Properties

Label 1764.4.a.u.1.2
Level $1764$
Weight $4$
Character 1764.1
Self dual yes
Analytic conductor $104.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,4,Mod(1,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,108,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{385}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 252)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-9.31071\) of defining polynomial
Character \(\chi\) \(=\) 1764.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.6214 q^{5} +19.6214 q^{11} +54.0000 q^{13} +39.2428 q^{17} -2.00000 q^{19} +196.214 q^{23} +260.000 q^{25} +98.1071 q^{29} -201.000 q^{31} -202.000 q^{37} -470.914 q^{41} -244.000 q^{43} +235.457 q^{47} +647.507 q^{53} +385.000 q^{55} +608.264 q^{59} +588.000 q^{61} +1059.56 q^{65} -302.000 q^{67} -156.971 q^{71} +446.000 q^{73} -267.000 q^{79} -725.992 q^{83} +770.000 q^{85} +117.729 q^{89} -39.2428 q^{95} -595.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 108 q^{13} - 4 q^{19} + 520 q^{25} - 402 q^{31} - 404 q^{37} - 488 q^{43} + 770 q^{55} + 1176 q^{61} - 604 q^{67} + 892 q^{73} - 534 q^{79} + 1540 q^{85} - 1190 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 19.6214 1.75499 0.877496 0.479583i \(-0.159212\pi\)
0.877496 + 0.479583i \(0.159212\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19.6214 0.537825 0.268913 0.963165i \(-0.413336\pi\)
0.268913 + 0.963165i \(0.413336\pi\)
\(12\) 0 0
\(13\) 54.0000 1.15207 0.576035 0.817425i \(-0.304599\pi\)
0.576035 + 0.817425i \(0.304599\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 39.2428 0.559870 0.279935 0.960019i \(-0.409687\pi\)
0.279935 + 0.960019i \(0.409687\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.0241490 −0.0120745 0.999927i \(-0.503844\pi\)
−0.0120745 + 0.999927i \(0.503844\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 196.214 1.77885 0.889424 0.457084i \(-0.151106\pi\)
0.889424 + 0.457084i \(0.151106\pi\)
\(24\) 0 0
\(25\) 260.000 2.08000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 98.1071 0.628208 0.314104 0.949389i \(-0.398296\pi\)
0.314104 + 0.949389i \(0.398296\pi\)
\(30\) 0 0
\(31\) −201.000 −1.16454 −0.582269 0.812996i \(-0.697835\pi\)
−0.582269 + 0.812996i \(0.697835\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −202.000 −0.897530 −0.448765 0.893650i \(-0.648136\pi\)
−0.448765 + 0.893650i \(0.648136\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −470.914 −1.79377 −0.896883 0.442268i \(-0.854174\pi\)
−0.896883 + 0.442268i \(0.854174\pi\)
\(42\) 0 0
\(43\) −244.000 −0.865341 −0.432670 0.901552i \(-0.642429\pi\)
−0.432670 + 0.901552i \(0.642429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 235.457 0.730743 0.365372 0.930862i \(-0.380942\pi\)
0.365372 + 0.930862i \(0.380942\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 647.507 1.67815 0.839074 0.544017i \(-0.183097\pi\)
0.839074 + 0.544017i \(0.183097\pi\)
\(54\) 0 0
\(55\) 385.000 0.943880
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 608.264 1.34219 0.671095 0.741371i \(-0.265824\pi\)
0.671095 + 0.741371i \(0.265824\pi\)
\(60\) 0 0
\(61\) 588.000 1.23419 0.617096 0.786888i \(-0.288309\pi\)
0.617096 + 0.786888i \(0.288309\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1059.56 2.02187
\(66\) 0 0
\(67\) −302.000 −0.550674 −0.275337 0.961348i \(-0.588789\pi\)
−0.275337 + 0.961348i \(0.588789\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −156.971 −0.262381 −0.131191 0.991357i \(-0.541880\pi\)
−0.131191 + 0.991357i \(0.541880\pi\)
\(72\) 0 0
\(73\) 446.000 0.715073 0.357537 0.933899i \(-0.383617\pi\)
0.357537 + 0.933899i \(0.383617\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −267.000 −0.380251 −0.190126 0.981760i \(-0.560890\pi\)
−0.190126 + 0.981760i \(0.560890\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −725.992 −0.960097 −0.480048 0.877242i \(-0.659381\pi\)
−0.480048 + 0.877242i \(0.659381\pi\)
\(84\) 0 0
\(85\) 770.000 0.982567
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 117.729 0.140216 0.0701078 0.997539i \(-0.477666\pi\)
0.0701078 + 0.997539i \(0.477666\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −39.2428 −0.0423814
\(96\) 0 0
\(97\) −595.000 −0.622815 −0.311408 0.950276i \(-0.600800\pi\)
−0.311408 + 0.950276i \(0.600800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1216.53 −1.19851 −0.599253 0.800560i \(-0.704536\pi\)
−0.599253 + 0.800560i \(0.704536\pi\)
\(102\) 0 0
\(103\) −1664.00 −1.59183 −0.795916 0.605406i \(-0.793011\pi\)
−0.795916 + 0.605406i \(0.793011\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1589.33 −1.43595 −0.717976 0.696068i \(-0.754931\pi\)
−0.717976 + 0.696068i \(0.754931\pi\)
\(108\) 0 0
\(109\) 358.000 0.314589 0.157294 0.987552i \(-0.449723\pi\)
0.157294 + 0.987552i \(0.449723\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1098.80 0.914746 0.457373 0.889275i \(-0.348790\pi\)
0.457373 + 0.889275i \(0.348790\pi\)
\(114\) 0 0
\(115\) 3850.00 3.12186
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −946.000 −0.710744
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2648.89 1.89539
\(126\) 0 0
\(127\) 2127.00 1.48615 0.743074 0.669210i \(-0.233367\pi\)
0.743074 + 0.669210i \(0.233367\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1510.85 −1.00766 −0.503830 0.863803i \(-0.668076\pi\)
−0.503830 + 0.863803i \(0.668076\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2550.78 −1.59072 −0.795358 0.606139i \(-0.792717\pi\)
−0.795358 + 0.606139i \(0.792717\pi\)
\(138\) 0 0
\(139\) 2438.00 1.48769 0.743843 0.668354i \(-0.233001\pi\)
0.743843 + 0.668354i \(0.233001\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1059.56 0.619612
\(144\) 0 0
\(145\) 1925.00 1.10250
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1530.47 −0.841483 −0.420742 0.907180i \(-0.638230\pi\)
−0.420742 + 0.907180i \(0.638230\pi\)
\(150\) 0 0
\(151\) −947.000 −0.510369 −0.255185 0.966892i \(-0.582136\pi\)
−0.255185 + 0.966892i \(0.582136\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3943.90 −2.04376
\(156\) 0 0
\(157\) 1540.00 0.782837 0.391418 0.920213i \(-0.371985\pi\)
0.391418 + 0.920213i \(0.371985\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1090.00 −0.523775 −0.261888 0.965098i \(-0.584345\pi\)
−0.261888 + 0.965098i \(0.584345\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2079.87 0.963744 0.481872 0.876242i \(-0.339957\pi\)
0.481872 + 0.876242i \(0.339957\pi\)
\(168\) 0 0
\(169\) 719.000 0.327264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1844.41 0.810567 0.405284 0.914191i \(-0.367173\pi\)
0.405284 + 0.914191i \(0.367173\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1177.29 −0.491589 −0.245794 0.969322i \(-0.579049\pi\)
−0.245794 + 0.969322i \(0.579049\pi\)
\(180\) 0 0
\(181\) 2004.00 0.822962 0.411481 0.911418i \(-0.365012\pi\)
0.411481 + 0.911418i \(0.365012\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3963.53 −1.57516
\(186\) 0 0
\(187\) 770.000 0.301112
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4473.68 −1.69479 −0.847394 0.530965i \(-0.821829\pi\)
−0.847394 + 0.530965i \(0.821829\pi\)
\(192\) 0 0
\(193\) 4649.00 1.73390 0.866949 0.498397i \(-0.166078\pi\)
0.866949 + 0.498397i \(0.166078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4198.98 1.51860 0.759302 0.650738i \(-0.225540\pi\)
0.759302 + 0.650738i \(0.225540\pi\)
\(198\) 0 0
\(199\) 616.000 0.219433 0.109716 0.993963i \(-0.465006\pi\)
0.109716 + 0.993963i \(0.465006\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9240.00 −3.14805
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −39.2428 −0.0129880
\(210\) 0 0
\(211\) −3208.00 −1.04667 −0.523336 0.852126i \(-0.675313\pi\)
−0.523336 + 0.852126i \(0.675313\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4787.63 −1.51867
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2119.11 0.645009
\(222\) 0 0
\(223\) 2065.00 0.620101 0.310051 0.950720i \(-0.399654\pi\)
0.310051 + 0.950720i \(0.399654\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1824.79 0.533549 0.266775 0.963759i \(-0.414042\pi\)
0.266775 + 0.963759i \(0.414042\pi\)
\(228\) 0 0
\(229\) 3908.00 1.12772 0.563860 0.825870i \(-0.309316\pi\)
0.563860 + 0.825870i \(0.309316\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4434.44 1.24682 0.623412 0.781894i \(-0.285746\pi\)
0.623412 + 0.781894i \(0.285746\pi\)
\(234\) 0 0
\(235\) 4620.00 1.28245
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1530.47 −0.414217 −0.207109 0.978318i \(-0.566405\pi\)
−0.207109 + 0.978318i \(0.566405\pi\)
\(240\) 0 0
\(241\) 3913.00 1.04589 0.522943 0.852368i \(-0.324834\pi\)
0.522943 + 0.852368i \(0.324834\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −108.000 −0.0278214
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4650.28 −1.16941 −0.584707 0.811245i \(-0.698790\pi\)
−0.584707 + 0.811245i \(0.698790\pi\)
\(252\) 0 0
\(253\) 3850.00 0.956709
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2001.38 0.485770 0.242885 0.970055i \(-0.421906\pi\)
0.242885 + 0.970055i \(0.421906\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −470.914 −0.110410 −0.0552049 0.998475i \(-0.517581\pi\)
−0.0552049 + 0.998475i \(0.517581\pi\)
\(264\) 0 0
\(265\) 12705.0 2.94514
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2021.01 0.458078 0.229039 0.973417i \(-0.426442\pi\)
0.229039 + 0.973417i \(0.426442\pi\)
\(270\) 0 0
\(271\) −1197.00 −0.268312 −0.134156 0.990960i \(-0.542832\pi\)
−0.134156 + 0.990960i \(0.542832\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5101.57 1.11868
\(276\) 0 0
\(277\) 1532.00 0.332307 0.166153 0.986100i \(-0.446865\pi\)
0.166153 + 0.986100i \(0.446865\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −510.157 −0.108304 −0.0541520 0.998533i \(-0.517246\pi\)
−0.0541520 + 0.998533i \(0.517246\pi\)
\(282\) 0 0
\(283\) 6284.00 1.31995 0.659974 0.751289i \(-0.270567\pi\)
0.659974 + 0.751289i \(0.270567\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3373.00 −0.686546
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3708.45 −0.739419 −0.369710 0.929147i \(-0.620543\pi\)
−0.369710 + 0.929147i \(0.620543\pi\)
\(294\) 0 0
\(295\) 11935.0 2.35553
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10595.6 2.04936
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11537.4 2.16600
\(306\) 0 0
\(307\) −1762.00 −0.327566 −0.163783 0.986496i \(-0.552370\pi\)
−0.163783 + 0.986496i \(0.552370\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6671.28 1.21638 0.608189 0.793792i \(-0.291896\pi\)
0.608189 + 0.793792i \(0.291896\pi\)
\(312\) 0 0
\(313\) −1321.00 −0.238554 −0.119277 0.992861i \(-0.538058\pi\)
−0.119277 + 0.992861i \(0.538058\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6298.47 1.11595 0.557977 0.829856i \(-0.311578\pi\)
0.557977 + 0.829856i \(0.311578\pi\)
\(318\) 0 0
\(319\) 1925.00 0.337866
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −78.4857 −0.0135203
\(324\) 0 0
\(325\) 14040.0 2.39630
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9736.00 −1.61673 −0.808367 0.588679i \(-0.799648\pi\)
−0.808367 + 0.588679i \(0.799648\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5925.67 −0.966429
\(336\) 0 0
\(337\) −6747.00 −1.09060 −0.545300 0.838241i \(-0.683584\pi\)
−0.545300 + 0.838241i \(0.683584\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3943.90 −0.626318
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2119.11 −0.327838 −0.163919 0.986474i \(-0.552414\pi\)
−0.163919 + 0.986474i \(0.552414\pi\)
\(348\) 0 0
\(349\) −9646.00 −1.47948 −0.739740 0.672893i \(-0.765052\pi\)
−0.739740 + 0.672893i \(0.765052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −470.914 −0.0710035 −0.0355017 0.999370i \(-0.511303\pi\)
−0.0355017 + 0.999370i \(0.511303\pi\)
\(354\) 0 0
\(355\) −3080.00 −0.460477
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6396.58 0.940386 0.470193 0.882564i \(-0.344184\pi\)
0.470193 + 0.882564i \(0.344184\pi\)
\(360\) 0 0
\(361\) −6855.00 −0.999417
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8751.15 1.25495
\(366\) 0 0
\(367\) 6757.00 0.961070 0.480535 0.876976i \(-0.340443\pi\)
0.480535 + 0.876976i \(0.340443\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8644.00 1.19992 0.599959 0.800031i \(-0.295184\pi\)
0.599959 + 0.800031i \(0.295184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5297.78 0.723739
\(378\) 0 0
\(379\) 7372.00 0.999140 0.499570 0.866273i \(-0.333491\pi\)
0.499570 + 0.866273i \(0.333491\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7495.38 −0.999990 −0.499995 0.866028i \(-0.666665\pi\)
−0.499995 + 0.866028i \(0.666665\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13617.3 −1.77487 −0.887433 0.460937i \(-0.847513\pi\)
−0.887433 + 0.460937i \(0.847513\pi\)
\(390\) 0 0
\(391\) 7700.00 0.995923
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5238.92 −0.667338
\(396\) 0 0
\(397\) 4632.00 0.585575 0.292788 0.956177i \(-0.405417\pi\)
0.292788 + 0.956177i \(0.405417\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5180.05 −0.645086 −0.322543 0.946555i \(-0.604538\pi\)
−0.322543 + 0.946555i \(0.604538\pi\)
\(402\) 0 0
\(403\) −10854.0 −1.34163
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3963.53 −0.482714
\(408\) 0 0
\(409\) 4573.00 0.552861 0.276431 0.961034i \(-0.410848\pi\)
0.276431 + 0.961034i \(0.410848\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −14245.0 −1.68496
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2590.03 0.301984 0.150992 0.988535i \(-0.451753\pi\)
0.150992 + 0.988535i \(0.451753\pi\)
\(420\) 0 0
\(421\) 6096.00 0.705703 0.352851 0.935679i \(-0.385212\pi\)
0.352851 + 0.935679i \(0.385212\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10203.1 1.16453
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16952.9 1.89465 0.947323 0.320279i \(-0.103777\pi\)
0.947323 + 0.320279i \(0.103777\pi\)
\(432\) 0 0
\(433\) 5206.00 0.577793 0.288897 0.957360i \(-0.406712\pi\)
0.288897 + 0.957360i \(0.406712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −392.428 −0.0429574
\(438\) 0 0
\(439\) 12411.0 1.34930 0.674652 0.738136i \(-0.264294\pi\)
0.674652 + 0.738136i \(0.264294\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13401.4 −1.43729 −0.718647 0.695375i \(-0.755238\pi\)
−0.718647 + 0.695375i \(0.755238\pi\)
\(444\) 0 0
\(445\) 2310.00 0.246078
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4669.90 −0.490838 −0.245419 0.969417i \(-0.578925\pi\)
−0.245419 + 0.969417i \(0.578925\pi\)
\(450\) 0 0
\(451\) −9240.00 −0.964733
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14827.0 1.51768 0.758838 0.651280i \(-0.225767\pi\)
0.758838 + 0.651280i \(0.225767\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1451.98 −0.146693 −0.0733467 0.997307i \(-0.523368\pi\)
−0.0733467 + 0.997307i \(0.523368\pi\)
\(462\) 0 0
\(463\) −2276.00 −0.228455 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5572.48 −0.552171 −0.276085 0.961133i \(-0.589037\pi\)
−0.276085 + 0.961133i \(0.589037\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4787.63 −0.465402
\(474\) 0 0
\(475\) −520.000 −0.0502300
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11145.0 −1.06310 −0.531552 0.847026i \(-0.678391\pi\)
−0.531552 + 0.847026i \(0.678391\pi\)
\(480\) 0 0
\(481\) −10908.0 −1.03402
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11674.7 −1.09304
\(486\) 0 0
\(487\) 18467.0 1.71832 0.859158 0.511711i \(-0.170988\pi\)
0.859158 + 0.511711i \(0.170988\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3826.18 −0.351676 −0.175838 0.984419i \(-0.556263\pi\)
−0.175838 + 0.984419i \(0.556263\pi\)
\(492\) 0 0
\(493\) 3850.00 0.351715
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13922.0 −1.24897 −0.624483 0.781038i \(-0.714690\pi\)
−0.624483 + 0.781038i \(0.714690\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20837.9 1.84715 0.923577 0.383414i \(-0.125252\pi\)
0.923577 + 0.383414i \(0.125252\pi\)
\(504\) 0 0
\(505\) −23870.0 −2.10337
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14068.6 −1.22510 −0.612552 0.790430i \(-0.709857\pi\)
−0.612552 + 0.790430i \(0.709857\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −32650.0 −2.79366
\(516\) 0 0
\(517\) 4620.00 0.393012
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12714.7 1.06917 0.534587 0.845113i \(-0.320467\pi\)
0.534587 + 0.845113i \(0.320467\pi\)
\(522\) 0 0
\(523\) −16466.0 −1.37669 −0.688344 0.725384i \(-0.741662\pi\)
−0.688344 + 0.725384i \(0.741662\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7887.81 −0.651989
\(528\) 0 0
\(529\) 26333.0 2.16430
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25429.4 −2.06654
\(534\) 0 0
\(535\) −31185.0 −2.52008
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 384.000 0.0305165 0.0152583 0.999884i \(-0.495143\pi\)
0.0152583 + 0.999884i \(0.495143\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7024.47 0.552101
\(546\) 0 0
\(547\) 10110.0 0.790260 0.395130 0.918625i \(-0.370699\pi\)
0.395130 + 0.918625i \(0.370699\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −196.214 −0.0151706
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1628.58 0.123887 0.0619435 0.998080i \(-0.480270\pi\)
0.0619435 + 0.998080i \(0.480270\pi\)
\(558\) 0 0
\(559\) −13176.0 −0.996933
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13676.1 −1.02377 −0.511883 0.859055i \(-0.671052\pi\)
−0.511883 + 0.859055i \(0.671052\pi\)
\(564\) 0 0
\(565\) 21560.0 1.60537
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14951.5 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(570\) 0 0
\(571\) −10536.0 −0.772185 −0.386093 0.922460i \(-0.626176\pi\)
−0.386093 + 0.922460i \(0.626176\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 51015.7 3.70000
\(576\) 0 0
\(577\) −2287.00 −0.165007 −0.0825035 0.996591i \(-0.526292\pi\)
−0.0825035 + 0.996591i \(0.526292\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12705.0 0.902551
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3904.66 −0.274553 −0.137277 0.990533i \(-0.543835\pi\)
−0.137277 + 0.990533i \(0.543835\pi\)
\(588\) 0 0
\(589\) 402.000 0.0281224
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15657.9 −1.08430 −0.542152 0.840280i \(-0.682390\pi\)
−0.542152 + 0.840280i \(0.682390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21544.3 1.46958 0.734789 0.678296i \(-0.237281\pi\)
0.734789 + 0.678296i \(0.237281\pi\)
\(600\) 0 0
\(601\) 17089.0 1.15986 0.579929 0.814667i \(-0.303080\pi\)
0.579929 + 0.814667i \(0.303080\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −18561.9 −1.24735
\(606\) 0 0
\(607\) −4947.00 −0.330795 −0.165397 0.986227i \(-0.552891\pi\)
−0.165397 + 0.986227i \(0.552891\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12714.7 0.841867
\(612\) 0 0
\(613\) −18030.0 −1.18797 −0.593984 0.804477i \(-0.702446\pi\)
−0.593984 + 0.804477i \(0.702446\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16403.5 −1.07031 −0.535154 0.844754i \(-0.679746\pi\)
−0.535154 + 0.844754i \(0.679746\pi\)
\(618\) 0 0
\(619\) −26308.0 −1.70825 −0.854126 0.520066i \(-0.825907\pi\)
−0.854126 + 0.520066i \(0.825907\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 19475.0 1.24640
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7927.05 −0.502500
\(630\) 0 0
\(631\) −10813.0 −0.682185 −0.341092 0.940030i \(-0.610797\pi\)
−0.341092 + 0.940030i \(0.610797\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 41734.8 2.60818
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12636.2 −0.778627 −0.389313 0.921105i \(-0.627288\pi\)
−0.389313 + 0.921105i \(0.627288\pi\)
\(642\) 0 0
\(643\) −11174.0 −0.685318 −0.342659 0.939460i \(-0.611328\pi\)
−0.342659 + 0.939460i \(0.611328\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19542.9 1.18750 0.593750 0.804650i \(-0.297647\pi\)
0.593750 + 0.804650i \(0.297647\pi\)
\(648\) 0 0
\(649\) 11935.0 0.721864
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14657.2 0.878377 0.439189 0.898395i \(-0.355266\pi\)
0.439189 + 0.898395i \(0.355266\pi\)
\(654\) 0 0
\(655\) −29645.0 −1.76844
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9810.71 −0.579926 −0.289963 0.957038i \(-0.593643\pi\)
−0.289963 + 0.957038i \(0.593643\pi\)
\(660\) 0 0
\(661\) 8024.00 0.472159 0.236080 0.971734i \(-0.424137\pi\)
0.236080 + 0.971734i \(0.424137\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19250.0 1.11749
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11537.4 0.663780
\(672\) 0 0
\(673\) −29791.0 −1.70633 −0.853164 0.521643i \(-0.825319\pi\)
−0.853164 + 0.521643i \(0.825319\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8888.50 0.504598 0.252299 0.967649i \(-0.418813\pi\)
0.252299 + 0.967649i \(0.418813\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5003.46 0.280311 0.140155 0.990130i \(-0.455240\pi\)
0.140155 + 0.990130i \(0.455240\pi\)
\(684\) 0 0
\(685\) −50050.0 −2.79170
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 34965.4 1.93334
\(690\) 0 0
\(691\) −27176.0 −1.49613 −0.748064 0.663627i \(-0.769016\pi\)
−0.748064 + 0.663627i \(0.769016\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 47837.0 2.61088
\(696\) 0 0
\(697\) −18480.0 −1.00428
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9320.17 −0.502166 −0.251083 0.967966i \(-0.580787\pi\)
−0.251083 + 0.967966i \(0.580787\pi\)
\(702\) 0 0
\(703\) 404.000 0.0216745
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5434.00 −0.287839 −0.143920 0.989589i \(-0.545971\pi\)
−0.143920 + 0.989589i \(0.545971\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39439.0 −2.07153
\(714\) 0 0
\(715\) 20790.0 1.08742
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18012.5 −0.934286 −0.467143 0.884182i \(-0.654717\pi\)
−0.467143 + 0.884182i \(0.654717\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 25507.8 1.30667
\(726\) 0 0
\(727\) −29353.0 −1.49744 −0.748722 0.662884i \(-0.769332\pi\)
−0.748722 + 0.662884i \(0.769332\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9575.25 −0.484478
\(732\) 0 0
\(733\) 11436.0 0.576260 0.288130 0.957591i \(-0.406967\pi\)
0.288130 + 0.957591i \(0.406967\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5925.67 −0.296167
\(738\) 0 0
\(739\) −78.0000 −0.00388265 −0.00194132 0.999998i \(-0.500618\pi\)
−0.00194132 + 0.999998i \(0.500618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17306.1 0.854507 0.427254 0.904132i \(-0.359481\pi\)
0.427254 + 0.904132i \(0.359481\pi\)
\(744\) 0 0
\(745\) −30030.0 −1.47680
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 26391.0 1.28232 0.641159 0.767408i \(-0.278454\pi\)
0.641159 + 0.767408i \(0.278454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18581.5 −0.895695
\(756\) 0 0
\(757\) −660.000 −0.0316884 −0.0158442 0.999874i \(-0.505044\pi\)
−0.0158442 + 0.999874i \(0.505044\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5140.81 −0.244881 −0.122440 0.992476i \(-0.539072\pi\)
−0.122440 + 0.992476i \(0.539072\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32846.3 1.54630
\(768\) 0 0
\(769\) −8773.00 −0.411395 −0.205697 0.978616i \(-0.565946\pi\)
−0.205697 + 0.978616i \(0.565946\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11027.2 0.513095 0.256547 0.966532i \(-0.417415\pi\)
0.256547 + 0.966532i \(0.417415\pi\)
\(774\) 0 0
\(775\) −52260.0 −2.42224
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 941.828 0.0433177
\(780\) 0 0
\(781\) −3080.00 −0.141115
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30217.0 1.37387
\(786\) 0 0
\(787\) 5880.00 0.266327 0.133164 0.991094i \(-0.457486\pi\)
0.133164 + 0.991094i \(0.457486\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 31752.0 1.42187
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22898.2 −1.01769 −0.508843 0.860859i \(-0.669927\pi\)
−0.508843 + 0.860859i \(0.669927\pi\)
\(798\) 0 0
\(799\) 9240.00 0.409121
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8751.15 0.384585
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3217.91 0.139846 0.0699232 0.997552i \(-0.477725\pi\)
0.0699232 + 0.997552i \(0.477725\pi\)
\(810\) 0 0
\(811\) 6062.00 0.262473 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21387.3 −0.919222
\(816\) 0 0
\(817\) 488.000 0.0208971
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6808.63 −0.289431 −0.144716 0.989473i \(-0.546227\pi\)
−0.144716 + 0.989473i \(0.546227\pi\)
\(822\) 0 0
\(823\) −32240.0 −1.36551 −0.682756 0.730647i \(-0.739219\pi\)
−0.682756 + 0.730647i \(0.739219\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28313.7 −1.19052 −0.595262 0.803531i \(-0.702952\pi\)
−0.595262 + 0.803531i \(0.702952\pi\)
\(828\) 0 0
\(829\) −32002.0 −1.34074 −0.670371 0.742026i \(-0.733865\pi\)
−0.670371 + 0.742026i \(0.733865\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 40810.0 1.69136
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5376.27 −0.221227 −0.110613 0.993864i \(-0.535282\pi\)
−0.110613 + 0.993864i \(0.535282\pi\)
\(840\) 0 0
\(841\) −14764.0 −0.605355
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14107.8 0.574347
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −39635.3 −1.59657
\(852\) 0 0
\(853\) 19966.0 0.801434 0.400717 0.916202i \(-0.368761\pi\)
0.400717 + 0.916202i \(0.368761\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13892.0 0.553723 0.276861 0.960910i \(-0.410706\pi\)
0.276861 + 0.960910i \(0.410706\pi\)
\(858\) 0 0
\(859\) 33376.0 1.32570 0.662849 0.748753i \(-0.269347\pi\)
0.662849 + 0.748753i \(0.269347\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8986.61 0.354470 0.177235 0.984169i \(-0.443285\pi\)
0.177235 + 0.984169i \(0.443285\pi\)
\(864\) 0 0
\(865\) 36190.0 1.42254
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5238.92 −0.204509
\(870\) 0 0
\(871\) −16308.0 −0.634415
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4520.00 −0.174036 −0.0870180 0.996207i \(-0.527734\pi\)
−0.0870180 + 0.996207i \(0.527734\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37555.4 1.43618 0.718089 0.695951i \(-0.245017\pi\)
0.718089 + 0.695951i \(0.245017\pi\)
\(882\) 0 0
\(883\) −7636.00 −0.291021 −0.145511 0.989357i \(-0.546483\pi\)
−0.145511 + 0.989357i \(0.546483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24369.8 −0.922500 −0.461250 0.887270i \(-0.652599\pi\)
−0.461250 + 0.887270i \(0.652599\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −470.914 −0.0176467
\(894\) 0 0
\(895\) −23100.0 −0.862735
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19719.5 −0.731572
\(900\) 0 0
\(901\) 25410.0 0.939545
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39321.3 1.44429
\(906\) 0 0
\(907\) −12102.0 −0.443043 −0.221522 0.975155i \(-0.571102\pi\)
−0.221522 + 0.975155i \(0.571102\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5180.05 0.188390 0.0941948 0.995554i \(-0.469972\pi\)
0.0941948 + 0.995554i \(0.469972\pi\)
\(912\) 0 0
\(913\) −14245.0 −0.516364
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −33788.0 −1.21280 −0.606400 0.795160i \(-0.707387\pi\)
−0.606400 + 0.795160i \(0.707387\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8476.45 −0.302281
\(924\) 0 0
\(925\) −52520.0 −1.86686
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1412.74 0.0498930 0.0249465 0.999689i \(-0.492058\pi\)
0.0249465 + 0.999689i \(0.492058\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15108.5 0.528450
\(936\) 0 0
\(937\) −17603.0 −0.613730 −0.306865 0.951753i \(-0.599280\pi\)
−0.306865 + 0.951753i \(0.599280\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19091.6 0.661392 0.330696 0.943737i \(-0.392717\pi\)
0.330696 + 0.943737i \(0.392717\pi\)
\(942\) 0 0
\(943\) −92400.0 −3.19084
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −55646.3 −1.90946 −0.954732 0.297466i \(-0.903858\pi\)
−0.954732 + 0.297466i \(0.903858\pi\)
\(948\) 0 0
\(949\) 24084.0 0.823814
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17345.3 −0.589581 −0.294790 0.955562i \(-0.595250\pi\)
−0.294790 + 0.955562i \(0.595250\pi\)
\(954\) 0 0
\(955\) −87780.0 −2.97434
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 10610.0 0.356148
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 91220.0 3.04298
\(966\) 0 0
\(967\) −4747.00 −0.157863 −0.0789313 0.996880i \(-0.525151\pi\)
−0.0789313 + 0.996880i \(0.525151\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32905.1 1.08751 0.543757 0.839243i \(-0.317001\pi\)
0.543757 + 0.839243i \(0.317001\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20955.7 −0.686214 −0.343107 0.939296i \(-0.611479\pi\)
−0.343107 + 0.939296i \(0.611479\pi\)
\(978\) 0 0
\(979\) 2310.00 0.0754116
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 33905.8 1.10013 0.550065 0.835122i \(-0.314603\pi\)
0.550065 + 0.835122i \(0.314603\pi\)
\(984\) 0 0
\(985\) 82390.0 2.66514
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −47876.3 −1.53931
\(990\) 0 0
\(991\) 13469.0 0.431743 0.215871 0.976422i \(-0.430741\pi\)
0.215871 + 0.976422i \(0.430741\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12086.8 0.385103
\(996\) 0 0
\(997\) −14282.0 −0.453677 −0.226838 0.973932i \(-0.572839\pi\)
−0.226838 + 0.973932i \(0.572839\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.4.a.u.1.2 2
3.2 odd 2 inner 1764.4.a.u.1.1 2
7.2 even 3 1764.4.k.x.361.1 4
7.3 odd 6 252.4.k.e.37.2 yes 4
7.4 even 3 1764.4.k.x.1549.1 4
7.5 odd 6 252.4.k.e.109.2 yes 4
7.6 odd 2 1764.4.a.r.1.1 2
21.2 odd 6 1764.4.k.x.361.2 4
21.5 even 6 252.4.k.e.109.1 yes 4
21.11 odd 6 1764.4.k.x.1549.2 4
21.17 even 6 252.4.k.e.37.1 4
21.20 even 2 1764.4.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.k.e.37.1 4 21.17 even 6
252.4.k.e.37.2 yes 4 7.3 odd 6
252.4.k.e.109.1 yes 4 21.5 even 6
252.4.k.e.109.2 yes 4 7.5 odd 6
1764.4.a.r.1.1 2 7.6 odd 2
1764.4.a.r.1.2 2 21.20 even 2
1764.4.a.u.1.1 2 3.2 odd 2 inner
1764.4.a.u.1.2 2 1.1 even 1 trivial
1764.4.k.x.361.1 4 7.2 even 3
1764.4.k.x.361.2 4 21.2 odd 6
1764.4.k.x.1549.1 4 7.4 even 3
1764.4.k.x.1549.2 4 21.11 odd 6