Newspace parameters
Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 21 \) |
Character orbit: | \([\chi]\) | \(=\) | 18.d (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(45.6324777185\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −627.069 | + | 362.039i | −29056.0 | − | 51405.6i | 262144. | − | 454047.i | 1.35661e7 | + | 7.83237e6i | 3.68309e7 | + | 2.17155e7i | −1.44553e8 | − | 2.50374e8i | 3.79625e8i | −1.79828e9 | + | 2.98728e9i | −1.13425e10 | ||||
5.2 | −627.069 | + | 362.039i | 57522.4 | − | 13339.9i | 262144. | − | 454047.i | 8.06063e6 | + | 4.65381e6i | −3.12410e7 | + | 2.91904e7i | −1.01532e8 | − | 1.75858e8i | 3.79625e8i | 3.13088e9 | − | 1.53468e9i | −6.73943e9 | ||||
5.3 | −627.069 | + | 362.039i | −3428.09 | + | 58949.4i | 262144. | − | 454047.i | 2.28544e6 | + | 1.31950e6i | −1.91923e7 | − | 3.82065e7i | −2.28670e8 | − | 3.96069e8i | 3.79625e8i | −3.46328e9 | − | 4.04167e8i | −1.91084e9 | ||||
5.4 | −627.069 | + | 362.039i | −21083.2 | − | 55156.9i | 262144. | − | 454047.i | −667393. | − | 385320.i | 3.31896e7 | + | 2.69543e7i | 2.18628e8 | + | 3.78675e8i | 3.79625e8i | −2.59778e9 | + | 2.32577e9i | 5.58002e8 | ||||
5.5 | −627.069 | + | 362.039i | −39906.5 | + | 43523.0i | 262144. | − | 454047.i | −5.93247e6 | − | 3.42511e6i | 9.26713e6 | − | 4.17397e7i | 1.73104e8 | + | 2.99825e8i | 3.79625e8i | −3.01725e8 | − | 3.47371e9i | 4.96010e9 | ||||
5.6 | −627.069 | + | 362.039i | 27305.7 | − | 52356.3i | 262144. | − | 454047.i | −7.64335e6 | − | 4.41289e6i | 1.83243e6 | + | 4.27168e7i | −7.20445e7 | − | 1.24785e8i | 3.79625e8i | −1.99558e9 | − | 2.85925e9i | 6.39055e9 | ||||
5.7 | −627.069 | + | 362.039i | −56191.2 | + | 18147.7i | 262144. | − | 454047.i | 7.36161e6 | + | 4.25023e6i | 2.86656e7 | − | 3.17232e7i | −1.38813e7 | − | 2.40432e7i | 3.79625e8i | 2.82811e9 | − | 2.03948e9i | −6.15499e9 | ||||
5.8 | −627.069 | + | 362.039i | 53724.5 | + | 24504.3i | 262144. | − | 454047.i | −8.59905e6 | − | 4.96467e6i | −4.25605e7 | + | 4.08445e6i | 1.75216e7 | + | 3.03482e7i | 3.79625e8i | 2.28586e9 | + | 2.63296e9i | 7.18960e9 | ||||
5.9 | −627.069 | + | 362.039i | 28178.4 | + | 51891.8i | 262144. | − | 454047.i | 1.35635e7 | + | 7.83088e6i | −3.64567e7 | − | 2.23381e7i | 2.49396e8 | + | 4.31967e8i | 3.79625e8i | −1.89874e9 | + | 2.92446e9i | −1.13403e10 | ||||
5.10 | −627.069 | + | 362.039i | −55730.0 | − | 19518.0i | 262144. | − | 454047.i | −1.45540e7 | − | 8.40275e6i | 4.20128e7 | − | 7.93729e6i | −1.01988e8 | − | 1.76649e8i | 3.79625e8i | 2.72488e9 | + | 2.17547e9i | 1.21685e10 | ||||
5.11 | 627.069 | − | 362.039i | 37919.5 | + | 45264.8i | 262144. | − | 454047.i | 1.57165e7 | + | 9.07392e6i | 4.01657e7 | + | 1.46558e7i | −1.29309e8 | − | 2.23969e8i | − | 3.79625e8i | −6.11012e8 | + | 3.43283e9i | 1.31404e10 | |||
5.12 | 627.069 | − | 362.039i | 50872.9 | − | 29978.9i | 262144. | − | 454047.i | −1.42842e7 | − | 8.24698e6i | 2.10473e7 | − | 3.72168e7i | −5.08606e6 | − | 8.80931e6i | − | 3.79625e8i | 1.68932e9 | − | 3.05022e9i | −1.19429e10 | |||
5.13 | 627.069 | − | 362.039i | −58768.8 | − | 5745.70i | 262144. | − | 454047.i | 1.51936e7 | + | 8.77204e6i | −3.89323e7 | + | 1.76736e7i | 2.43968e8 | + | 4.22564e8i | − | 3.79625e8i | 3.42076e9 | + | 6.75336e8i | 1.27033e10 | |||
5.14 | 627.069 | − | 362.039i | −40381.2 | − | 43083.0i | 262144. | − | 454047.i | −1.17375e7 | − | 6.77667e6i | −4.09195e7 | − | 1.23965e7i | 3.57156e7 | + | 6.18612e7i | − | 3.79625e8i | −2.25502e8 | + | 3.47948e9i | −9.81366e9 | |||
5.15 | 627.069 | − | 362.039i | −2376.61 | + | 59001.2i | 262144. | − | 454047.i | −6.58251e6 | − | 3.80041e6i | 1.98704e7 | + | 3.78582e7i | 7.46524e7 | + | 1.29302e8i | − | 3.79625e8i | −3.47549e9 | − | 2.80445e8i | −5.50358e9 | |||
5.16 | 627.069 | − | 362.039i | −20088.3 | + | 55527.0i | 262144. | − | 454047.i | 2.60680e6 | + | 1.50504e6i | 7.50614e6 | + | 4.20920e7i | 3.31729e7 | + | 5.74572e7i | − | 3.79625e8i | −2.67970e9 | − | 2.23089e9i | 2.17953e9 | |||
5.17 | 627.069 | − | 362.039i | −56785.7 | + | 16191.7i | 262144. | − | 454047.i | −2.17822e6 | − | 1.25760e6i | −2.97465e7 | + | 3.07119e7i | −1.62510e8 | − | 2.81476e8i | − | 3.79625e8i | 2.96244e9 | − | 1.83892e9i | −1.82119e9 | |||
5.18 | 627.069 | − | 362.039i | 54030.9 | + | 23821.1i | 262144. | − | 454047.i | −964142. | − | 556647.i | 4.25053e7 | − | 4.62377e6i | 1.11151e8 | + | 1.92519e8i | − | 3.79625e8i | 2.35189e9 | + | 2.57415e9i | −8.06111e8 | |||
5.19 | 627.069 | − | 362.039i | 47482.1 | − | 35103.2i | 262144. | − | 454047.i | 5.33096e6 | + | 3.07783e6i | 1.70658e7 | − | 3.92025e7i | −2.63403e8 | − | 4.56228e8i | − | 3.79625e8i | 1.02231e9 | − | 3.33355e9i | 4.45718e9 | |||
5.20 | 627.069 | − | 362.039i | 17336.1 | − | 56446.8i | 262144. | − | 454047.i | 4.33970e6 | + | 2.50553e6i | −9.56498e6 | − | 4.16724e7i | 1.32408e8 | + | 2.29337e8i | − | 3.79625e8i | −2.88570e9 | − | 1.95714e9i | 3.62839e9 | |||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 18.21.d.a | ✓ | 40 |
3.b | odd | 2 | 1 | 54.21.d.a | 40 | ||
9.c | even | 3 | 1 | 54.21.d.a | 40 | ||
9.d | odd | 6 | 1 | inner | 18.21.d.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.21.d.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
18.21.d.a | ✓ | 40 | 9.d | odd | 6 | 1 | inner |
54.21.d.a | 40 | 3.b | odd | 2 | 1 | ||
54.21.d.a | 40 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{21}^{\mathrm{new}}(18, [\chi])\).