Properties

Label 2-18-9.2-c20-0-2
Degree $2$
Conductor $18$
Sign $-0.496 - 0.867i$
Analytic cond. $45.6324$
Root an. cond. $6.75518$
Motivic weight $20$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (627. + 362. i)2-s + (−2.00e4 − 5.55e4i)3-s + (2.62e5 + 4.54e5i)4-s + (2.60e6 − 1.50e6i)5-s + (7.50e6 − 4.20e7i)6-s + (3.31e7 − 5.74e7i)7-s + 3.79e8i·8-s + (−2.67e9 + 2.23e9i)9-s + 2.17e9·10-s + (−3.97e10 − 2.29e10i)11-s + (1.99e10 − 2.36e10i)12-s + (1.19e11 + 2.06e11i)13-s + (4.16e10 − 2.40e10i)14-s + (−1.35e11 − 1.14e11i)15-s + (−1.37e11 + 2.38e11i)16-s − 2.24e12i·17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (−0.340 − 0.940i)3-s + (0.249 + 0.433i)4-s + (0.266 − 0.154i)5-s + (0.124 − 0.696i)6-s + (0.117 − 0.203i)7-s + 0.353i·8-s + (−0.768 + 0.639i)9-s + 0.217·10-s + (−1.53 − 0.884i)11-s + (0.322 − 0.382i)12-s + (0.864 + 1.49i)13-s + (0.143 − 0.0830i)14-s + (−0.235 − 0.198i)15-s + (−0.125 + 0.216i)16-s − 1.11i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.496 - 0.867i)\, \overline{\Lambda}(21-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+10) \, L(s)\cr =\mathstrut & (-0.496 - 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.496 - 0.867i$
Analytic conductor: \(45.6324\)
Root analytic conductor: \(6.75518\)
Motivic weight: \(20\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :10),\ -0.496 - 0.867i)\)

Particular Values

\(L(\frac{21}{2})\) \(\approx\) \(0.9371986277\)
\(L(\frac12)\) \(\approx\) \(0.9371986277\)
\(L(11)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-627. - 362. i)T \)
3 \( 1 + (2.00e4 + 5.55e4i)T \)
good5 \( 1 + (-2.60e6 + 1.50e6i)T + (4.76e13 - 8.25e13i)T^{2} \)
7 \( 1 + (-3.31e7 + 5.74e7i)T + (-3.98e16 - 6.91e16i)T^{2} \)
11 \( 1 + (3.97e10 + 2.29e10i)T + (3.36e20 + 5.82e20i)T^{2} \)
13 \( 1 + (-1.19e11 - 2.06e11i)T + (-9.50e21 + 1.64e22i)T^{2} \)
17 \( 1 + 2.24e12iT - 4.06e24T^{2} \)
19 \( 1 + 1.35e12T + 3.75e25T^{2} \)
23 \( 1 + (6.66e12 - 3.84e12i)T + (8.58e26 - 1.48e27i)T^{2} \)
29 \( 1 + (6.67e13 + 3.85e13i)T + (8.84e28 + 1.53e29i)T^{2} \)
31 \( 1 + (-6.87e14 - 1.19e15i)T + (-3.35e29 + 5.81e29i)T^{2} \)
37 \( 1 + 4.13e15T + 2.31e31T^{2} \)
41 \( 1 + (2.22e16 - 1.28e16i)T + (9.00e31 - 1.56e32i)T^{2} \)
43 \( 1 + (2.36e15 - 4.08e15i)T + (-2.33e32 - 4.04e32i)T^{2} \)
47 \( 1 + (-4.48e16 - 2.59e16i)T + (1.38e33 + 2.39e33i)T^{2} \)
53 \( 1 - 3.59e16iT - 3.05e34T^{2} \)
59 \( 1 + (6.50e17 - 3.75e17i)T + (1.30e35 - 2.26e35i)T^{2} \)
61 \( 1 + (3.71e17 - 6.43e17i)T + (-2.54e35 - 4.40e35i)T^{2} \)
67 \( 1 + (6.49e17 + 1.12e18i)T + (-1.66e36 + 2.87e36i)T^{2} \)
71 \( 1 - 2.16e18iT - 1.05e37T^{2} \)
73 \( 1 + 1.41e18T + 1.84e37T^{2} \)
79 \( 1 + (-5.33e18 + 9.23e18i)T + (-4.48e37 - 7.76e37i)T^{2} \)
83 \( 1 + (-8.69e18 - 5.02e18i)T + (1.20e38 + 2.08e38i)T^{2} \)
89 \( 1 + 1.83e19iT - 9.72e38T^{2} \)
97 \( 1 + (1.44e19 - 2.49e19i)T + (-2.71e39 - 4.70e39i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77198396617547222532367247715, −13.55975665880236905294642613607, −11.99559432772727588800478340679, −10.89086312645601964230554743223, −8.639400821036882628734676853314, −7.33114956467356493737735631770, −6.10226547031908784059725873851, −4.93238696265743433819867515807, −2.94356209206192330186677566587, −1.46422435358160475530640896475, 0.20459580383475919351592754352, 2.27915400498495361291627836764, 3.64101711474065950662816778454, 5.06825676956918938615046593850, 6.00936117081416555993912101754, 8.209428373975391959904265990075, 10.16808065361365725495712355719, 10.63718282951406109035418933425, 12.28078493357684759513136636569, 13.46317503160244002658996993941

Graph of the $Z$-function along the critical line