Properties

Label 180.9.c.a.91.2
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.2
Root \(1313.48i\) of defining polynomial
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.a.91.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-14.5274 + 6.70489i) q^{2} +(166.089 - 194.809i) q^{4} -279.508 q^{5} +2626.96i q^{7} +(-1106.66 + 3943.67i) q^{8} +(4060.52 - 1874.07i) q^{10} -2300.68i q^{11} +47058.2 q^{13} +(-17613.5 - 38162.8i) q^{14} +(-10365.0 - 64711.2i) q^{16} +51967.0 q^{17} -59554.7i q^{19} +(-46423.2 + 54450.7i) q^{20} +(15425.8 + 33422.9i) q^{22} -77570.5i q^{23} +78125.0 q^{25} +(-683632. + 315520. i) q^{26} +(511754. + 436308. i) q^{28} -902211. q^{29} +340014. i q^{31} +(584457. + 870587. i) q^{32} +(-754943. + 348433. i) q^{34} -734257. i q^{35} -584324. q^{37} +(399308. + 865173. i) q^{38} +(309321. - 1.10229e6i) q^{40} -293985. q^{41} -2.95292e6i q^{43} +(-448194. - 382118. i) q^{44} +(520102. + 1.12689e6i) q^{46} -5.03746e6i q^{47} -1.13610e6 q^{49} +(-1.13495e6 + 523820. i) q^{50} +(7.81585e6 - 9.16736e6i) q^{52} +7.54985e6 q^{53} +643061. i q^{55} +(-1.03598e7 - 2.90715e6i) q^{56} +(1.31068e7 - 6.04923e6i) q^{58} -8.82594e6i q^{59} +1.08173e7 q^{61} +(-2.27976e6 - 4.93951e6i) q^{62} +(-1.43278e7 - 8.72861e6i) q^{64} -1.31532e7 q^{65} +1.44347e7i q^{67} +(8.63113e6 - 1.01236e7i) q^{68} +(4.92311e6 + 1.06668e7i) q^{70} +3.71149e6i q^{71} -3.62775e7 q^{73} +(8.48869e6 - 3.91783e6i) q^{74} +(-1.16018e7 - 9.89137e6i) q^{76} +6.04380e6 q^{77} +4.88562e7i q^{79} +(2.89710e6 + 1.80873e7i) q^{80} +(4.27083e6 - 1.97114e6i) q^{82} -6.93862e7i q^{83} -1.45252e7 q^{85} +(1.97990e7 + 4.28982e7i) q^{86} +(9.07314e6 + 2.54608e6i) q^{88} +1.05906e8 q^{89} +1.23620e8i q^{91} +(-1.51114e7 - 1.28836e7i) q^{92} +(3.37756e7 + 7.31810e7i) q^{94} +1.66460e7i q^{95} +1.33519e8 q^{97} +(1.65045e7 - 7.61742e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.5274 + 6.70489i −0.907961 + 0.419056i
\(3\) 0 0
\(4\) 166.089 194.809i 0.648785 0.760972i
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 2626.96i 1.09411i 0.837097 + 0.547055i \(0.184251\pi\)
−0.837097 + 0.547055i \(0.815749\pi\)
\(8\) −1106.66 + 3943.67i −0.270181 + 0.962810i
\(9\) 0 0
\(10\) 4060.52 1874.07i 0.406052 0.187407i
\(11\) 2300.68i 0.157140i −0.996909 0.0785699i \(-0.974965\pi\)
0.996909 0.0785699i \(-0.0250354\pi\)
\(12\) 0 0
\(13\) 47058.2 1.64764 0.823820 0.566852i \(-0.191839\pi\)
0.823820 + 0.566852i \(0.191839\pi\)
\(14\) −17613.5 38162.8i −0.458493 0.993408i
\(15\) 0 0
\(16\) −10365.0 64711.2i −0.158157 0.987414i
\(17\) 51967.0 0.622202 0.311101 0.950377i \(-0.399302\pi\)
0.311101 + 0.950377i \(0.399302\pi\)
\(18\) 0 0
\(19\) 59554.7i 0.456985i −0.973546 0.228492i \(-0.926620\pi\)
0.973546 0.228492i \(-0.0733796\pi\)
\(20\) −46423.2 + 54450.7i −0.290145 + 0.340317i
\(21\) 0 0
\(22\) 15425.8 + 33422.9i 0.0658503 + 0.142677i
\(23\) 77570.5i 0.277195i −0.990349 0.138597i \(-0.955741\pi\)
0.990349 0.138597i \(-0.0442594\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −683632. + 315520.i −1.49599 + 0.690453i
\(27\) 0 0
\(28\) 511754. + 436308.i 0.832587 + 0.709841i
\(29\) −902211. −1.27561 −0.637803 0.770200i \(-0.720156\pi\)
−0.637803 + 0.770200i \(0.720156\pi\)
\(30\) 0 0
\(31\) 340014.i 0.368171i 0.982910 + 0.184086i \(0.0589324\pi\)
−0.982910 + 0.184086i \(0.941068\pi\)
\(32\) 584457. + 870587.i 0.557382 + 0.830256i
\(33\) 0 0
\(34\) −754943. + 348433.i −0.564935 + 0.260737i
\(35\) 734257.i 0.489301i
\(36\) 0 0
\(37\) −584324. −0.311779 −0.155890 0.987774i \(-0.549824\pi\)
−0.155890 + 0.987774i \(0.549824\pi\)
\(38\) 399308. + 865173.i 0.191502 + 0.414924i
\(39\) 0 0
\(40\) 309321. 1.10229e6i 0.120829 0.430582i
\(41\) −293985. −0.104037 −0.0520187 0.998646i \(-0.516566\pi\)
−0.0520187 + 0.998646i \(0.516566\pi\)
\(42\) 0 0
\(43\) 2.95292e6i 0.863731i −0.901938 0.431866i \(-0.857856\pi\)
0.901938 0.431866i \(-0.142144\pi\)
\(44\) −448194. 382118.i −0.119579 0.101950i
\(45\) 0 0
\(46\) 520102. + 1.12689e6i 0.116160 + 0.251682i
\(47\) 5.03746e6i 1.03233i −0.856488 0.516167i \(-0.827358\pi\)
0.856488 0.516167i \(-0.172642\pi\)
\(48\) 0 0
\(49\) −1.13610e6 −0.197075
\(50\) −1.13495e6 + 523820.i −0.181592 + 0.0838111i
\(51\) 0 0
\(52\) 7.81585e6 9.16736e6i 1.06896 1.25381i
\(53\) 7.54985e6 0.956830 0.478415 0.878134i \(-0.341211\pi\)
0.478415 + 0.878134i \(0.341211\pi\)
\(54\) 0 0
\(55\) 643061.i 0.0702751i
\(56\) −1.03598e7 2.90715e6i −1.05342 0.295608i
\(57\) 0 0
\(58\) 1.31068e7 6.04923e6i 1.15820 0.534550i
\(59\) 8.82594e6i 0.728372i −0.931326 0.364186i \(-0.881347\pi\)
0.931326 0.364186i \(-0.118653\pi\)
\(60\) 0 0
\(61\) 1.08173e7 0.781269 0.390634 0.920546i \(-0.372256\pi\)
0.390634 + 0.920546i \(0.372256\pi\)
\(62\) −2.27976e6 4.93951e6i −0.154284 0.334285i
\(63\) 0 0
\(64\) −1.43278e7 8.72861e6i −0.854004 0.520266i
\(65\) −1.31532e7 −0.736847
\(66\) 0 0
\(67\) 1.44347e7i 0.716324i 0.933659 + 0.358162i \(0.116596\pi\)
−0.933659 + 0.358162i \(0.883404\pi\)
\(68\) 8.63113e6 1.01236e7i 0.403675 0.473479i
\(69\) 0 0
\(70\) 4.92311e6 + 1.06668e7i 0.205044 + 0.444266i
\(71\) 3.71149e6i 0.146054i 0.997330 + 0.0730272i \(0.0232660\pi\)
−0.997330 + 0.0730272i \(0.976734\pi\)
\(72\) 0 0
\(73\) −3.62775e7 −1.27746 −0.638728 0.769433i \(-0.720539\pi\)
−0.638728 + 0.769433i \(0.720539\pi\)
\(74\) 8.48869e6 3.91783e6i 0.283083 0.130653i
\(75\) 0 0
\(76\) −1.16018e7 9.89137e6i −0.347752 0.296485i
\(77\) 6.04380e6 0.171928
\(78\) 0 0
\(79\) 4.88562e7i 1.25433i 0.778887 + 0.627164i \(0.215785\pi\)
−0.778887 + 0.627164i \(0.784215\pi\)
\(80\) 2.89710e6 + 1.80873e7i 0.0707300 + 0.441585i
\(81\) 0 0
\(82\) 4.27083e6 1.97114e6i 0.0944619 0.0435975i
\(83\) 6.93862e7i 1.46205i −0.682353 0.731023i \(-0.739043\pi\)
0.682353 0.731023i \(-0.260957\pi\)
\(84\) 0 0
\(85\) −1.45252e7 −0.278257
\(86\) 1.97990e7 + 4.28982e7i 0.361951 + 0.784234i
\(87\) 0 0
\(88\) 9.07314e6 + 2.54608e6i 0.151296 + 0.0424562i
\(89\) 1.05906e8 1.68796 0.843979 0.536377i \(-0.180207\pi\)
0.843979 + 0.536377i \(0.180207\pi\)
\(90\) 0 0
\(91\) 1.23620e8i 1.80270i
\(92\) −1.51114e7 1.28836e7i −0.210938 0.179840i
\(93\) 0 0
\(94\) 3.37756e7 + 7.31810e7i 0.432605 + 0.937319i
\(95\) 1.66460e7i 0.204370i
\(96\) 0 0
\(97\) 1.33519e8 1.50819 0.754093 0.656768i \(-0.228077\pi\)
0.754093 + 0.656768i \(0.228077\pi\)
\(98\) 1.65045e7 7.61742e6i 0.178936 0.0825854i
\(99\) 0 0
\(100\) 1.29757e7 1.52194e7i 0.129757 0.152194i
\(101\) 6.08853e7 0.585096 0.292548 0.956251i \(-0.405497\pi\)
0.292548 + 0.956251i \(0.405497\pi\)
\(102\) 0 0
\(103\) 2.63324e7i 0.233960i 0.993134 + 0.116980i \(0.0373214\pi\)
−0.993134 + 0.116980i \(0.962679\pi\)
\(104\) −5.20776e7 + 1.85582e8i −0.445161 + 1.58636i
\(105\) 0 0
\(106\) −1.09679e8 + 5.06209e7i −0.868764 + 0.400965i
\(107\) 1.26375e8i 0.964108i 0.876141 + 0.482054i \(0.160109\pi\)
−0.876141 + 0.482054i \(0.839891\pi\)
\(108\) 0 0
\(109\) 7.75869e7 0.549645 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(110\) −4.31165e6 9.34198e6i −0.0294492 0.0638070i
\(111\) 0 0
\(112\) 1.69993e8 2.72283e7i 1.08034 0.173041i
\(113\) 9.07281e7 0.556453 0.278226 0.960516i \(-0.410253\pi\)
0.278226 + 0.960516i \(0.410253\pi\)
\(114\) 0 0
\(115\) 2.16816e7i 0.123965i
\(116\) −1.49847e8 + 1.75759e8i −0.827593 + 0.970700i
\(117\) 0 0
\(118\) 5.91770e7 + 1.28218e8i 0.305228 + 0.661333i
\(119\) 1.36515e8i 0.680757i
\(120\) 0 0
\(121\) 2.09066e8 0.975307
\(122\) −1.57147e8 + 7.25290e7i −0.709361 + 0.327395i
\(123\) 0 0
\(124\) 6.62377e7 + 5.64725e7i 0.280168 + 0.238864i
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 3.10844e8i 1.19489i 0.801910 + 0.597445i \(0.203817\pi\)
−0.801910 + 0.597445i \(0.796183\pi\)
\(128\) 2.66670e8 + 3.07374e7i 0.993423 + 0.114506i
\(129\) 0 0
\(130\) 1.91081e8 8.81906e7i 0.669028 0.308780i
\(131\) 5.44781e8i 1.84985i 0.380150 + 0.924925i \(0.375872\pi\)
−0.380150 + 0.924925i \(0.624128\pi\)
\(132\) 0 0
\(133\) 1.56448e8 0.499991
\(134\) −9.67833e7 2.09699e8i −0.300180 0.650394i
\(135\) 0 0
\(136\) −5.75099e7 + 2.04940e8i −0.168107 + 0.599062i
\(137\) 1.23319e8 0.350065 0.175033 0.984563i \(-0.443997\pi\)
0.175033 + 0.984563i \(0.443997\pi\)
\(138\) 0 0
\(139\) 6.72621e8i 1.80182i −0.434008 0.900909i \(-0.642901\pi\)
0.434008 0.900909i \(-0.357099\pi\)
\(140\) −1.43040e8 1.21952e8i −0.372344 0.317451i
\(141\) 0 0
\(142\) −2.48851e7 5.39181e7i −0.0612049 0.132612i
\(143\) 1.08266e8i 0.258910i
\(144\) 0 0
\(145\) 2.52176e8 0.570468
\(146\) 5.27017e8 2.43237e8i 1.15988 0.535325i
\(147\) 0 0
\(148\) −9.70497e7 + 1.13832e8i −0.202277 + 0.237255i
\(149\) −2.47048e8 −0.501229 −0.250615 0.968087i \(-0.580633\pi\)
−0.250615 + 0.968087i \(0.580633\pi\)
\(150\) 0 0
\(151\) 4.00056e8i 0.769508i 0.923019 + 0.384754i \(0.125714\pi\)
−0.923019 + 0.384754i \(0.874286\pi\)
\(152\) 2.34864e8 + 6.59069e7i 0.439989 + 0.123469i
\(153\) 0 0
\(154\) −8.78005e7 + 4.05230e7i −0.156104 + 0.0720475i
\(155\) 9.50368e7i 0.164651i
\(156\) 0 0
\(157\) −7.00538e8 −1.15301 −0.576505 0.817094i \(-0.695584\pi\)
−0.576505 + 0.817094i \(0.695584\pi\)
\(158\) −3.27575e8 7.09752e8i −0.525634 1.13888i
\(159\) 0 0
\(160\) −1.63361e8 2.43336e8i −0.249269 0.371302i
\(161\) 2.03774e8 0.303281
\(162\) 0 0
\(163\) 2.24412e8i 0.317903i 0.987286 + 0.158952i \(0.0508114\pi\)
−0.987286 + 0.158952i \(0.949189\pi\)
\(164\) −4.88277e7 + 5.72709e7i −0.0674979 + 0.0791696i
\(165\) 0 0
\(166\) 4.65227e8 + 1.00800e9i 0.612678 + 1.32748i
\(167\) 1.11919e9i 1.43893i 0.694530 + 0.719464i \(0.255613\pi\)
−0.694530 + 0.719464i \(0.744387\pi\)
\(168\) 0 0
\(169\) 1.39875e9 1.71472
\(170\) 2.11013e8 9.73899e7i 0.252647 0.116605i
\(171\) 0 0
\(172\) −5.75256e8 4.90448e8i −0.657275 0.560375i
\(173\) 1.58033e9 1.76426 0.882130 0.471005i \(-0.156109\pi\)
0.882130 + 0.471005i \(0.156109\pi\)
\(174\) 0 0
\(175\) 2.05231e8i 0.218822i
\(176\) −1.48880e8 + 2.38465e7i −0.155162 + 0.0248528i
\(177\) 0 0
\(178\) −1.53854e9 + 7.10090e8i −1.53260 + 0.707348i
\(179\) 4.43340e8i 0.431841i 0.976411 + 0.215921i \(0.0692753\pi\)
−0.976411 + 0.215921i \(0.930725\pi\)
\(180\) 0 0
\(181\) −1.87230e8 −0.174446 −0.0872232 0.996189i \(-0.527799\pi\)
−0.0872232 + 0.996189i \(0.527799\pi\)
\(182\) −8.28858e8 1.79587e9i −0.755431 1.63678i
\(183\) 0 0
\(184\) 3.05912e8 + 8.58443e7i 0.266886 + 0.0748928i
\(185\) 1.63324e8 0.139432
\(186\) 0 0
\(187\) 1.19560e8i 0.0977728i
\(188\) −9.81342e8 8.36666e8i −0.785577 0.669762i
\(189\) 0 0
\(190\) −1.11610e8 2.41823e8i −0.0856423 0.185560i
\(191\) 5.22344e8i 0.392485i −0.980555 0.196242i \(-0.937126\pi\)
0.980555 0.196242i \(-0.0628740\pi\)
\(192\) 0 0
\(193\) 5.01793e7 0.0361655 0.0180828 0.999836i \(-0.494244\pi\)
0.0180828 + 0.999836i \(0.494244\pi\)
\(194\) −1.93967e9 + 8.95227e8i −1.36937 + 0.632014i
\(195\) 0 0
\(196\) −1.88693e8 + 2.21322e8i −0.127859 + 0.149969i
\(197\) 2.63629e8 0.175036 0.0875181 0.996163i \(-0.472106\pi\)
0.0875181 + 0.996163i \(0.472106\pi\)
\(198\) 0 0
\(199\) 1.26573e9i 0.807105i −0.914956 0.403553i \(-0.867775\pi\)
0.914956 0.403553i \(-0.132225\pi\)
\(200\) −8.64580e7 + 3.08099e8i −0.0540362 + 0.192562i
\(201\) 0 0
\(202\) −8.84503e8 + 4.08229e8i −0.531244 + 0.245188i
\(203\) 2.37007e9i 1.39565i
\(204\) 0 0
\(205\) 8.21713e7 0.0465270
\(206\) −1.76556e8 3.82541e8i −0.0980423 0.212427i
\(207\) 0 0
\(208\) −4.87757e8 3.04519e9i −0.260586 1.62690i
\(209\) −1.37017e8 −0.0718105
\(210\) 0 0
\(211\) 9.34053e8i 0.471240i −0.971845 0.235620i \(-0.924288\pi\)
0.971845 0.235620i \(-0.0757120\pi\)
\(212\) 1.25395e9 1.47078e9i 0.620777 0.728121i
\(213\) 0 0
\(214\) −8.47330e8 1.83590e9i −0.404015 0.875372i
\(215\) 8.25367e8i 0.386272i
\(216\) 0 0
\(217\) −8.93202e8 −0.402820
\(218\) −1.12713e9 + 5.20212e8i −0.499056 + 0.230332i
\(219\) 0 0
\(220\) 1.25274e8 + 1.06805e8i 0.0534774 + 0.0455934i
\(221\) 2.44547e9 1.02517
\(222\) 0 0
\(223\) 5.22225e8i 0.211173i 0.994410 + 0.105586i \(0.0336720\pi\)
−0.994410 + 0.105586i \(0.966328\pi\)
\(224\) −2.28699e9 + 1.53534e9i −0.908391 + 0.609837i
\(225\) 0 0
\(226\) −1.31804e9 + 6.08322e8i −0.505237 + 0.233185i
\(227\) 3.46698e9i 1.30571i −0.757482 0.652856i \(-0.773570\pi\)
0.757482 0.652856i \(-0.226430\pi\)
\(228\) 0 0
\(229\) 1.31243e9 0.477239 0.238619 0.971113i \(-0.423305\pi\)
0.238619 + 0.971113i \(0.423305\pi\)
\(230\) −1.45373e8 3.14977e8i −0.0519484 0.112556i
\(231\) 0 0
\(232\) 9.98443e8 3.55802e9i 0.344644 1.22816i
\(233\) 2.43802e9 0.827207 0.413604 0.910457i \(-0.364270\pi\)
0.413604 + 0.910457i \(0.364270\pi\)
\(234\) 0 0
\(235\) 1.40801e9i 0.461674i
\(236\) −1.71937e9 1.46589e9i −0.554271 0.472556i
\(237\) 0 0
\(238\) −9.15318e8 1.98320e9i −0.285275 0.618101i
\(239\) 2.78783e9i 0.854427i 0.904151 + 0.427214i \(0.140505\pi\)
−0.904151 + 0.427214i \(0.859495\pi\)
\(240\) 0 0
\(241\) 1.16299e9 0.344753 0.172376 0.985031i \(-0.444856\pi\)
0.172376 + 0.985031i \(0.444856\pi\)
\(242\) −3.03717e9 + 1.40176e9i −0.885540 + 0.408708i
\(243\) 0 0
\(244\) 1.79664e9 2.10731e9i 0.506875 0.594524i
\(245\) 3.17549e8 0.0881347
\(246\) 0 0
\(247\) 2.80254e9i 0.752946i
\(248\) −1.34090e9 3.76281e8i −0.354479 0.0994729i
\(249\) 0 0
\(250\) 3.17228e8 1.46412e8i 0.0812105 0.0374815i
\(251\) 6.20014e9i 1.56209i 0.624474 + 0.781046i \(0.285313\pi\)
−0.624474 + 0.781046i \(0.714687\pi\)
\(252\) 0 0
\(253\) −1.78465e8 −0.0435584
\(254\) −2.08418e9 4.51575e9i −0.500725 1.08491i
\(255\) 0 0
\(256\) −4.08010e9 + 1.34146e9i −0.949973 + 0.312333i
\(257\) 1.12108e9 0.256983 0.128491 0.991711i \(-0.458987\pi\)
0.128491 + 0.991711i \(0.458987\pi\)
\(258\) 0 0
\(259\) 1.53499e9i 0.341120i
\(260\) −2.18460e9 + 2.56235e9i −0.478055 + 0.560720i
\(261\) 0 0
\(262\) −3.65269e9 7.91423e9i −0.775190 1.67959i
\(263\) 1.51480e9i 0.316616i 0.987390 + 0.158308i \(0.0506038\pi\)
−0.987390 + 0.158308i \(0.949396\pi\)
\(264\) 0 0
\(265\) −2.11025e9 −0.427907
\(266\) −2.27277e9 + 1.04896e9i −0.453972 + 0.209524i
\(267\) 0 0
\(268\) 2.81201e9 + 2.39745e9i 0.545102 + 0.464740i
\(269\) 2.73389e9 0.522121 0.261060 0.965322i \(-0.415928\pi\)
0.261060 + 0.965322i \(0.415928\pi\)
\(270\) 0 0
\(271\) 9.38092e9i 1.73927i 0.493691 + 0.869637i \(0.335647\pi\)
−0.493691 + 0.869637i \(0.664353\pi\)
\(272\) −5.38636e8 3.36284e9i −0.0984056 0.614371i
\(273\) 0 0
\(274\) −1.79151e9 + 8.26843e8i −0.317845 + 0.146697i
\(275\) 1.79741e8i 0.0314280i
\(276\) 0 0
\(277\) 1.88891e9 0.320842 0.160421 0.987049i \(-0.448715\pi\)
0.160421 + 0.987049i \(0.448715\pi\)
\(278\) 4.50985e9 + 9.77141e9i 0.755062 + 1.63598i
\(279\) 0 0
\(280\) 2.89566e9 + 8.12574e8i 0.471103 + 0.132200i
\(281\) 1.65526e9 0.265485 0.132743 0.991151i \(-0.457622\pi\)
0.132743 + 0.991151i \(0.457622\pi\)
\(282\) 0 0
\(283\) 8.61833e9i 1.34362i 0.740722 + 0.671811i \(0.234483\pi\)
−0.740722 + 0.671811i \(0.765517\pi\)
\(284\) 7.23031e8 + 6.16437e8i 0.111143 + 0.0947578i
\(285\) 0 0
\(286\) 7.25913e8 + 1.57282e9i 0.108498 + 0.235080i
\(287\) 7.72286e8i 0.113828i
\(288\) 0 0
\(289\) −4.27519e9 −0.612864
\(290\) −3.66345e9 + 1.69081e9i −0.517962 + 0.239058i
\(291\) 0 0
\(292\) −6.02529e9 + 7.06718e9i −0.828794 + 0.972108i
\(293\) 5.51315e9 0.748048 0.374024 0.927419i \(-0.377978\pi\)
0.374024 + 0.927419i \(0.377978\pi\)
\(294\) 0 0
\(295\) 2.46693e9i 0.325738i
\(296\) 6.46649e8 2.30438e9i 0.0842368 0.300184i
\(297\) 0 0
\(298\) 3.58896e9 1.65643e9i 0.455096 0.210043i
\(299\) 3.65033e9i 0.456717i
\(300\) 0 0
\(301\) 7.75720e9 0.945016
\(302\) −2.68233e9 5.81177e9i −0.322467 0.698683i
\(303\) 0 0
\(304\) −3.85385e9 + 6.17283e8i −0.451233 + 0.0722753i
\(305\) −3.02353e9 −0.349394
\(306\) 0 0
\(307\) 1.53502e10i 1.72806i −0.503437 0.864032i \(-0.667931\pi\)
0.503437 0.864032i \(-0.332069\pi\)
\(308\) 1.00381e9 1.17739e9i 0.111544 0.130833i
\(309\) 0 0
\(310\) 6.37211e8 + 1.38063e9i 0.0689980 + 0.149497i
\(311\) 5.55831e9i 0.594157i 0.954853 + 0.297079i \(0.0960123\pi\)
−0.954853 + 0.297079i \(0.903988\pi\)
\(312\) 0 0
\(313\) −1.76829e10 −1.84237 −0.921183 0.389131i \(-0.872775\pi\)
−0.921183 + 0.389131i \(0.872775\pi\)
\(314\) 1.01770e10 4.69703e9i 1.04689 0.483176i
\(315\) 0 0
\(316\) 9.51762e9 + 8.11447e9i 0.954509 + 0.813789i
\(317\) 2.84291e9 0.281531 0.140766 0.990043i \(-0.455044\pi\)
0.140766 + 0.990043i \(0.455044\pi\)
\(318\) 0 0
\(319\) 2.07570e9i 0.200448i
\(320\) 4.00475e9 + 2.43972e9i 0.381922 + 0.232670i
\(321\) 0 0
\(322\) −2.96030e9 + 1.36628e9i −0.275368 + 0.127092i
\(323\) 3.09488e9i 0.284337i
\(324\) 0 0
\(325\) 3.67642e9 0.329528
\(326\) −1.50466e9 3.26011e9i −0.133219 0.288643i
\(327\) 0 0
\(328\) 3.25342e8 1.15938e9i 0.0281090 0.100168i
\(329\) 1.32332e10 1.12949
\(330\) 0 0
\(331\) 1.16323e10i 0.969068i −0.874773 0.484534i \(-0.838989\pi\)
0.874773 0.484534i \(-0.161011\pi\)
\(332\) −1.35171e10 1.15243e10i −1.11258 0.948553i
\(333\) 0 0
\(334\) −7.50407e9 1.62589e10i −0.602991 1.30649i
\(335\) 4.03463e9i 0.320350i
\(336\) 0 0
\(337\) 2.09960e10 1.62786 0.813930 0.580963i \(-0.197324\pi\)
0.813930 + 0.580963i \(0.197324\pi\)
\(338\) −2.03201e10 + 9.37844e9i −1.55689 + 0.718561i
\(339\) 0 0
\(340\) −2.41248e9 + 2.82964e9i −0.180529 + 0.211746i
\(341\) 7.82265e8 0.0578544
\(342\) 0 0
\(343\) 1.21594e10i 0.878488i
\(344\) 1.16454e10 + 3.26789e9i 0.831608 + 0.233364i
\(345\) 0 0
\(346\) −2.29580e10 + 1.05959e10i −1.60188 + 0.739324i
\(347\) 7.43114e9i 0.512552i −0.966604 0.256276i \(-0.917504\pi\)
0.966604 0.256276i \(-0.0824955\pi\)
\(348\) 0 0
\(349\) 5.43305e9 0.366220 0.183110 0.983092i \(-0.441384\pi\)
0.183110 + 0.983092i \(0.441384\pi\)
\(350\) −1.37605e9 2.98147e9i −0.0916985 0.198682i
\(351\) 0 0
\(352\) 2.00295e9 1.34465e9i 0.130466 0.0875869i
\(353\) −7.17687e9 −0.462207 −0.231103 0.972929i \(-0.574234\pi\)
−0.231103 + 0.972929i \(0.574234\pi\)
\(354\) 0 0
\(355\) 1.03739e9i 0.0653175i
\(356\) 1.75898e10 2.06315e10i 1.09512 1.28449i
\(357\) 0 0
\(358\) −2.97254e9 6.44056e9i −0.180966 0.392095i
\(359\) 1.10278e10i 0.663913i 0.943295 + 0.331957i \(0.107709\pi\)
−0.943295 + 0.331957i \(0.892291\pi\)
\(360\) 0 0
\(361\) 1.34368e10 0.791165
\(362\) 2.71996e9 1.25536e9i 0.158390 0.0731027i
\(363\) 0 0
\(364\) 2.40823e10 + 2.05319e10i 1.37180 + 1.16956i
\(365\) 1.01399e10 0.571296
\(366\) 0 0
\(367\) 3.39042e10i 1.86891i −0.356076 0.934457i \(-0.615886\pi\)
0.356076 0.934457i \(-0.384114\pi\)
\(368\) −5.01968e9 + 8.04016e8i −0.273706 + 0.0438403i
\(369\) 0 0
\(370\) −2.37266e9 + 1.09507e9i −0.126599 + 0.0584297i
\(371\) 1.98331e10i 1.04688i
\(372\) 0 0
\(373\) 3.19254e10 1.64930 0.824651 0.565641i \(-0.191371\pi\)
0.824651 + 0.565641i \(0.191371\pi\)
\(374\) 8.01634e8 + 1.73689e9i 0.0409722 + 0.0887738i
\(375\) 0 0
\(376\) 1.98661e10 + 5.57477e9i 0.993941 + 0.278917i
\(377\) −4.24565e10 −2.10174
\(378\) 0 0
\(379\) 2.66340e10i 1.29086i 0.763819 + 0.645430i \(0.223322\pi\)
−0.763819 + 0.645430i \(0.776678\pi\)
\(380\) 3.24280e9 + 2.76472e9i 0.155520 + 0.132592i
\(381\) 0 0
\(382\) 3.50226e9 + 7.58828e9i 0.164473 + 0.356361i
\(383\) 1.61064e10i 0.748518i 0.927324 + 0.374259i \(0.122103\pi\)
−0.927324 + 0.374259i \(0.877897\pi\)
\(384\) 0 0
\(385\) −1.68929e9 −0.0768886
\(386\) −7.28973e8 + 3.36446e8i −0.0328369 + 0.0151554i
\(387\) 0 0
\(388\) 2.21759e10 2.60106e10i 0.978487 1.14769i
\(389\) −1.81674e10 −0.793405 −0.396702 0.917947i \(-0.629846\pi\)
−0.396702 + 0.917947i \(0.629846\pi\)
\(390\) 0 0
\(391\) 4.03110e9i 0.172471i
\(392\) 1.25728e9 4.48040e9i 0.0532460 0.189746i
\(393\) 0 0
\(394\) −3.82983e9 + 1.76760e9i −0.158926 + 0.0733499i
\(395\) 1.36557e10i 0.560953i
\(396\) 0 0
\(397\) −4.03325e10 −1.62365 −0.811827 0.583898i \(-0.801527\pi\)
−0.811827 + 0.583898i \(0.801527\pi\)
\(398\) 8.48661e9 + 1.83878e10i 0.338222 + 0.732820i
\(399\) 0 0
\(400\) −8.09764e8 5.05556e9i −0.0316314 0.197483i
\(401\) −1.86384e10 −0.720826 −0.360413 0.932793i \(-0.617364\pi\)
−0.360413 + 0.932793i \(0.617364\pi\)
\(402\) 0 0
\(403\) 1.60005e10i 0.606614i
\(404\) 1.01124e10 1.18610e10i 0.379601 0.445242i
\(405\) 0 0
\(406\) 1.58911e10 + 3.44309e10i 0.584856 + 1.26720i
\(407\) 1.34435e9i 0.0489929i
\(408\) 0 0
\(409\) −1.95383e10 −0.698222 −0.349111 0.937081i \(-0.613516\pi\)
−0.349111 + 0.937081i \(0.613516\pi\)
\(410\) −1.19373e9 + 5.50950e8i −0.0422447 + 0.0194974i
\(411\) 0 0
\(412\) 5.12979e9 + 4.37352e9i 0.178037 + 0.151790i
\(413\) 2.31854e10 0.796918
\(414\) 0 0
\(415\) 1.93940e10i 0.653847i
\(416\) 2.75035e10 + 4.09683e10i 0.918364 + 1.36796i
\(417\) 0 0
\(418\) 1.99049e9 9.18681e8i 0.0652011 0.0300926i
\(419\) 1.60399e10i 0.520410i 0.965553 + 0.260205i \(0.0837901\pi\)
−0.965553 + 0.260205i \(0.916210\pi\)
\(420\) 0 0
\(421\) 8.80074e9 0.280150 0.140075 0.990141i \(-0.455266\pi\)
0.140075 + 0.990141i \(0.455266\pi\)
\(422\) 6.26273e9 + 1.35693e10i 0.197476 + 0.427867i
\(423\) 0 0
\(424\) −8.35513e9 + 2.97741e10i −0.258517 + 0.921245i
\(425\) 4.05992e9 0.124440
\(426\) 0 0
\(427\) 2.84166e10i 0.854794i
\(428\) 2.46190e10 + 2.09895e10i 0.733659 + 0.625499i
\(429\) 0 0
\(430\) −5.53400e9 1.19904e10i −0.161870 0.350720i
\(431\) 2.17255e10i 0.629593i 0.949159 + 0.314797i \(0.101936\pi\)
−0.949159 + 0.314797i \(0.898064\pi\)
\(432\) 0 0
\(433\) 2.50658e10 0.713066 0.356533 0.934283i \(-0.383959\pi\)
0.356533 + 0.934283i \(0.383959\pi\)
\(434\) 1.29759e10 5.98882e9i 0.365744 0.168804i
\(435\) 0 0
\(436\) 1.28863e10 1.51146e10i 0.356601 0.418264i
\(437\) −4.61969e9 −0.126674
\(438\) 0 0
\(439\) 2.69059e10i 0.724419i −0.932097 0.362210i \(-0.882022\pi\)
0.932097 0.362210i \(-0.117978\pi\)
\(440\) −2.53602e9 7.11651e8i −0.0676615 0.0189870i
\(441\) 0 0
\(442\) −3.55263e10 + 1.63966e10i −0.930809 + 0.429601i
\(443\) 5.16514e10i 1.34112i −0.741856 0.670560i \(-0.766054\pi\)
0.741856 0.670560i \(-0.233946\pi\)
\(444\) 0 0
\(445\) −2.96017e10 −0.754878
\(446\) −3.50146e9 7.58655e9i −0.0884932 0.191737i
\(447\) 0 0
\(448\) 2.29297e10 3.76385e10i 0.569228 0.934374i
\(449\) 4.61561e10 1.13565 0.567825 0.823150i \(-0.307785\pi\)
0.567825 + 0.823150i \(0.307785\pi\)
\(450\) 0 0
\(451\) 6.76367e8i 0.0163484i
\(452\) 1.50689e10 1.76746e10i 0.361018 0.423445i
\(453\) 0 0
\(454\) 2.32457e10 + 5.03661e10i 0.547166 + 1.18554i
\(455\) 3.45528e10i 0.806191i
\(456\) 0 0
\(457\) −3.11288e10 −0.713669 −0.356835 0.934168i \(-0.616144\pi\)
−0.356835 + 0.934168i \(0.616144\pi\)
\(458\) −1.90662e10 + 8.79973e9i −0.433314 + 0.199990i
\(459\) 0 0
\(460\) 4.22377e9 + 3.60107e9i 0.0943341 + 0.0804268i
\(461\) −4.68016e10 −1.03623 −0.518116 0.855310i \(-0.673366\pi\)
−0.518116 + 0.855310i \(0.673366\pi\)
\(462\) 0 0
\(463\) 2.03332e10i 0.442468i 0.975221 + 0.221234i \(0.0710085\pi\)
−0.975221 + 0.221234i \(0.928992\pi\)
\(464\) 9.35140e9 + 5.83831e10i 0.201746 + 1.25955i
\(465\) 0 0
\(466\) −3.54181e10 + 1.63467e10i −0.751072 + 0.346646i
\(467\) 5.89675e10i 1.23978i −0.784688 0.619891i \(-0.787177\pi\)
0.784688 0.619891i \(-0.212823\pi\)
\(468\) 0 0
\(469\) −3.79194e10 −0.783737
\(470\) −9.44057e9 2.04547e10i −0.193467 0.419182i
\(471\) 0 0
\(472\) 3.48066e10 + 9.76734e9i 0.701283 + 0.196792i
\(473\) −6.79375e9 −0.135727
\(474\) 0 0
\(475\) 4.65271e9i 0.0913969i
\(476\) 2.65943e10 + 2.26736e10i 0.518037 + 0.441665i
\(477\) 0 0
\(478\) −1.86921e10 4.04999e10i −0.358053 0.775786i
\(479\) 1.20229e10i 0.228384i −0.993459 0.114192i \(-0.963572\pi\)
0.993459 0.114192i \(-0.0364279\pi\)
\(480\) 0 0
\(481\) −2.74973e10 −0.513699
\(482\) −1.68952e10 + 7.79772e9i −0.313022 + 0.144471i
\(483\) 0 0
\(484\) 3.47235e10 4.07279e10i 0.632764 0.742181i
\(485\) −3.73196e10 −0.674481
\(486\) 0 0
\(487\) 4.85939e10i 0.863905i −0.901896 0.431953i \(-0.857825\pi\)
0.901896 0.431953i \(-0.142175\pi\)
\(488\) −1.19711e10 + 4.26599e10i −0.211084 + 0.752213i
\(489\) 0 0
\(490\) −4.61315e9 + 2.12913e9i −0.0800228 + 0.0369333i
\(491\) 1.71586e9i 0.0295226i 0.999891 + 0.0147613i \(0.00469884\pi\)
−0.999891 + 0.0147613i \(0.995301\pi\)
\(492\) 0 0
\(493\) −4.68852e10 −0.793685
\(494\) 1.87907e10 + 4.07135e10i 0.315526 + 0.683645i
\(495\) 0 0
\(496\) 2.20027e10 3.52424e9i 0.363537 0.0582289i
\(497\) −9.74991e9 −0.159799
\(498\) 0 0
\(499\) 6.25565e10i 1.00895i 0.863426 + 0.504476i \(0.168314\pi\)
−0.863426 + 0.504476i \(0.831686\pi\)
\(500\) −3.62682e9 + 4.25396e9i −0.0580291 + 0.0680634i
\(501\) 0 0
\(502\) −4.15712e10 9.00717e10i −0.654603 1.41832i
\(503\) 8.60985e10i 1.34500i −0.740095 0.672502i \(-0.765220\pi\)
0.740095 0.672502i \(-0.234780\pi\)
\(504\) 0 0
\(505\) −1.70180e10 −0.261663
\(506\) 2.59263e9 1.19659e9i 0.0395493 0.0182534i
\(507\) 0 0
\(508\) 6.05552e10 + 5.16277e10i 0.909278 + 0.775226i
\(509\) −5.17187e10 −0.770506 −0.385253 0.922811i \(-0.625886\pi\)
−0.385253 + 0.922811i \(0.625886\pi\)
\(510\) 0 0
\(511\) 9.52994e10i 1.39768i
\(512\) 5.02788e10 4.68445e10i 0.731653 0.681677i
\(513\) 0 0
\(514\) −1.62863e10 + 7.51672e9i −0.233330 + 0.107690i
\(515\) 7.36013e9i 0.104630i
\(516\) 0 0
\(517\) −1.15896e10 −0.162221
\(518\) 1.02920e10 + 2.22994e10i 0.142948 + 0.309724i
\(519\) 0 0
\(520\) 1.45561e10 5.18717e10i 0.199082 0.709443i
\(521\) −6.36828e10 −0.864313 −0.432157 0.901799i \(-0.642247\pi\)
−0.432157 + 0.901799i \(0.642247\pi\)
\(522\) 0 0
\(523\) 3.05582e10i 0.408434i −0.978926 0.204217i \(-0.934535\pi\)
0.978926 0.204217i \(-0.0654648\pi\)
\(524\) 1.06128e11 + 9.04820e10i 1.40768 + 1.20015i
\(525\) 0 0
\(526\) −1.01566e10 2.20061e10i −0.132680 0.287474i
\(527\) 1.76695e10i 0.229077i
\(528\) 0 0
\(529\) 7.22938e10 0.923163
\(530\) 3.06563e10 1.41490e10i 0.388523 0.179317i
\(531\) 0 0
\(532\) 2.59842e10 3.04774e10i 0.324387 0.380479i
\(533\) −1.38344e10 −0.171416
\(534\) 0 0
\(535\) 3.53229e10i 0.431162i
\(536\) −5.69258e10 1.59744e10i −0.689683 0.193537i
\(537\) 0 0
\(538\) −3.97162e10 + 1.83304e10i −0.474065 + 0.218798i
\(539\) 2.61380e9i 0.0309683i
\(540\) 0 0
\(541\) 2.53545e10 0.295982 0.147991 0.988989i \(-0.452719\pi\)
0.147991 + 0.988989i \(0.452719\pi\)
\(542\) −6.28980e10 1.36280e11i −0.728853 1.57919i
\(543\) 0 0
\(544\) 3.03725e10 + 4.52418e10i 0.346804 + 0.516587i
\(545\) −2.16862e10 −0.245809
\(546\) 0 0
\(547\) 5.79915e10i 0.647762i 0.946098 + 0.323881i \(0.104988\pi\)
−0.946098 + 0.323881i \(0.895012\pi\)
\(548\) 2.04820e10 2.40237e10i 0.227117 0.266390i
\(549\) 0 0
\(550\) 1.20514e9 + 2.61116e9i 0.0131701 + 0.0285354i
\(551\) 5.37309e10i 0.582932i
\(552\) 0 0
\(553\) −1.28343e11 −1.37237
\(554\) −2.74408e10 + 1.26649e10i −0.291312 + 0.134451i
\(555\) 0 0
\(556\) −1.31032e11 1.11715e11i −1.37113 1.16899i
\(557\) −1.71554e11 −1.78230 −0.891149 0.453710i \(-0.850100\pi\)
−0.891149 + 0.453710i \(0.850100\pi\)
\(558\) 0 0
\(559\) 1.38959e11i 1.42312i
\(560\) −4.75146e10 + 7.61055e9i −0.483142 + 0.0773863i
\(561\) 0 0
\(562\) −2.40465e10 + 1.10983e10i −0.241050 + 0.111253i
\(563\) 5.49966e8i 0.00547397i −0.999996 0.00273698i \(-0.999129\pi\)
0.999996 0.00273698i \(-0.000871210\pi\)
\(564\) 0 0
\(565\) −2.53593e10 −0.248853
\(566\) −5.77850e10 1.25202e11i −0.563053 1.21996i
\(567\) 0 0
\(568\) −1.46369e10 4.10736e9i −0.140623 0.0394611i
\(569\) 1.48683e10 0.141845 0.0709223 0.997482i \(-0.477406\pi\)
0.0709223 + 0.997482i \(0.477406\pi\)
\(570\) 0 0
\(571\) 3.55169e10i 0.334111i 0.985947 + 0.167056i \(0.0534259\pi\)
−0.985947 + 0.167056i \(0.946574\pi\)
\(572\) −2.10912e10 1.79818e10i −0.197023 0.167977i
\(573\) 0 0
\(574\) 5.17809e9 + 1.12193e10i 0.0477004 + 0.103352i
\(575\) 6.06019e9i 0.0554390i
\(576\) 0 0
\(577\) 4.14670e10 0.374110 0.187055 0.982349i \(-0.440106\pi\)
0.187055 + 0.982349i \(0.440106\pi\)
\(578\) 6.21073e10 2.86647e10i 0.556457 0.256824i
\(579\) 0 0
\(580\) 4.18836e10 4.91261e10i 0.370111 0.434110i
\(581\) 1.82275e11 1.59964
\(582\) 0 0
\(583\) 1.73698e10i 0.150356i
\(584\) 4.01469e10 1.43066e11i 0.345145 1.22995i
\(585\) 0 0
\(586\) −8.00916e10 + 3.69651e10i −0.679198 + 0.313474i
\(587\) 2.88322e10i 0.242843i −0.992601 0.121421i \(-0.961255\pi\)
0.992601 0.121421i \(-0.0387453\pi\)
\(588\) 0 0
\(589\) 2.02494e10 0.168249
\(590\) −1.65405e10 3.58379e10i −0.136502 0.295757i
\(591\) 0 0
\(592\) 6.05651e9 + 3.78123e10i 0.0493100 + 0.307855i
\(593\) 4.33851e10 0.350850 0.175425 0.984493i \(-0.443870\pi\)
0.175425 + 0.984493i \(0.443870\pi\)
\(594\) 0 0
\(595\) 3.81571e10i 0.304444i
\(596\) −4.10319e10 + 4.81272e10i −0.325190 + 0.381422i
\(597\) 0 0
\(598\) 2.44751e10 + 5.30297e10i 0.191390 + 0.414681i
\(599\) 1.41612e11i 1.10000i 0.835164 + 0.550000i \(0.185372\pi\)
−0.835164 + 0.550000i \(0.814628\pi\)
\(600\) 0 0
\(601\) −1.16789e11 −0.895170 −0.447585 0.894241i \(-0.647716\pi\)
−0.447585 + 0.894241i \(0.647716\pi\)
\(602\) −1.12692e11 + 5.20112e10i −0.858037 + 0.396014i
\(603\) 0 0
\(604\) 7.79345e10 + 6.64449e10i 0.585574 + 0.499245i
\(605\) −5.84356e10 −0.436171
\(606\) 0 0
\(607\) 4.19809e10i 0.309241i 0.987974 + 0.154620i \(0.0494155\pi\)
−0.987974 + 0.154620i \(0.950585\pi\)
\(608\) 5.18475e10 3.48072e10i 0.379414 0.254715i
\(609\) 0 0
\(610\) 4.39240e10 2.02725e10i 0.317236 0.146416i
\(611\) 2.37054e11i 1.70091i
\(612\) 0 0
\(613\) 1.73299e11 1.22731 0.613655 0.789575i \(-0.289699\pi\)
0.613655 + 0.789575i \(0.289699\pi\)
\(614\) 1.02921e11 + 2.22998e11i 0.724155 + 1.56901i
\(615\) 0 0
\(616\) −6.68844e9 + 2.38347e10i −0.0464518 + 0.165534i
\(617\) −2.09205e11 −1.44355 −0.721773 0.692130i \(-0.756672\pi\)
−0.721773 + 0.692130i \(0.756672\pi\)
\(618\) 0 0
\(619\) 1.25079e11i 0.851965i −0.904731 0.425983i \(-0.859928\pi\)
0.904731 0.425983i \(-0.140072\pi\)
\(620\) −1.85140e10 1.57846e10i −0.125295 0.106823i
\(621\) 0 0
\(622\) −3.72679e10 8.07476e10i −0.248985 0.539471i
\(623\) 2.78211e11i 1.84681i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) 2.56886e11 1.18562e11i 1.67279 0.772054i
\(627\) 0 0
\(628\) −1.16352e11 + 1.36471e11i −0.748055 + 0.877409i
\(629\) −3.03656e10 −0.193990
\(630\) 0 0
\(631\) 2.63720e11i 1.66351i −0.555143 0.831755i \(-0.687337\pi\)
0.555143 0.831755i \(-0.312663\pi\)
\(632\) −1.92673e11 5.40673e10i −1.20768 0.338896i
\(633\) 0 0
\(634\) −4.13001e10 + 1.90614e10i −0.255619 + 0.117977i
\(635\) 8.68836e10i 0.534371i
\(636\) 0 0
\(637\) −5.34628e10 −0.324709
\(638\) −1.39174e10 3.01545e10i −0.0839990 0.181999i
\(639\) 0 0
\(640\) −7.45365e10 8.59135e9i −0.444272 0.0512085i
\(641\) −1.68400e10 −0.0997495 −0.0498748 0.998755i \(-0.515882\pi\)
−0.0498748 + 0.998755i \(0.515882\pi\)
\(642\) 0 0
\(643\) 2.84422e11i 1.66387i 0.554871 + 0.831936i \(0.312767\pi\)
−0.554871 + 0.831936i \(0.687233\pi\)
\(644\) 3.38446e10 3.96970e10i 0.196764 0.230789i
\(645\) 0 0
\(646\) 2.07508e10 + 4.49604e10i 0.119153 + 0.258167i
\(647\) 2.11657e11i 1.20785i −0.797040 0.603927i \(-0.793602\pi\)
0.797040 0.603927i \(-0.206398\pi\)
\(648\) 0 0
\(649\) −2.03057e10 −0.114456
\(650\) −5.34088e10 + 2.46500e10i −0.299198 + 0.138091i
\(651\) 0 0
\(652\) 4.37174e10 + 3.72723e10i 0.241915 + 0.206251i
\(653\) 2.94426e11 1.61929 0.809644 0.586922i \(-0.199660\pi\)
0.809644 + 0.586922i \(0.199660\pi\)
\(654\) 0 0
\(655\) 1.52271e11i 0.827278i
\(656\) 3.04715e9 + 1.90241e10i 0.0164543 + 0.102728i
\(657\) 0 0
\(658\) −1.92243e11 + 8.87271e10i −1.02553 + 0.473318i
\(659\) 1.18352e11i 0.627529i 0.949501 + 0.313765i \(0.101590\pi\)
−0.949501 + 0.313765i \(0.898410\pi\)
\(660\) 0 0
\(661\) 2.01300e11 1.05448 0.527239 0.849717i \(-0.323227\pi\)
0.527239 + 0.849717i \(0.323227\pi\)
\(662\) 7.79934e10 + 1.68987e11i 0.406093 + 0.879875i
\(663\) 0 0
\(664\) 2.73636e11 + 7.67871e10i 1.40767 + 0.395017i
\(665\) −4.37284e10 −0.223603
\(666\) 0 0
\(667\) 6.99850e10i 0.353591i
\(668\) 2.18029e11 + 1.85886e11i 1.09498 + 0.933555i
\(669\) 0 0
\(670\) 2.70518e10 + 5.86125e10i 0.134244 + 0.290865i
\(671\) 2.48873e10i 0.122768i
\(672\) 0 0
\(673\) 2.21745e11 1.08092 0.540461 0.841369i \(-0.318250\pi\)
0.540461 + 0.841369i \(0.318250\pi\)
\(674\) −3.05017e11 + 1.40776e11i −1.47803 + 0.682164i
\(675\) 0 0
\(676\) 2.32316e11 2.72488e11i 1.11248 1.30485i
\(677\) 3.56145e11 1.69540 0.847701 0.530475i \(-0.177986\pi\)
0.847701 + 0.530475i \(0.177986\pi\)
\(678\) 0 0
\(679\) 3.50747e11i 1.65012i
\(680\) 1.60745e10 5.72826e10i 0.0751799 0.267909i
\(681\) 0 0
\(682\) −1.13642e10 + 5.24500e9i −0.0525295 + 0.0242442i
\(683\) 2.15409e11i 0.989878i 0.868928 + 0.494939i \(0.164810\pi\)
−0.868928 + 0.494939i \(0.835190\pi\)
\(684\) 0 0
\(685\) −3.44688e10 −0.156554
\(686\) −8.15274e10 1.76644e11i −0.368135 0.797632i
\(687\) 0 0
\(688\) −1.91087e11 + 3.06070e10i −0.852860 + 0.136605i
\(689\) 3.55283e11 1.57651
\(690\) 0 0
\(691\) 2.64031e11i 1.15809i 0.815296 + 0.579045i \(0.196574\pi\)
−0.815296 + 0.579045i \(0.803426\pi\)
\(692\) 2.62475e11 3.07862e11i 1.14463 1.34255i
\(693\) 0 0
\(694\) 4.98250e10 + 1.07955e11i 0.214788 + 0.465377i
\(695\) 1.88003e11i 0.805797i
\(696\) 0 0
\(697\) −1.52775e10 −0.0647324
\(698\) −7.89280e10 + 3.64280e10i −0.332514 + 0.153467i
\(699\) 0 0
\(700\) 3.99808e10 + 3.40866e10i 0.166517 + 0.141968i
\(701\) 1.98676e11 0.822758 0.411379 0.911464i \(-0.365047\pi\)
0.411379 + 0.911464i \(0.365047\pi\)
\(702\) 0 0
\(703\) 3.47992e10i 0.142478i
\(704\) −2.00818e10 + 3.29638e10i −0.0817545 + 0.134198i
\(705\) 0 0
\(706\) 1.04261e11 4.81201e10i 0.419666 0.193690i
\(707\) 1.59943e11i 0.640159i
\(708\) 0 0
\(709\) −1.08511e11 −0.429427 −0.214713 0.976677i \(-0.568882\pi\)
−0.214713 + 0.976677i \(0.568882\pi\)
\(710\) 6.95560e9 + 1.50706e10i 0.0273717 + 0.0593057i
\(711\) 0 0
\(712\) −1.17202e11 + 4.17659e11i −0.456054 + 1.62518i
\(713\) 2.63750e10 0.102055
\(714\) 0 0
\(715\) 3.02613e10i 0.115788i
\(716\) 8.63665e10 + 7.36338e10i 0.328619 + 0.280172i
\(717\) 0 0
\(718\) −7.39403e10 1.60205e11i −0.278217 0.602807i
\(719\) 3.56644e11i 1.33450i 0.744832 + 0.667252i \(0.232529\pi\)
−0.744832 + 0.667252i \(0.767471\pi\)
\(720\) 0 0
\(721\) −6.91741e10 −0.255978
\(722\) −1.95201e11 + 9.00923e10i −0.718347 + 0.331542i
\(723\) 0 0
\(724\) −3.10969e10 + 3.64741e10i −0.113178 + 0.132749i
\(725\) −7.04853e10 −0.255121
\(726\) 0 0
\(727\) 8.05781e10i 0.288456i −0.989544 0.144228i \(-0.953930\pi\)
0.989544 0.144228i \(-0.0460699\pi\)
\(728\) −4.87516e11 1.36805e11i −1.73565 0.487055i
\(729\) 0 0
\(730\) −1.47306e11 + 6.79867e10i −0.518714 + 0.239405i
\(731\) 1.53455e11i 0.537415i
\(732\) 0 0
\(733\) 3.80343e11 1.31753 0.658763 0.752351i \(-0.271080\pi\)
0.658763 + 0.752351i \(0.271080\pi\)
\(734\) 2.27324e11 + 4.92539e11i 0.783179 + 1.69690i
\(735\) 0 0
\(736\) 6.75318e10 4.53366e10i 0.230143 0.154503i
\(737\) 3.32098e10 0.112563
\(738\) 0 0
\(739\) 4.01614e11i 1.34658i 0.739381 + 0.673288i \(0.235118\pi\)
−0.739381 + 0.673288i \(0.764882\pi\)
\(740\) 2.71262e10 3.18169e10i 0.0904612 0.106104i
\(741\) 0 0
\(742\) −1.32979e11 2.88123e11i −0.438700 0.950523i
\(743\) 3.54474e11i 1.16313i 0.813499 + 0.581566i \(0.197560\pi\)
−0.813499 + 0.581566i \(0.802440\pi\)
\(744\) 0 0
\(745\) 6.90521e10 0.224157
\(746\) −4.63791e11 + 2.14056e11i −1.49750 + 0.691150i
\(747\) 0 0
\(748\) −2.32913e10 1.98575e10i −0.0744024 0.0634335i
\(749\) −3.31981e11 −1.05484
\(750\) 0 0
\(751\) 4.84888e11i 1.52434i 0.647378 + 0.762169i \(0.275866\pi\)
−0.647378 + 0.762169i \(0.724134\pi\)
\(752\) −3.25980e11 + 5.22132e10i −1.01934 + 0.163271i
\(753\) 0 0
\(754\) 6.16781e11 2.84666e11i 1.90829 0.880745i
\(755\) 1.11819e11i 0.344135i
\(756\) 0 0
\(757\) 1.22819e11 0.374009 0.187004 0.982359i \(-0.440122\pi\)
0.187004 + 0.982359i \(0.440122\pi\)
\(758\) −1.78578e11 3.86922e11i −0.540942 1.17205i
\(759\) 0 0
\(760\) −6.56465e10 1.84215e10i −0.196769 0.0552168i
\(761\) 1.93019e11 0.575521 0.287761 0.957702i \(-0.407089\pi\)
0.287761 + 0.957702i \(0.407089\pi\)
\(762\) 0 0
\(763\) 2.03817e11i 0.601372i
\(764\) −1.01757e11 8.67555e10i −0.298670 0.254638i
\(765\) 0 0
\(766\) −1.07991e11 2.33983e11i −0.313671 0.679625i
\(767\) 4.15333e11i 1.20009i
\(768\) 0 0
\(769\) 1.34359e11 0.384202 0.192101 0.981375i \(-0.438470\pi\)
0.192101 + 0.981375i \(0.438470\pi\)
\(770\) 2.45410e10 1.13265e10i 0.0698118 0.0322206i
\(771\) 0 0
\(772\) 8.33422e9 9.77536e9i 0.0234636 0.0275210i
\(773\) 1.97017e11 0.551804 0.275902 0.961186i \(-0.411024\pi\)
0.275902 + 0.961186i \(0.411024\pi\)
\(774\) 0 0
\(775\) 2.65636e10i 0.0736343i
\(776\) −1.47760e11 + 5.26553e11i −0.407483 + 1.45210i
\(777\) 0 0
\(778\) 2.63925e11 1.21811e11i 0.720380 0.332481i
\(779\) 1.75082e10i 0.0475435i
\(780\) 0 0
\(781\) 8.53896e9 0.0229510
\(782\) 2.70281e10 + 5.85613e10i 0.0722751 + 0.156597i
\(783\) 0 0
\(784\) 1.17756e10 + 7.35183e10i 0.0311688 + 0.194595i
\(785\) 1.95806e11 0.515642
\(786\) 0 0
\(787\) 3.63175e11i 0.946711i −0.880871 0.473356i \(-0.843043\pi\)
0.880871 0.473356i \(-0.156957\pi\)
\(788\) 4.37858e10 5.13572e10i 0.113561 0.133198i
\(789\) 0 0
\(790\) 9.15601e10 + 1.98382e11i 0.235070 + 0.509323i
\(791\) 2.38339e11i 0.608820i
\(792\) 0 0
\(793\) 5.09044e11 1.28725
\(794\) 5.85926e11 2.70425e11i 1.47421 0.680402i
\(795\) 0 0
\(796\) −2.46576e11 2.10224e11i −0.614184 0.523637i
\(797\) 5.78264e10 0.143316 0.0716578 0.997429i \(-0.477171\pi\)
0.0716578 + 0.997429i \(0.477171\pi\)
\(798\) 0 0
\(799\) 2.61782e11i 0.642321i
\(800\) 4.56607e10 + 6.80146e10i 0.111476 + 0.166051i
\(801\) 0 0
\(802\) 2.70766e11 1.24968e11i 0.654481 0.302066i
\(803\) 8.34631e10i 0.200739i
\(804\) 0 0
\(805\) −5.69566e10 −0.135632
\(806\) −1.07281e11 2.32444e11i −0.254205 0.550781i
\(807\) 0 0
\(808\) −6.73795e10 + 2.40111e11i −0.158082 + 0.563336i
\(809\) 1.75206e11 0.409031 0.204515 0.978863i \(-0.434438\pi\)
0.204515 + 0.978863i \(0.434438\pi\)
\(810\) 0 0
\(811\) 1.53398e11i 0.354599i 0.984157 + 0.177299i \(0.0567361\pi\)
−0.984157 + 0.177299i \(0.943264\pi\)
\(812\) −4.61711e11 3.93642e11i −1.06205 0.905477i
\(813\) 0 0
\(814\) −9.01369e9 1.95298e10i −0.0205308 0.0444836i
\(815\) 6.27249e10i 0.142171i
\(816\) 0 0
\(817\) −1.75860e11 −0.394712
\(818\) 2.83840e11 1.31002e11i 0.633958 0.292594i
\(819\) 0 0
\(820\) 1.36477e10 1.60077e10i 0.0301860 0.0354057i
\(821\) 3.12544e11 0.687922 0.343961 0.938984i \(-0.388231\pi\)
0.343961 + 0.938984i \(0.388231\pi\)
\(822\) 0 0
\(823\) 6.75905e11i 1.47328i −0.676283 0.736641i \(-0.736411\pi\)
0.676283 0.736641i \(-0.263589\pi\)
\(824\) −1.03846e11 2.91411e10i −0.225259 0.0632116i
\(825\) 0 0
\(826\) −3.36822e11 + 1.55455e11i −0.723570 + 0.333953i
\(827\) 7.49212e11i 1.60171i −0.598861 0.800853i \(-0.704380\pi\)
0.598861 0.800853i \(-0.295620\pi\)
\(828\) 0 0
\(829\) −6.27639e11 −1.32890 −0.664449 0.747333i \(-0.731334\pi\)
−0.664449 + 0.747333i \(0.731334\pi\)
\(830\) −1.30035e11 2.81744e11i −0.273998 0.593667i
\(831\) 0 0
\(832\) −6.74242e11 4.10753e11i −1.40709 0.857211i
\(833\) −5.90396e10 −0.122621
\(834\) 0 0
\(835\) 3.12824e11i 0.643508i
\(836\) −2.27569e10 + 2.66920e10i −0.0465895 + 0.0546458i
\(837\) 0 0
\(838\) −1.07546e11 2.33018e11i −0.218081 0.472512i
\(839\) 8.86257e11i 1.78860i −0.447473 0.894298i \(-0.647676\pi\)
0.447473 0.894298i \(-0.352324\pi\)
\(840\) 0 0
\(841\) 3.13739e11 0.627168
\(842\) −1.27852e11 + 5.90080e10i −0.254365 + 0.117398i
\(843\) 0 0
\(844\) −1.81962e11 1.55136e11i −0.358600 0.305733i
\(845\) −3.90961e11 −0.766844
\(846\) 0 0
\(847\) 5.49207e11i 1.06709i
\(848\) −7.82540e10 4.88560e11i −0.151329 0.944787i
\(849\) 0 0
\(850\) −5.89799e10 + 2.72213e10i −0.112987 + 0.0521475i
\(851\) 4.53263e10i 0.0864235i
\(852\) 0 0
\(853\) −4.42385e10 −0.0835611 −0.0417805 0.999127i \(-0.513303\pi\)
−0.0417805 + 0.999127i \(0.513303\pi\)
\(854\) −1.90530e11 4.12819e11i −0.358206 0.776119i
\(855\) 0 0
\(856\) −4.98381e11 1.39854e11i −0.928253 0.260484i
\(857\) 1.03847e12 1.92517 0.962586 0.270976i \(-0.0873463\pi\)
0.962586 + 0.270976i \(0.0873463\pi\)
\(858\) 0 0
\(859\) 5.28066e11i 0.969874i −0.874549 0.484937i \(-0.838842\pi\)
0.874549 0.484937i \(-0.161158\pi\)
\(860\) 1.60789e11 + 1.37084e11i 0.293942 + 0.250608i
\(861\) 0 0
\(862\) −1.45667e11 3.15614e11i −0.263835 0.571646i
\(863\) 1.90850e11i 0.344072i 0.985091 + 0.172036i \(0.0550346\pi\)
−0.985091 + 0.172036i \(0.944965\pi\)
\(864\) 0 0
\(865\) −4.41715e11 −0.789001
\(866\) −3.64140e11 + 1.68063e11i −0.647436 + 0.298814i
\(867\) 0 0
\(868\) −1.48351e11 + 1.74004e11i −0.261343 + 0.306534i
\(869\) 1.12403e11 0.197105
\(870\) 0 0
\(871\) 6.79273e11i 1.18024i
\(872\) −8.58624e10 + 3.05977e11i −0.148504 + 0.529203i
\(873\) 0 0
\(874\) 6.71119e10 3.09745e10i 0.115015 0.0530834i
\(875\) 5.73638e10i 0.0978601i
\(876\) 0 0
\(877\) 2.36707e11 0.400140 0.200070 0.979782i \(-0.435883\pi\)
0.200070 + 0.979782i \(0.435883\pi\)
\(878\) 1.80401e11 + 3.90872e11i 0.303572 + 0.657744i
\(879\) 0 0
\(880\) 4.16132e10 6.66531e9i 0.0693906 0.0111145i
\(881\) −3.49205e11 −0.579665 −0.289832 0.957077i \(-0.593600\pi\)
−0.289832 + 0.957077i \(0.593600\pi\)
\(882\) 0 0
\(883\) 5.98818e11i 0.985035i −0.870302 0.492518i \(-0.836077\pi\)
0.870302 0.492518i \(-0.163923\pi\)
\(884\) 4.06166e11 4.76400e11i 0.665111 0.780122i
\(885\) 0 0
\(886\) 3.46317e11 + 7.50359e11i 0.562004 + 1.21768i
\(887\) 5.75931e11i 0.930413i 0.885202 + 0.465207i \(0.154020\pi\)
−0.885202 + 0.465207i \(0.845980\pi\)
\(888\) 0 0
\(889\) −8.16574e11 −1.30734
\(890\) 4.30035e11 1.98476e11i 0.685399 0.316336i
\(891\) 0 0
\(892\) 1.01734e11 + 8.67357e10i 0.160697 + 0.137006i
\(893\) −3.00004e11 −0.471761
\(894\) 0 0
\(895\) 1.23917e11i 0.193125i
\(896\) −8.07457e10 + 7.00530e11i −0.125282 + 1.08691i
\(897\) 0 0
\(898\) −6.70527e11 + 3.09472e11i −1.03112 + 0.475900i
\(899\) 3.06764e11i 0.469641i
\(900\) 0 0
\(901\) 3.92343e11 0.595342
\(902\) −4.53497e9 9.82583e9i −0.00685091 0.0148437i
\(903\) 0 0
\(904\) −1.00405e11 + 3.57802e11i −0.150343 + 0.535758i
\(905\) 5.23325e10 0.0780148
\(906\) 0 0
\(907\) 4.04494e11i 0.597699i −0.954300 0.298849i \(-0.903397\pi\)
0.954300 0.298849i \(-0.0966029\pi\)
\(908\) −6.75398e11 5.75827e11i −0.993611 0.847126i
\(909\) 0 0
\(910\) 2.31673e11 + 5.01961e11i 0.337839 + 0.731989i
\(911\) 6.18016e11i 0.897276i 0.893714 + 0.448638i \(0.148091\pi\)
−0.893714 + 0.448638i \(0.851909\pi\)
\(912\) 0 0
\(913\) −1.59636e11 −0.229746
\(914\) 4.52219e11 2.08715e11i 0.647984 0.299067i
\(915\) 0 0
\(916\) 2.17981e11 2.55674e11i 0.309625 0.363165i
\(917\) −1.43111e12 −2.02394
\(918\) 0 0
\(919\) 5.11050e11i 0.716476i −0.933630 0.358238i \(-0.883378\pi\)
0.933630 0.358238i \(-0.116622\pi\)
\(920\) −8.55051e10 2.39942e10i −0.119355 0.0334931i
\(921\) 0 0
\(922\) 6.79904e11 3.13800e11i 0.940858 0.434239i
\(923\) 1.74656e11i 0.240645i
\(924\) 0 0
\(925\) −4.56503e10 −0.0623558
\(926\) −1.36332e11 2.95388e11i −0.185419 0.401744i
\(927\) 0 0
\(928\) −5.27304e11 7.85453e11i −0.710999 1.05908i
\(929\) −3.49578e11 −0.469333 −0.234666 0.972076i \(-0.575400\pi\)
−0.234666 + 0.972076i \(0.575400\pi\)
\(930\) 0 0
\(931\) 6.76600e10i 0.0900603i
\(932\) 4.04929e11 4.74949e11i 0.536680 0.629482i
\(933\) 0 0
\(934\) 3.95371e11 + 8.56642e11i 0.519537 + 1.12567i
\(935\) 3.34179e10i 0.0437253i
\(936\) 0 0
\(937\) −1.37124e11 −0.177891 −0.0889457 0.996036i \(-0.528350\pi\)
−0.0889457 + 0.996036i \(0.528350\pi\)
\(938\) 5.50869e11 2.54245e11i 0.711602 0.328429i
\(939\) 0 0
\(940\) 2.74293e11 + 2.33855e11i 0.351321 + 0.299527i
\(941\) 4.32170e10 0.0551183 0.0275592 0.999620i \(-0.491227\pi\)
0.0275592 + 0.999620i \(0.491227\pi\)
\(942\) 0 0
\(943\) 2.28046e10i 0.0288387i
\(944\) −5.71137e11 + 9.14807e10i −0.719204 + 0.115197i
\(945\) 0 0
\(946\) 9.86953e10 4.55513e10i 0.123234 0.0568770i
\(947\) 1.24527e12i 1.54832i 0.632987 + 0.774162i \(0.281829\pi\)
−0.632987 + 0.774162i \(0.718171\pi\)
\(948\) 0 0
\(949\) −1.70716e12 −2.10479
\(950\) 3.11959e10 + 6.75916e10i 0.0383004 + 0.0829848i
\(951\) 0 0
\(952\) −5.38370e11 1.51076e11i −0.655440 0.183928i
\(953\) −9.35275e11 −1.13388 −0.566941 0.823759i \(-0.691873\pi\)
−0.566941 + 0.823759i \(0.691873\pi\)
\(954\) 0 0
\(955\) 1.46000e11i 0.175525i
\(956\) 5.43095e11 + 4.63028e11i 0.650195 + 0.554339i
\(957\) 0 0
\(958\) 8.06120e10 + 1.74661e11i 0.0957057 + 0.207364i
\(959\) 3.23955e11i 0.383010i
\(960\) 0 0
\(961\) 7.37282e11 0.864450
\(962\) 3.99463e11 1.84366e11i 0.466419 0.215269i
\(963\) 0 0
\(964\) 1.93160e11 2.26561e11i 0.223670 0.262347i
\(965\) −1.40255e10 −0.0161737
\(966\) 0 0
\(967\) 1.52906e12i 1.74871i −0.485286 0.874355i \(-0.661285\pi\)
0.485286 0.874355i \(-0.338715\pi\)
\(968\) −2.31365e11 + 8.24486e11i −0.263510 + 0.939035i
\(969\) 0 0
\(970\) 5.42155e11 2.50224e11i 0.612402 0.282645i
\(971\) 5.95468e11i 0.669856i −0.942244 0.334928i \(-0.891288\pi\)
0.942244 0.334928i \(-0.108712\pi\)
\(972\) 0 0
\(973\) 1.76694e12 1.97139
\(974\) 3.25817e11 + 7.05942e11i 0.362024 + 0.784392i
\(975\) 0 0
\(976\) −1.12121e11 7.00002e11i −0.123563 0.771436i
\(977\) −1.10548e12 −1.21332 −0.606659 0.794962i \(-0.707491\pi\)
−0.606659 + 0.794962i \(0.707491\pi\)
\(978\) 0 0
\(979\) 2.43657e11i 0.265245i
\(980\) 5.27414e10 6.18614e10i 0.0571804 0.0670680i
\(981\) 0 0
\(982\) −1.15046e10 2.49269e10i −0.0123716 0.0268054i
\(983\) 1.26644e10i 0.0135634i −0.999977 0.00678172i \(-0.997841\pi\)
0.999977 0.00678172i \(-0.00215871\pi\)
\(984\) 0 0
\(985\) −7.36865e10 −0.0782786
\(986\) 6.81118e11 3.14360e11i 0.720634 0.332598i
\(987\) 0 0
\(988\) −5.45959e11 4.65470e11i −0.572971 0.488500i
\(989\) −2.29060e11 −0.239422
\(990\) 0 0
\(991\) 7.11883e11i 0.738098i 0.929410 + 0.369049i \(0.120317\pi\)
−0.929410 + 0.369049i \(0.879683\pi\)
\(992\) −2.96012e11 + 1.98724e11i −0.305677 + 0.205212i
\(993\) 0 0
\(994\) 1.41641e11 6.53721e10i 0.145092 0.0669649i
\(995\) 3.53783e11i 0.360948i
\(996\) 0 0
\(997\) 2.60515e11 0.263665 0.131832 0.991272i \(-0.457914\pi\)
0.131832 + 0.991272i \(0.457914\pi\)
\(998\) −4.19435e11 9.08782e11i −0.422807 0.916089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.a.91.2 16
3.2 odd 2 20.9.b.a.11.15 16
4.3 odd 2 inner 180.9.c.a.91.1 16
12.11 even 2 20.9.b.a.11.16 yes 16
15.2 even 4 100.9.d.c.99.22 32
15.8 even 4 100.9.d.c.99.11 32
15.14 odd 2 100.9.b.d.51.2 16
24.5 odd 2 320.9.b.d.191.16 16
24.11 even 2 320.9.b.d.191.1 16
60.23 odd 4 100.9.d.c.99.21 32
60.47 odd 4 100.9.d.c.99.12 32
60.59 even 2 100.9.b.d.51.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.15 16 3.2 odd 2
20.9.b.a.11.16 yes 16 12.11 even 2
100.9.b.d.51.1 16 60.59 even 2
100.9.b.d.51.2 16 15.14 odd 2
100.9.d.c.99.11 32 15.8 even 4
100.9.d.c.99.12 32 60.47 odd 4
100.9.d.c.99.21 32 60.23 odd 4
100.9.d.c.99.22 32 15.2 even 4
180.9.c.a.91.1 16 4.3 odd 2 inner
180.9.c.a.91.2 16 1.1 even 1 trivial
320.9.b.d.191.1 16 24.11 even 2
320.9.b.d.191.16 16 24.5 odd 2