208e11 −2.48453
\(470\) 1.92173e9 1.65058e10i 0.0393822 0.338255i
\(471\) 0 0
\(472\) 1.33392e10 3.68034e10i 0.268758 0.741516i
\(473\) −3.65834e10 −0.730869
\(474\) 0 0
\(475\) 1.59093e10i 0.312520i
\(476\) 3.20678e10 1.35849e11i 0.624656 2.64623i
\(477\) 0 0
\(478\) −2.67274e9 + 2.29562e10i −0.0511970 + 0.439733i
\(479\) 1.66815e10i 0.316879i −0.987369 0.158440i \(-0.949354\pi\)
0.987369 0.158440i \(-0.0506463\pi\)
\(480\) 0 0
\(481\) −4.38085e10 −0.818424
\(482\) −1.04100e11 1.21201e10i −1.92870 0.224553i
\(483\) 0 0
\(484\) 1.35870e10 + 3.20729e9i 0.247596 + 0.0584462i
\(485\) 5.86060e9 0.105919
\(486\) 0 0
\(487\) 1.00085e11i 1.77931i −0.456630 0.889657i \(-0.650944\pi\)
0.456630 0.889657i \(-0.349056\pi\)
\(488\) 2.13513e10 + 7.73866e9i 0.376483 + 0.136454i
\(489\) 0 0
\(490\) 5.91602e10 + 6.88787e9i 1.02623 + 0.119482i
\(491\) 1.22682e10i 0.211084i −0.994415 0.105542i \(-0.966342\pi\)
0.994415 0.105542i \(-0.0336578\pi\)
\(492\) 0 0
\(493\) −3.17220e9 −0.0536998
\(494\) −1.52082e10 + 1.30624e11i −0.255370 + 2.19339i
\(495\) 0 0
\(496\) −3.80498e10 + 7.61044e10i −0.628675 + 1.25743i
\(497\) −1.76081e11 −2.88594
\(498\) 0 0
\(499\) 5.81617e10i 0.938070i 0.883180 + 0.469035i \(0.155398\pi\)
−0.883180 + 0.469035i \(0.844602\pi\)
\(500\) 5.44064e9 + 1.28429e9i 0.0870503 + 0.0205486i
\(501\) 0 0
\(502\) 1.40230e10 1.20444e11i 0.220814 1.89658i
\(503\) 5.45264e10i 0.851795i 0.904771 + 0.425897i \(0.140042\pi\)
−0.904771 + 0.425897i \(0.859958\pi\)
\(504\) 0 0
\(505\) 5.52498e10 0.849503
\(506\) −4.54952e10 5.29690e9i −0.694007 0.0808015i
\(507\) 0 0
\(508\) −2.40560e9 + 1.01909e10i −0.0361218 + 0.153023i
\(509\) −1.54749e10 −0.230545 −0.115273 0.993334i \(-0.536774\pi\)
−0.115273 + 0.993334i \(0.536774\pi\)
\(510\) 0 0
\(511\) 2.06987e10i 0.303570i
\(512\) −3.46003e10 5.93733e10i −0.503500 0.863995i
\(513\) 0 0
\(514\) −7.31124e10 8.51229e9i −1.04746 0.121953i
\(515\) 3.26851e9i 0.0464645i
\(516\) 0 0
\(517\) −4.69752e10 −0.657516
\(518\) −8.77337e9 + 7.53548e10i −0.121856 + 1.04663i
\(519\) 0 0
\(520\) 4.34428e10 + 1.57456e10i 0.594162 + 0.215350i
\(521\) 1.23711e11 1.67903 0.839516 0.543335i \(-0.182839\pi\)
0.839516 + 0.543335i \(0.182839\pi\)
\(522\) 0 0
\(523\) 3.37623e10i 0.451258i −0.974213 0.225629i \(-0.927556\pi\)
0.974213 0.225629i \(-0.0724438\pi\)
\(524\) −1.80744e10 + 7.65685e10i −0.239739 + 1.01561i
\(525\) 0 0
\(526\) −8.55115e9 + 7.34461e10i −0.111707 + 0.959457i
\(527\) 1.62050e11i 2.10091i
\(528\) 0 0
\(529\) 2.70375e10 0.345259
\(530\) 2.22965e8 + 2.59593e7i 0.00282575 + 0.000328995i
\(531\) 0 0
\(532\) 2.21640e11 + 5.23192e10i 2.76695 + 0.653152i
\(533\) −1.85744e11 −2.30147
\(534\) 0 0
\(535\) 4.45696e10i 0.544030i
\(536\) −3.84072e10 + 1.05968e11i −0.465322 + 1.28385i
\(537\) 0 0
\(538\) −5.57645e10 6.49252e9i −0.665624 0.0774969i
\(539\) 1.68369e11i 1.99483i
\(540\) 0 0
\(541\) −1.16336e11 −1.35808 −0.679042 0.734099i \(-0.737605\pi\)
−0.679042 + 0.734099i \(0.737605\pi\)
\(542\) 3.71245e9 3.18864e10i 0.0430193 0.369494i
\(543\) 0 0
\(544\) −1.09509e11 7.16732e10i −1.25042 0.818391i
\(545\) 2.63804e10 0.299017
\(546\) 0 0
\(547\) 4.21968e10i 0.471335i −0.971834 0.235668i \(-0.924272\pi\)
0.971834 0.235668i \(-0.0757277\pi\)
\(548\) 1.24025e11 + 2.92766e10i 1.37526 + 0.324637i
\(549\) 0 0
\(550\) 1.82753e9 1.56968e10i 0.0199717 0.171537i
\(551\) 5.17550e9i 0.0561495i
\(552\) 0 0
\(553\) −2.58309e11 −2.76210
\(554\) −7.99444e10 9.30773e9i −0.848690 0.0988108i
\(555\) 0 0
\(556\) 1.02896e10 4.35899e10i 0.107671 0.456128i
\(557\) 8.59325e10 0.892764 0.446382 0.894842i \(-0.352712\pi\)
0.446382 + 0.894842i \(0.352712\pi\)
\(558\) 0 0
\(559\) 1.16795e11i 1.19613i
\(560\) 3.57840e10 7.15725e10i 0.363862 0.727770i
\(561\) 0 0
\(562\) 8.20009e9 + 9.54716e8i 0.0822002 + 0.00957037i
\(563\) 4.69376e10i 0.467183i −0.972335 0.233592i \(-0.924952\pi\)
0.972335 0.233592i \(-0.0750479\pi\)
\(564\) 0 0
\(565\) −9.95539e9 −0.0976933
\(566\) −2.23298e9 + 1.91792e10i −0.0217580 + 0.186881i
\(567\) 0 0
\(568\) −5.62589e10 + 1.55221e11i −0.540503 + 1.49127i
\(569\) 3.18471e10 0.303823 0.151912 0.988394i \(-0.451457\pi\)
0.151912 + 0.988394i \(0.451457\pi\)
\(570\) 0 0
\(571\) 4.11114e10i 0.386739i 0.981126 + 0.193369i \(0.0619416\pi\)
−0.981126 + 0.193369i \(0.938058\pi\)
\(572\) 3.00100e10 1.27132e11i 0.280338 1.18760i
\(573\) 0 0
\(574\) −3.71982e10 + 3.19497e11i −0.342669 + 2.94320i
\(575\) 1.76903e10i 0.161832i
\(576\) 0 0
\(577\) 6.42574e10 0.579722 0.289861 0.957069i \(-0.406391\pi\)
0.289861 + 0.957069i \(0.406391\pi\)
\(578\) −1.36728e11 1.59189e10i −1.22503 0.142627i
\(579\) 0 0
\(580\) −1.76991e9 4.17795e8i −0.0156401 0.00369191i
\(581\) −1.04487e11 −0.916973
\(582\) 0 0
\(583\) 6.34555e8i 0.00549281i
\(584\) 1.82465e10 + 6.61334e9i 0.156866 + 0.0568551i
\(585\) 0 0
\(586\) 1.06851e11 + 1.24404e10i 0.906123 + 0.105498i
\(587\) 1.67243e11i 1.40862i 0.709891 + 0.704312i \(0.248744\pi\)
−0.709891 + 0.704312i \(0.751256\pi\)
\(588\) 0 0
\(589\) −2.64388e11 −2.19675
\(590\) 4.94284e9 4.24543e10i 0.0407914 0.350359i
\(591\) 0 0
\(592\) 6.36245e10 + 3.18103e10i 0.518009 + 0.258988i
\(593\) −1.87457e11 −1.51595 −0.757973 0.652286i \(-0.773810\pi\)
−0.757973 + 0.652286i \(0.773810\pi\)
\(594\) 0 0
\(595\) 1.52400e11i 1.21596i
\(596\) 1.72950e11 + 4.08256e10i 1.37068 + 0.323555i
\(597\) 0 0
\(598\) 1.69108e10 1.45247e11i 0.132239 1.13580i
\(599\) 3.78563e10i 0.294057i 0.989132 + 0.147028i \(0.0469709\pi\)
−0.989132 + 0.147028i \(0.953029\pi\)
\(600\) 0 0
\(601\) 7.11140e10 0.545076 0.272538 0.962145i \(-0.412137\pi\)
0.272538 + 0.962145i \(0.412137\pi\)
\(602\) −2.00899e11 2.33902e10i −1.52965 0.178093i
\(603\) 0 0
\(604\) 3.93820e10 1.66834e11i 0.295903 1.25354i
\(605\) 1.52424e10 0.113771
\(606\) 0 0
\(607\) 1.42793e11i 1.05184i 0.850533 + 0.525922i \(0.176280\pi\)
−0.850533 + 0.525922i \(0.823720\pi\)
\(608\) 1.16936e11 1.78666e11i 0.855725 1.30746i
\(609\) 0 0
\(610\) 2.46296e10 + 2.86757e9i 0.177885 + 0.0207107i
\(611\) 1.49972e11i 1.07608i
\(612\) 0 0
\(613\) 1.82775e11 1.29442 0.647209 0.762313i \(-0.275936\pi\)
0.647209 + 0.762313i \(0.275936\pi\)
\(614\) 7.50417e9 6.44535e10i 0.0527994 0.453496i
\(615\) 0 0
\(616\) −2.12668e11 7.70803e10i −1.47700 0.535328i
\(617\) −1.21589e11 −0.838984 −0.419492 0.907759i \(-0.637792\pi\)
−0.419492 + 0.907759i \(0.637792\pi\)
\(618\) 0 0
\(619\) 2.11081e11i 1.43776i 0.695133 + 0.718881i \(0.255345\pi\)
−0.695133 + 0.718881i \(0.744655\pi\)
\(620\) −2.13429e10 + 9.04148e10i −0.144439 + 0.611889i
\(621\) 0 0
\(622\) −4.89795e8 + 4.20687e9i −0.00327230 + 0.0281059i
\(623\) 9.15933e10i 0.608011i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 3.91288e10 + 4.55567e9i 0.254800 + 0.0296657i
\(627\) 0 0
\(628\) −3.67096e10 8.66549e9i −0.236016 0.0557127i
\(629\) 1.35476e11 0.865488
\(630\) 0 0
\(631\) 1.00370e11i 0.633123i −0.948572 0.316561i \(-0.897472\pi\)
0.948572 0.316561i \(-0.102528\pi\)
\(632\) −8.25312e10 + 2.27708e11i −0.517309 + 1.42728i
\(633\) 0 0
\(634\) −1.67206e11 1.94674e10i −1.03489 0.120490i
\(635\) 1.14325e10i 0.0703147i
\(636\) 0 0
\(637\) 5.37530e11 3.26471
\(638\) −5.94519e8 + 5.10634e9i −0.00358825 + 0.0308196i
\(639\) 0 0
\(640\) −5.16602e10 5.44125e10i −0.307919 0.324324i
\(641\) 2.75025e11 1.62907 0.814534 0.580116i \(-0.196993\pi\)
0.814534 + 0.580116i \(0.196993\pi\)
\(642\) 0 0
\(643\) 2.19775e11i 1.28569i 0.765998 + 0.642844i \(0.222245\pi\)
−0.765998 + 0.642844i \(0.777755\pi\)
\(644\) −2.46452e11 5.81762e10i −1.43281 0.338222i
\(645\) 0 0
\(646\) 4.70309e10 4.03950e11i 0.270056 2.31952i
\(647\) 1.48831e11i 0.849330i 0.905351 + 0.424665i \(0.139608\pi\)
−0.905351 + 0.424665i \(0.860392\pi\)
\(648\) 0 0
\(649\) −1.20824e11 −0.681043
\(650\) 5.01131e10 + 5.83454e9i 0.280736 + 0.0326854i
\(651\) 0 0
\(652\) 1.47134e10 6.23305e10i 0.0814186 0.344914i
\(653\) 1.78058e11 0.979287 0.489643 0.871923i \(-0.337127\pi\)
0.489643 + 0.871923i \(0.337127\pi\)
\(654\) 0 0
\(655\) 8.58974e10i 0.466675i
\(656\) 2.69762e11 + 1.34872e11i 1.45668 + 0.728296i
\(657\) 0 0
\(658\) −2.57966e11 3.00343e10i −1.37613 0.160219i
\(659\) 1.79592e11i 0.952236i 0.879381 + 0.476118i \(0.157957\pi\)
−0.879381 + 0.476118i \(0.842043\pi\)
\(660\) 0 0
\(661\) 2.69158e11 1.40994 0.704971 0.709236i \(-0.250960\pi\)
0.704971 + 0.709236i \(0.250960\pi\)
\(662\) −2.50632e9 + 2.15268e10i −0.0130498 + 0.112085i
\(663\) 0 0
\(664\) −3.33841e10 + 9.21084e10i −0.171738 + 0.473835i
\(665\) 2.48644e11 1.27143
\(666\) 0 0
\(667\) 5.75488e9i 0.0290759i
\(668\) −8.38509e10 + 3.55218e11i −0.421116 + 1.78398i
\(669\) 0 0
\(670\) −1.42318e10 + 1.22238e11i −0.0706256 + 0.606605i
\(671\) 7.00955e10i 0.345780i
\(672\) 0 0
\(673\) −3.00192e11 −1.46332 −0.731659 0.681671i \(-0.761253\pi\)
−0.731659 + 0.681671i \(0.761253\pi\)
\(674\) −7.31303e10 8.51438e9i −0.354371 0.0412585i
\(675\) 0 0
\(676\) 2.02636e11 + 4.78332e10i 0.970353 + 0.229057i
\(677\) −2.84577e11 −1.35471 −0.677354 0.735657i \(-0.736873\pi\)
−0.677354 + 0.735657i \(0.736873\pi\)
\(678\) 0 0
\(679\) 9.15942e10i 0.430912i
\(680\) −1.34346e11 4.86927e10i −0.628330 0.227734i
\(681\) 0 0
\(682\) 2.60855e11 + 3.03707e10i 1.20576 + 0.140384i
\(683\) 1.74603e11i 0.802361i 0.915999 + 0.401180i \(0.131400\pi\)
−0.915999 + 0.401180i \(0.868600\pi\)
\(684\) 0 0
\(685\) 1.39135e11 0.631939
\(686\) 6.10523e10 5.24381e11i 0.275680 2.36783i
\(687\) 0 0
\(688\) −8.48075e10 + 1.69625e11i −0.378513 + 0.757072i
\(689\) 2.02586e9 0.00898946
\(690\) 0 0
\(691\) 3.71403e11i 1.62905i −0.580131 0.814523i \(-0.696999\pi\)
0.580131 0.814523i \(-0.303001\pi\)
\(692\) 2.61415e11 + 6.17083e10i 1.14000 + 0.269104i
\(693\) 0 0
\(694\) −3.61920e10 + 3.10854e11i −0.156018 + 1.34004i
\(695\) 4.89007e10i 0.209593i
\(696\) 0 0
\(697\) 5.74407e11 2.43382
\(698\) 2.60286e11 + 3.03045e10i 1.09655 + 0.127669i
\(699\) 0 0
\(700\) 2.00719e10 8.50308e10i 0.0835982 0.354147i
\(701\) −1.55083e9 −0.00642231 −0.00321115 0.999995i \(-0.501022\pi\)
−0.00321115 + 0.999995i \(0.501022\pi\)
\(702\) 0 0
\(703\) 2.21032e11i 0.904971i
\(704\) −1.35897e11 + 1.62846e11i −0.553249 + 0.662960i
\(705\) 0 0
\(706\) −1.69964e11 1.97884e10i −0.684127 0.0796513i
\(707\) 8.63488e11i 3.45604i
\(708\) 0 0
\(709\) 1.19935e10 0.0474636 0.0237318 0.999718i \(-0.492445\pi\)
0.0237318 + 0.999718i \(0.492445\pi\)
\(710\) −2.08468e10 + 1.79054e11i −0.0820363 + 0.704613i
\(711\) 0 0
\(712\) −8.07423e10 2.92645e10i −0.314182 0.113873i
\(713\) 2.93985e11 1.13754
\(714\) 0 0
\(715\) 1.42621e11i 0.545706i
\(716\) 6.97110e10 2.95317e11i 0.265246 1.12366i
\(717\) 0 0
\(718\) 2.22981e10 1.91519e11i 0.0839016 0.720634i
\(719\) 1.87951e11i 0.703283i −0.936135 0.351642i \(-0.885624\pi\)
0.936135 0.351642i \(-0.114376\pi\)
\(720\) 0 0
\(721\) −5.10829e10 −0.189032
\(722\) 3.89139e11 + 4.53064e10i 1.43204 + 0.166729i
\(723\) 0 0
\(724\) −1.28171e11 3.02555e10i −0.466484 0.110116i
\(725\) −1.98555e9 −0.00718668
\(726\) 0 0
\(727\) 4.79347e11i 1.71598i −0.513666 0.857990i \(-0.671713\pi\)
0.513666 0.857990i \(-0.328287\pi\)
\(728\) 2.46085e11 6.78960e11i 0.876111 2.41723i
\(729\) 0 0
\(730\) 2.10481e10 + 2.45058e9i 0.0741177 + 0.00862934i
\(731\) 3.61186e11i 1.26491i
\(732\) 0 0
\(733\) 1.15290e11 0.399369 0.199685 0.979860i \(-0.436008\pi\)
0.199685 + 0.979860i \(0.436008\pi\)
\(734\) 2.67013e9 2.29338e10i 0.00919916 0.0790119i
\(735\) 0 0
\(736\) −1.30027e11 + 1.98667e11i −0.443120 + 0.677042i
\(737\) 3.47887e11 1.17915
\(738\) 0 0
\(739\) 2.61705e11i 0.877474i −0.898615 0.438737i \(-0.855426\pi\)
0.898615 0.438737i \(-0.144574\pi\)
\(740\) 7.55882e10 + 1.78430e10i 0.252074 + 0.0595032i
\(741\) 0 0
\(742\) 4.05712e8 3.48468e9i 0.00133845 0.0114960i
\(743\) 2.22326e11i 0.729518i 0.931102 + 0.364759i \(0.118849\pi\)
−0.931102 + 0.364759i \(0.881151\pi\)
\(744\) 0 0
\(745\) 1.94021e11 0.629832
\(746\) 4.94811e11 + 5.76096e10i 1.59766 + 0.186011i
\(747\) 0 0
\(748\) −9.28050e10 + 3.93150e11i −0.296459 + 1.25589i
\(749\) 6.96569e11 2.21328
\(750\) 0 0
\(751\) 2.58047e11i 0.811220i 0.914046 + 0.405610i \(0.132941\pi\)
−0.914046 + 0.405610i \(0.867059\pi\)
\(752\) −1.08898e11 + 2.17809e11i −0.340523 + 0.681089i
\(753\) 0 0
\(754\) −1.63024e10 1.89805e9i −0.0504389 0.00587248i
\(755\) 1.87161e11i 0.576005i
\(756\) 0 0
\(757\) 1.26938e11 0.386552 0.193276 0.981144i \(-0.438089\pi\)
0.193276 + 0.981144i \(0.438089\pi\)
\(758\) 6.78413e9 5.82691e10i 0.0205503 0.176507i
\(759\) 0 0
\(760\) 7.94430e10 2.19187e11i 0.238123 0.656993i
\(761\) −4.95235e11 −1.47663 −0.738316 0.674454i \(-0.764379\pi\)
−0.738316 + 0.674454i \(0.764379\pi\)
\(762\) 0 0
\(763\) 4.12294e11i 1.21649i
\(764\) 9.94065e10 4.21116e11i 0.291770 1.23603i
\(765\) 0 0
\(766\) −3.45610e10 + 2.96845e11i −0.100385 + 0.862214i
\(767\) 3.85740e11i 1.11459i
\(768\) 0 0
\(769\) 6.39754e11 1.82940 0.914698 0.404137i \(-0.132428\pi\)
0.914698 + 0.404137i \(0.132428\pi\)
\(770\) −2.45321e11 2.85622e10i −0.697867 0.0812509i
\(771\) 0 0
\(772\) 1.03497e11 + 2.44310e10i 0.291380 + 0.0687817i
\(773\) −2.25549e11 −0.631717 −0.315859 0.948806i \(-0.602293\pi\)
−0.315859 + 0.948806i \(0.602293\pi\)
\(774\) 0 0
\(775\) 1.01431e11i 0.281166i
\(776\) −8.07431e10 2.92648e10i −0.222668 0.0807047i
\(777\) 0 0
\(778\) −3.32815e11 3.87489e10i −0.908417 0.105765i
\(779\) 9.37155e11i 2.54485i
\(780\) 0 0
\(781\) 5.09584e11 1.36966
\(782\) −5.22959e10 + 4.49172e11i −0.139843 + 1.20112i
\(783\) 0 0
\(784\) −7.80672e11 3.90312e11i −2.06635 1.03311i
\(785\) −4.11822e10 −0.108450
\(786\) 0 0
\(787\) 1.74074e11i 0.453770i 0.973922 + 0.226885i \(0.0728542\pi\)
−0.973922 + 0.226885i \(0.927146\pi\)
\(788\) −6.04495e10 1.42694e10i −0.156779 0.0370084i
\(789\) 0 0
\(790\) −3.05820e10 + 2.62670e11i −0.0785160 + 0.674376i
\(791\) 1.55591e11i 0.397446i
\(792\) 0 0
\(793\) 2.23785e11 0.565899
\(794\) −5.15810e11 6.00545e10i −1.29780 0.151100i
\(795\) 0 0
\(796\) −1.36648e11 + 5.78882e11i −0.340370 + 1.44191i
\(797\) −6.58151e9 −0.0163114 −0.00815572 0.999967i \(-0.502596\pi\)
−0.00815572 + 0.999967i \(0.502596\pi\)
\(798\) 0 0
\(799\) 4.63783e11i 1.13796i
\(800\) −6.85442e10 4.48618e10i −0.167344 0.109526i
\(801\) 0 0
\(802\) 4.81846e10 + 5.61001e9i 0.116469 + 0.0135602i
\(803\) 5.99026e10i 0.144073i
\(804\) 0 0
\(805\) −2.76479e11 −0.658383
\(806\) −9.69608e10 + 8.32799e11i −0.229750 + 1.97333i
\(807\) 0 0
\(808\) −7.61192e11 2.75889e11i −1.78587 0.647275i
\(809\) 3.64249e11 0.850362 0.425181 0.905108i \(-0.360210\pi\)
0.425181 + 0.905108i \(0.360210\pi\)
\(810\) 0 0
\(811\) 4.01599e11i 0.928344i 0.885745 + 0.464172i \(0.153648\pi\)
−0.885745 + 0.464172i \(0.846352\pi\)
\(812\) −6.52964e9 + 2.76615e10i −0.0150198 + 0.0636286i
\(813\) 0 0
\(814\) 2.53904e10 2.18079e11i 0.0578325 0.496725i
\(815\) 6.99247e10i 0.158489i
\(816\) 0 0
\(817\) −5.89281e11 −1.32262
\(818\) 7.54187e11 + 8.78081e10i 1.68448 + 0.196120i
\(819\) 0 0
\(820\) 3.20487e11 + 7.56524e10i 0.708850 + 0.167328i
\(821\) 2.94708e10 0.0648663 0.0324332 0.999474i \(-0.489674\pi\)
0.0324332 + 0.999474i \(0.489674\pi\)
\(822\) 0 0
\(823\) 4.79437e11i 1.04504i −0.852628 0.522519i \(-0.824992\pi\)
0.852628 0.522519i \(-0.175008\pi\)
\(824\) −1.63213e10 + 4.50312e10i −0.0354034 + 0.0976798i
\(825\) 0 0
\(826\) −6.63509e11 7.72507e10i −1.42537 0.165952i
\(827\) 2.36828e11i 0.506304i 0.967427 + 0.253152i \(0.0814673\pi\)
−0.967427 + 0.253152i \(0.918533\pi\)
\(828\) 0 0
\(829\) −6.87687e11 −1.45604 −0.728019 0.685557i \(-0.759559\pi\)
−0.728019 + 0.685557i \(0.759559\pi\)
\(830\) −1.23705e10 + 1.06251e11i −0.0260660 + 0.223882i
\(831\) 0 0
\(832\) −5.19899e11 4.33863e11i −1.08499 0.905438i
\(833\) −1.66229e12 −3.45246
\(834\) 0 0
\(835\) 3.98497e11i 0.819745i
\(836\) −6.41432e11 1.51413e11i −1.31318 0.309983i
\(837\) 0 0
\(838\) −2.11974e9 + 1.82066e10i −0.00429841 + 0.0369192i
\(839\) 4.88865e11i 0.986600i −0.869859 0.493300i \(-0.835790\pi\)
0.869859 0.493300i \(-0.164210\pi\)
\(840\) 0 0
\(841\) −4.99600e11 −0.998709
\(842\) 3.88097e11 + 4.51852e10i 0.772133 + 0.0898975i
\(843\) 0 0
\(844\) −8.79700e9 + 3.72668e10i −0.0173366 + 0.0734432i
\(845\) 2.27325e11 0.445882
\(846\) 0 0
\(847\) 2.38221e11i 0.462857i
\(848\) −2.94223e9 1.47102e9i −0.00568974 0.00284469i
\(849\) 0 0
\(850\) −1.54973e11 1.80431e10i −0.296880 0.0345650i
\(851\) 2.45776e11i 0.468621i
\(852\) 0 0
\(853\) 5.55737e11 1.04972 0.524860 0.851189i \(-0.324118\pi\)
0.524860 + 0.851189i \(0.324118\pi\)
\(854\) 4.48166e10 3.84932e11i 0.0842574 0.723689i
\(855\) 0 0
\(856\) 2.22557e11 6.14047e11i 0.414522 1.14369i
\(857\) −4.82150e11 −0.893837 −0.446919 0.894575i \(-0.647479\pi\)
−0.446919 + 0.894575i \(0.647479\pi\)
\(858\) 0 0
\(859\) 2.04322e11i 0.375269i 0.982239 + 0.187635i \(0.0600821\pi\)
−0.982239 + 0.187635i \(0.939918\pi\)
\(860\) −4.75701e10 + 2.01521e11i −0.0869641 + 0.368406i
\(861\) 0 0
\(862\) 1.55540e10 1.33593e11i 0.0281716 0.241967i
\(863\) 2.90900e11i 0.524445i −0.965007 0.262223i \(-0.915545\pi\)
0.965007 0.262223i \(-0.0844555\pi\)
\(864\) 0 0
\(865\) 2.93265e11 0.523837
\(866\) −9.92606e10 1.15567e10i −0.176484 0.0205476i
\(867\) 0 0
\(868\) 1.41308e12 + 3.33563e11i 2.48935 + 0.587624i
\(869\) 7.47555e11 1.31088
\(870\) 0 0
\(871\) 1.11065e12i 1.92977i
\(872\) −3.63450e11 1.31730e11i −0.628607 0.227834i
\(873\) 0 0
\(874\) −7.32832e11 8.53218e10i −1.25591 0.146223i
\(875\) 9.53907e10i 0.162732i
\(876\) 0 0
\(877\) −6.58753e10 −0.111359 −0.0556794 0.998449i \(-0.517732\pi\)
−0.0556794 + 0.998449i \(0.517732\pi\)
\(878\) 5.07234e10 4.35665e11i 0.0853552 0.733119i
\(879\) 0 0
\(880\) −1.03560e11 + 2.07133e11i −0.172688 + 0.345397i
\(881\) −6.86010e11 −1.13875 −0.569373 0.822080i \(-0.692814\pi\)
−0.569373 + 0.822080i \(0.692814\pi\)
\(882\) 0 0
\(883\) 5.29575e11i 0.871133i 0.900157 + 0.435567i \(0.143452\pi\)
−0.900157 + 0.435567i \(0.856548\pi\)
\(884\) −1.25516e12 2.96287e11i −2.05537 0.485181i
\(885\) 0 0
\(886\) −5.28464e10 + 4.53899e11i −0.0857591 + 0.736588i
\(887\) 4.13533e11i 0.668061i 0.942562 + 0.334031i \(0.108409\pi\)
−0.942562 + 0.334031i \(0.891591\pi\)
\(888\) 0 0
\(889\) 1.78676e11 0.286062
\(890\) −9.31395e10 1.08440e10i −0.148448 0.0172834i
\(891\) 0 0
\(892\) 8.29229e10 3.51286e11i 0.130983 0.554884i
\(893\) −7.56671e11 −1.18987
\(894\) 0 0
\(895\) 3.31298e11i 0.516329i
\(896\) −8.50403e11 + 8.07387e11i −1.31945 + 1.25271i
\(897\) 0 0
\(898\) 4.61048e11 + 5.36787e10i 0.708991 + 0.0825460i
\(899\) 3.29966e10i 0.0505162i
\(900\) 0 0
\(901\) −6.26492e9 −0.00950641
\(902\) 1.07653e11 9.24633e11i 0.162629 1.39683i
\(903\) 0 0
\(904\) 1.37158e11 + 4.97121e10i 0.205375 + 0.0744369i
\(905\) −1.43787e11 −0.214352
\(906\) 0 0
\(907\) 3.08875e11i 0.456408i 0.973613 + 0.228204i \(0.0732853\pi\)
−0.973613 + 0.228204i \(0.926715\pi\)
\(908\) −2.11727e11 + 8.96939e11i −0.311482 + 1.31953i
\(909\) 0 0
\(910\) 9.11869e10 7.83207e11i 0.132974 1.14212i
\(911\) 3.37516e11i 0.490027i −0.969520 0.245014i \(-0.921208\pi\)
0.969520 0.245014i \(-0.0787925\pi\)
\(912\) 0 0
\(913\) 3.02388e11 0.435192
\(914\) −4.53252e11 5.27710e10i −0.649464 0.0756155i
\(915\) 0 0
\(916\) 8.95233e9 + 2.11324e9i 0.0127161 + 0.00300170i
\(917\) 1.34247e12 1.89858
\(918\) 0 0
\(919\) 3.72489e11i 0.522217i −0.965309 0.261109i \(-0.915912\pi\)
0.965309 0.261109i \(-0.0840880\pi\)
\(920\) −8.83365e10 + 2.43725e11i −0.123307 + 0.340211i
\(921\) 0 0
\(922\) 3.54113e11 + 4.12286e10i 0.490026 + 0.0570525i
\(923\) 1.62689e12i 2.24156i
\(924\) 0 0
\(925\) 8.47977e10 0.115829
\(926\) 5.63135e10 4.83678e11i 0.0765894 0.657829i
\(927\) 0 0
\(928\) 2.22983e10 + 1.45941e10i 0.0300662 + 0.0196782i
\(929\) 1.27825e12 1.71614 0.858071 0.513531i \(-0.171663\pi\)
0.858071 + 0.513531i \(0.171663\pi\)
\(930\) 0 0
\(931\) 2.71206e12i 3.60995i
\(932\) −4.88312e11 1.15268e11i −0.647193 0.152773i
\(933\) 0 0
\(934\) −2.25196e10 + 1.93422e11i −0.0295920 + 0.254166i
\(935\) 4.41051e11i 0.577088i
\(936\) 0 0
\(937\) 5.59229e11 0.725490 0.362745 0.931888i \(-0.381840\pi\)
0.362745 + 0.931888i \(0.381840\pi\)
\(938\) 1.91043e12 + 2.22427e11i 2.46786 + 0.287326i
\(939\) 0 0
\(940\) −6.10827e10 + 2.58765e11i −0.0782360 + 0.331432i
\(941\) −1.42863e12 −1.82205 −0.911026 0.412348i \(-0.864709\pi\)
−0.911026 + 0.412348i \(0.864709\pi\)
\(942\) 0 0
\(943\) 1.04207e12i 1.31780i
\(944\) −2.80094e11 + 5.60222e11i −0.352708 + 0.705460i
\(945\) 0 0
\(946\) 5.81407e11 + 6.76918e10i 0.725965 + 0.0845224i
\(947\) 5.72859e11i 0.712275i 0.934434 + 0.356137i \(0.115906\pi\)
−0.934434 + 0.356137i \(0.884094\pi\)
\(948\) 0 0
\(949\) 1.91243e11 0.235788
\(950\) 2.94377e10 2.52841e11i 0.0361418 0.310423i
\(951\) 0 0
\(952\) −7.61009e11 + 2.09966e12i −0.926492 + 2.55624i
\(953\) −3.48415e11 −0.422401 −0.211200 0.977443i \(-0.567737\pi\)
−0.211200 + 0.977443i \(0.567737\pi\)
\(954\) 0 0
\(955\) 4.72424e11i 0.567961i
\(956\) 8.49537e10 3.59890e11i 0.101707 0.430862i
\(957\) 0 0
\(958\) −3.08665e10 + 2.65114e11i −0.0366459 + 0.314753i
\(959\) 2.17452e12i 2.57092i
\(960\) 0 0
\(961\) −8.32725e11 −0.976356
\(962\) 6.96234e11 + 8.10608e10i 0.812933 + 0.0946478i
\(963\) 0 0
\(964\) 1.63200e12 + 3.85242e11i 1.88979 + 0.446093i
\(965\) 1.16107e11 0.133890
\(966\) 0 0
\(967\) 1.40801e11i 0.161028i −0.996753 0.0805138i \(-0.974344\pi\)
0.996753 0.0805138i \(-0.0256561\pi\)
\(968\) −2.09999e11 7.61129e10i −0.239176 0.0866876i
\(969\) 0 0
\(970\) −9.31404e10 1.08441e10i −0.105209 0.0122492i
\(971\) 1.01522e12i 1.14204i 0.820936 + 0.571021i \(0.193452\pi\)
−0.820936 + 0.571021i \(0.806548\pi\)
\(972\) 0 0
\(973\) −7.64260e11 −0.852687
\(974\) −1.85191e11 + 1.59061e12i −0.205771 + 1.76738i
\(975\) 0 0
\(976\) −3.25010e11 1.62495e11i −0.358177 0.179077i
\(977\) −2.79503e11 −0.306766 −0.153383 0.988167i \(-0.549017\pi\)
−0.153383 + 0.988167i \(0.549017\pi\)
\(978\) 0 0
\(979\) 2.65073e11i 0.288560i
\(980\) −9.27467e11 2.18933e11i −1.00553 0.237360i
\(981\) 0 0
\(982\) −2.27004e10 + 1.94974e11i −0.0244111 + 0.209668i
\(983\) 1.01738e12i 1.08961i −0.838563 0.544805i \(-0.816604\pi\)
0.838563 0.544805i \(-0.183396\pi\)
\(984\) 0 0
\(985\) −6.78145e10 −0.0720406
\(986\) 5.04146e10 + 5.86965e9i 0.0533395 + 0.00621018i
\(987\) 0 0
\(988\) 4.83398e11 2.04782e12i 0.507314 2.14914i
\(989\) 6.55250e11 0.684892
\(990\) 0 0
\(991\) 1.27819e12i 1.32526i 0.748947 + 0.662630i \(0.230560\pi\)
−0.748947 + 0.662630i \(0.769440\pi\)
\(992\) 7.45532e11 1.13909e12i 0.769873 1.17629i
\(993\) 0 0
\(994\) 2.79840e12 + 3.25811e11i 2.86658 + 0.333749i
\(995\) 6.49411e11i 0.662564i
\(996\) 0 0
\(997\) −6.24643e11 −0.632195 −0.316098 0.948727i \(-0.602373\pi\)
−0.316098 + 0.948727i \(0.602373\pi\)
\(998\) 1.07619e11 9.24344e11i 0.108484 0.931776i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.b.91.3 32
3.2 odd 2 inner 180.9.c.b.91.30 yes 32
4.3 odd 2 inner 180.9.c.b.91.4 yes 32
12.11 even 2 inner 180.9.c.b.91.29 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.9.c.b.91.3 32 1.1 even 1 trivial
180.9.c.b.91.4 yes 32 4.3 odd 2 inner
180.9.c.b.91.29 yes 32 12.11 even 2 inner
180.9.c.b.91.30 yes 32 3.2 odd 2 inner