Defining parameters
| Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 21 \) |
| Character orbit: | \([\chi]\) | \(=\) | 18.d (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(63\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(18, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 124 | 40 | 84 |
| Cusp forms | 116 | 40 | 76 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(18, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 18.21.d.a | $40$ | $45.632$ | None | \(0\) | \(-18846\) | \(29763918\) | \(133479866\) | ||
Decomposition of \(S_{21}^{\mathrm{old}}(18, [\chi])\) into lower level spaces
\( S_{21}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)