Properties

Label 18.21.d
Level $18$
Weight $21$
Character orbit 18.d
Rep. character $\chi_{18}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $1$
Sturm bound $63$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(63\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(18, [\chi])\).

Total New Old
Modular forms 124 40 84
Cusp forms 116 40 76
Eisenstein series 8 0 8

Trace form

\( 40 q - 18846 q^{3} + 10485760 q^{4} + 29763918 q^{5} + 102690816 q^{6} + 133479866 q^{7} + 967310598 q^{9} - 35793208728 q^{11} + 26559381504 q^{12} + 39827158550 q^{13} + 187564400640 q^{14} - 965812538286 q^{15}+ \cdots + 52\!\cdots\!22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(18, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
18.21.d.a 18.d 9.d $40$ $45.632$ None 18.21.d.a \(0\) \(-18846\) \(29763918\) \(133479866\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{21}^{\mathrm{old}}(18, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)