Properties

Label 2-18-9.5-c20-0-19
Degree $2$
Conductor $18$
Sign $-0.992 - 0.122i$
Analytic cond. $45.6324$
Root an. cond. $6.75518$
Motivic weight $20$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (627. − 362. i)2-s + (4.74e4 − 3.51e4i)3-s + (2.62e5 − 4.54e5i)4-s + (5.33e6 + 3.07e6i)5-s + (1.70e7 − 3.92e7i)6-s + (−2.63e8 − 4.56e8i)7-s − 3.79e8i·8-s + (1.02e9 − 3.33e9i)9-s + 4.45e9·10-s + (−3.42e10 + 1.98e10i)11-s + (−3.49e9 − 3.07e10i)12-s + (−7.57e10 + 1.31e11i)13-s + (−3.30e11 − 1.90e11i)14-s + (3.61e11 − 4.09e10i)15-s + (−1.37e11 − 2.38e11i)16-s − 1.43e12i·17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.804 − 0.594i)3-s + (0.249 − 0.433i)4-s + (0.545 + 0.315i)5-s + (0.282 − 0.648i)6-s + (−0.932 − 1.61i)7-s − 0.353i·8-s + (0.293 − 0.956i)9-s + 0.445·10-s + (−1.32 + 0.763i)11-s + (−0.0563 − 0.496i)12-s + (−0.549 + 0.951i)13-s + (−1.14 − 0.659i)14-s + (0.626 − 0.0710i)15-s + (−0.125 − 0.216i)16-s − 0.712i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.122i)\, \overline{\Lambda}(21-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+10) \, L(s)\cr =\mathstrut & (-0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.992 - 0.122i$
Analytic conductor: \(45.6324\)
Root analytic conductor: \(6.75518\)
Motivic weight: \(20\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :10),\ -0.992 - 0.122i)\)

Particular Values

\(L(\frac{21}{2})\) \(\approx\) \(2.191190639\)
\(L(\frac12)\) \(\approx\) \(2.191190639\)
\(L(11)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-627. + 362. i)T \)
3 \( 1 + (-4.74e4 + 3.51e4i)T \)
good5 \( 1 + (-5.33e6 - 3.07e6i)T + (4.76e13 + 8.25e13i)T^{2} \)
7 \( 1 + (2.63e8 + 4.56e8i)T + (-3.98e16 + 6.91e16i)T^{2} \)
11 \( 1 + (3.42e10 - 1.98e10i)T + (3.36e20 - 5.82e20i)T^{2} \)
13 \( 1 + (7.57e10 - 1.31e11i)T + (-9.50e21 - 1.64e22i)T^{2} \)
17 \( 1 + 1.43e12iT - 4.06e24T^{2} \)
19 \( 1 + 5.01e12T + 3.75e25T^{2} \)
23 \( 1 + (-3.78e13 - 2.18e13i)T + (8.58e26 + 1.48e27i)T^{2} \)
29 \( 1 + (-3.69e14 + 2.13e14i)T + (8.84e28 - 1.53e29i)T^{2} \)
31 \( 1 + (2.91e14 - 5.05e14i)T + (-3.35e29 - 5.81e29i)T^{2} \)
37 \( 1 - 1.98e15T + 2.31e31T^{2} \)
41 \( 1 + (4.29e15 + 2.47e15i)T + (9.00e31 + 1.56e32i)T^{2} \)
43 \( 1 + (1.01e16 + 1.75e16i)T + (-2.33e32 + 4.04e32i)T^{2} \)
47 \( 1 + (-5.23e16 + 3.02e16i)T + (1.38e33 - 2.39e33i)T^{2} \)
53 \( 1 - 1.27e17iT - 3.05e34T^{2} \)
59 \( 1 + (7.01e17 + 4.05e17i)T + (1.30e35 + 2.26e35i)T^{2} \)
61 \( 1 + (6.21e17 + 1.07e18i)T + (-2.54e35 + 4.40e35i)T^{2} \)
67 \( 1 + (5.17e17 - 8.95e17i)T + (-1.66e36 - 2.87e36i)T^{2} \)
71 \( 1 - 1.04e18iT - 1.05e37T^{2} \)
73 \( 1 - 6.74e18T + 1.84e37T^{2} \)
79 \( 1 + (5.28e18 + 9.15e18i)T + (-4.48e37 + 7.76e37i)T^{2} \)
83 \( 1 + (-6.27e18 + 3.62e18i)T + (1.20e38 - 2.08e38i)T^{2} \)
89 \( 1 - 4.67e18iT - 9.72e38T^{2} \)
97 \( 1 + (1.18e19 + 2.05e19i)T + (-2.71e39 + 4.70e39i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49137061520393427295957573888, −12.48430981187107493392472082328, −10.49576037976291390025338233540, −9.593853855452266394413119533143, −7.40652800023788984977267224373, −6.62249142030053145104790683932, −4.48701360439622751073313176174, −3.07818290414988392309300834327, −1.98939036192928203651407841243, −0.38192113095450857464989769035, 2.42857741208961668346614562738, 3.09462707201677575707374010580, 5.06384432877106978350455426051, 5.96585110616383088544320302832, 8.106515574188538191642575186947, 9.123871890892275915542943684790, 10.52189490951210320855629637610, 12.67166896484559816344117741829, 13.25525668339529334655818344180, 14.96200986907497771625812642120

Graph of the $Z$-function along the critical line