Properties

Label 1764.4.k.x.361.1
Level $1764$
Weight $4$
Character 1764.361
Analytic conductor $104.079$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,4,Mod(361,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,216,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{385})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 97x^{2} + 96x + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(5.15535 + 8.92934i\) of defining polynomial
Character \(\chi\) \(=\) 1764.361
Dual form 1764.4.k.x.1549.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.81071 - 16.9926i) q^{5} +(-9.81071 + 16.9926i) q^{11} +54.0000 q^{13} +(-19.6214 + 33.9853i) q^{17} +(1.00000 + 1.73205i) q^{19} +(-98.1071 - 169.926i) q^{23} +(-130.000 + 225.167i) q^{25} +98.1071 q^{29} +(100.500 - 174.071i) q^{31} +(101.000 + 174.937i) q^{37} -470.914 q^{41} -244.000 q^{43} +(-117.729 - 203.912i) q^{47} +(-323.753 + 560.757i) q^{53} +385.000 q^{55} +(-304.132 + 526.772i) q^{59} +(-294.000 - 509.223i) q^{61} +(-529.778 - 917.603i) q^{65} +(151.000 - 261.540i) q^{67} -156.971 q^{71} +(-223.000 + 386.247i) q^{73} +(133.500 + 231.229i) q^{79} -725.992 q^{83} +770.000 q^{85} +(-58.8643 - 101.956i) q^{89} +(19.6214 - 33.9853i) q^{95} -595.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 216 q^{13} + 4 q^{19} - 520 q^{25} + 402 q^{31} + 404 q^{37} - 976 q^{43} + 1540 q^{55} - 1176 q^{61} + 604 q^{67} - 892 q^{73} + 534 q^{79} + 3080 q^{85} - 2380 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.81071 16.9926i −0.877496 1.51987i −0.854079 0.520143i \(-0.825879\pi\)
−0.0234170 0.999726i \(-0.507455\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −9.81071 + 16.9926i −0.268913 + 0.465770i −0.968581 0.248697i \(-0.919998\pi\)
0.699669 + 0.714468i \(0.253331\pi\)
\(12\) 0 0
\(13\) 54.0000 1.15207 0.576035 0.817425i \(-0.304599\pi\)
0.576035 + 0.817425i \(0.304599\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −19.6214 + 33.9853i −0.279935 + 0.484861i −0.971368 0.237579i \(-0.923646\pi\)
0.691433 + 0.722440i \(0.256980\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.0120745 + 0.0209137i 0.872000 0.489507i \(-0.162823\pi\)
−0.859925 + 0.510420i \(0.829490\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −98.1071 169.926i −0.889424 1.54053i −0.840558 0.541721i \(-0.817773\pi\)
−0.0488654 0.998805i \(-0.515561\pi\)
\(24\) 0 0
\(25\) −130.000 + 225.167i −1.04000 + 1.80133i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 98.1071 0.628208 0.314104 0.949389i \(-0.398296\pi\)
0.314104 + 0.949389i \(0.398296\pi\)
\(30\) 0 0
\(31\) 100.500 174.071i 0.582269 1.00852i −0.412941 0.910758i \(-0.635498\pi\)
0.995210 0.0977614i \(-0.0311682\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 101.000 + 174.937i 0.448765 + 0.777283i 0.998306 0.0581832i \(-0.0185308\pi\)
−0.549541 + 0.835467i \(0.685197\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −470.914 −1.79377 −0.896883 0.442268i \(-0.854174\pi\)
−0.896883 + 0.442268i \(0.854174\pi\)
\(42\) 0 0
\(43\) −244.000 −0.865341 −0.432670 0.901552i \(-0.642429\pi\)
−0.432670 + 0.901552i \(0.642429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −117.729 203.912i −0.365372 0.632842i 0.623464 0.781852i \(-0.285725\pi\)
−0.988836 + 0.149010i \(0.952391\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −323.753 + 560.757i −0.839074 + 1.45332i 0.0515949 + 0.998668i \(0.483570\pi\)
−0.890669 + 0.454652i \(0.849764\pi\)
\(54\) 0 0
\(55\) 385.000 0.943880
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −304.132 + 526.772i −0.671095 + 1.16237i 0.306499 + 0.951871i \(0.400842\pi\)
−0.977594 + 0.210500i \(0.932491\pi\)
\(60\) 0 0
\(61\) −294.000 509.223i −0.617096 1.06884i −0.990013 0.140977i \(-0.954976\pi\)
0.372917 0.927865i \(-0.378358\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −529.778 917.603i −1.01094 1.75099i
\(66\) 0 0
\(67\) 151.000 261.540i 0.275337 0.476898i −0.694883 0.719123i \(-0.744544\pi\)
0.970220 + 0.242225i \(0.0778772\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −156.971 −0.262381 −0.131191 0.991357i \(-0.541880\pi\)
−0.131191 + 0.991357i \(0.541880\pi\)
\(72\) 0 0
\(73\) −223.000 + 386.247i −0.357537 + 0.619272i −0.987549 0.157314i \(-0.949717\pi\)
0.630012 + 0.776585i \(0.283050\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 133.500 + 231.229i 0.190126 + 0.329307i 0.945292 0.326226i \(-0.105777\pi\)
−0.755166 + 0.655533i \(0.772444\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −725.992 −0.960097 −0.480048 0.877242i \(-0.659381\pi\)
−0.480048 + 0.877242i \(0.659381\pi\)
\(84\) 0 0
\(85\) 770.000 0.982567
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −58.8643 101.956i −0.0701078 0.121430i 0.828841 0.559485i \(-0.189001\pi\)
−0.898948 + 0.438055i \(0.855668\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 19.6214 33.9853i 0.0211907 0.0367033i
\(96\) 0 0
\(97\) −595.000 −0.622815 −0.311408 0.950276i \(-0.600800\pi\)
−0.311408 + 0.950276i \(0.600800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 608.264 1053.54i 0.599253 1.03794i −0.393679 0.919248i \(-0.628798\pi\)
0.992932 0.118688i \(-0.0378689\pi\)
\(102\) 0 0
\(103\) 832.000 + 1441.07i 0.795916 + 1.37857i 0.922256 + 0.386581i \(0.126344\pi\)
−0.126339 + 0.991987i \(0.540323\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 794.667 + 1376.40i 0.717976 + 1.24357i 0.961801 + 0.273751i \(0.0882644\pi\)
−0.243825 + 0.969819i \(0.578402\pi\)
\(108\) 0 0
\(109\) −179.000 + 310.037i −0.157294 + 0.272442i −0.933892 0.357555i \(-0.883610\pi\)
0.776598 + 0.629997i \(0.216944\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1098.80 0.914746 0.457373 0.889275i \(-0.348790\pi\)
0.457373 + 0.889275i \(0.348790\pi\)
\(114\) 0 0
\(115\) −1925.00 + 3334.20i −1.56093 + 2.70361i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 473.000 + 819.260i 0.355372 + 0.615522i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2648.89 1.89539
\(126\) 0 0
\(127\) 2127.00 1.48615 0.743074 0.669210i \(-0.233367\pi\)
0.743074 + 0.669210i \(0.233367\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 755.425 + 1308.43i 0.503830 + 0.872659i 0.999990 + 0.00442833i \(0.00140959\pi\)
−0.496160 + 0.868231i \(0.665257\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1275.39 2209.04i 0.795358 1.37760i −0.127253 0.991870i \(-0.540616\pi\)
0.922611 0.385731i \(-0.126051\pi\)
\(138\) 0 0
\(139\) 2438.00 1.48769 0.743843 0.668354i \(-0.233001\pi\)
0.743843 + 0.668354i \(0.233001\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −529.778 + 917.603i −0.309806 + 0.536600i
\(144\) 0 0
\(145\) −962.500 1667.10i −0.551250 0.954793i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 765.235 + 1325.43i 0.420742 + 0.728746i 0.996012 0.0892172i \(-0.0284365\pi\)
−0.575270 + 0.817963i \(0.695103\pi\)
\(150\) 0 0
\(151\) 473.500 820.126i 0.255185 0.441993i −0.709761 0.704443i \(-0.751197\pi\)
0.964946 + 0.262450i \(0.0845304\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3943.90 −2.04376
\(156\) 0 0
\(157\) −770.000 + 1333.68i −0.391418 + 0.677957i −0.992637 0.121128i \(-0.961349\pi\)
0.601218 + 0.799085i \(0.294682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 545.000 + 943.968i 0.261888 + 0.453603i 0.966744 0.255748i \(-0.0823217\pi\)
−0.704856 + 0.709351i \(0.748988\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2079.87 0.963744 0.481872 0.876242i \(-0.339957\pi\)
0.481872 + 0.876242i \(0.339957\pi\)
\(168\) 0 0
\(169\) 719.000 0.327264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −922.207 1597.31i −0.405284 0.701972i 0.589071 0.808081i \(-0.299494\pi\)
−0.994354 + 0.106110i \(0.966161\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 588.643 1019.56i 0.245794 0.425728i −0.716560 0.697525i \(-0.754285\pi\)
0.962355 + 0.271797i \(0.0876178\pi\)
\(180\) 0 0
\(181\) 2004.00 0.822962 0.411481 0.911418i \(-0.365012\pi\)
0.411481 + 0.911418i \(0.365012\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1981.76 3432.51i 0.787579 1.36413i
\(186\) 0 0
\(187\) −385.000 666.840i −0.150556 0.260771i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2236.84 + 3874.32i 0.847394 + 1.46773i 0.883526 + 0.468382i \(0.155163\pi\)
−0.0361326 + 0.999347i \(0.511504\pi\)
\(192\) 0 0
\(193\) −2324.50 + 4026.15i −0.866949 + 1.50160i −0.00185031 + 0.999998i \(0.500589\pi\)
−0.865099 + 0.501602i \(0.832744\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4198.98 1.51860 0.759302 0.650738i \(-0.225540\pi\)
0.759302 + 0.650738i \(0.225540\pi\)
\(198\) 0 0
\(199\) −308.000 + 533.472i −0.109716 + 0.190034i −0.915655 0.401964i \(-0.868328\pi\)
0.805939 + 0.591999i \(0.201661\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4620.00 + 8002.07i 1.57402 + 2.72629i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −39.2428 −0.0129880
\(210\) 0 0
\(211\) −3208.00 −1.04667 −0.523336 0.852126i \(-0.675313\pi\)
−0.523336 + 0.852126i \(0.675313\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2393.81 + 4146.21i 0.759333 + 1.31520i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1059.56 + 1835.21i −0.322504 + 0.558594i
\(222\) 0 0
\(223\) 2065.00 0.620101 0.310051 0.950720i \(-0.399654\pi\)
0.310051 + 0.950720i \(0.399654\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −912.396 + 1580.32i −0.266775 + 0.462067i −0.968027 0.250846i \(-0.919291\pi\)
0.701252 + 0.712913i \(0.252625\pi\)
\(228\) 0 0
\(229\) −1954.00 3384.43i −0.563860 0.976634i −0.997155 0.0753820i \(-0.975982\pi\)
0.433295 0.901252i \(-0.357351\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2217.22 3840.34i −0.623412 1.07978i −0.988846 0.148943i \(-0.952413\pi\)
0.365434 0.930837i \(-0.380921\pi\)
\(234\) 0 0
\(235\) −2310.00 + 4001.04i −0.641225 + 1.11063i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1530.47 −0.414217 −0.207109 0.978318i \(-0.566405\pi\)
−0.207109 + 0.978318i \(0.566405\pi\)
\(240\) 0 0
\(241\) −1956.50 + 3388.76i −0.522943 + 0.905764i 0.476701 + 0.879066i \(0.341833\pi\)
−0.999644 + 0.0266980i \(0.991501\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 54.0000 + 93.5307i 0.0139107 + 0.0240940i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4650.28 −1.16941 −0.584707 0.811245i \(-0.698790\pi\)
−0.584707 + 0.811245i \(0.698790\pi\)
\(252\) 0 0
\(253\) 3850.00 0.956709
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1000.69 1733.25i −0.242885 0.420689i 0.718650 0.695372i \(-0.244760\pi\)
−0.961535 + 0.274683i \(0.911427\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 235.457 407.823i 0.0552049 0.0956178i −0.837102 0.547046i \(-0.815752\pi\)
0.892307 + 0.451429i \(0.149085\pi\)
\(264\) 0 0
\(265\) 12705.0 2.94514
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1010.50 + 1750.24i −0.229039 + 0.396707i −0.957524 0.288355i \(-0.906892\pi\)
0.728485 + 0.685062i \(0.240225\pi\)
\(270\) 0 0
\(271\) 598.500 + 1036.63i 0.134156 + 0.232365i 0.925275 0.379298i \(-0.123834\pi\)
−0.791119 + 0.611663i \(0.790501\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2550.78 4418.09i −0.559338 0.968803i
\(276\) 0 0
\(277\) −766.000 + 1326.75i −0.166153 + 0.287786i −0.937064 0.349157i \(-0.886468\pi\)
0.770911 + 0.636943i \(0.219801\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −510.157 −0.108304 −0.0541520 0.998533i \(-0.517246\pi\)
−0.0541520 + 0.998533i \(0.517246\pi\)
\(282\) 0 0
\(283\) −3142.00 + 5442.10i −0.659974 + 1.14311i 0.320648 + 0.947198i \(0.396099\pi\)
−0.980622 + 0.195909i \(0.937234\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1686.50 + 2921.10i 0.343273 + 0.594566i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3708.45 −0.739419 −0.369710 0.929147i \(-0.620543\pi\)
−0.369710 + 0.929147i \(0.620543\pi\)
\(294\) 0 0
\(295\) 11935.0 2.35553
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5297.78 9176.03i −1.02468 1.77479i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5768.70 + 9991.68i −1.08300 + 1.87581i
\(306\) 0 0
\(307\) −1762.00 −0.327566 −0.163783 0.986496i \(-0.552370\pi\)
−0.163783 + 0.986496i \(0.552370\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3335.64 + 5777.50i −0.608189 + 1.05341i 0.383350 + 0.923603i \(0.374770\pi\)
−0.991539 + 0.129811i \(0.958563\pi\)
\(312\) 0 0
\(313\) 660.500 + 1144.02i 0.119277 + 0.206594i 0.919481 0.393134i \(-0.128609\pi\)
−0.800204 + 0.599727i \(0.795276\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3149.24 5454.64i −0.557977 0.966445i −0.997665 0.0682944i \(-0.978244\pi\)
0.439688 0.898151i \(-0.355089\pi\)
\(318\) 0 0
\(319\) −962.500 + 1667.10i −0.168933 + 0.292601i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −78.4857 −0.0135203
\(324\) 0 0
\(325\) −7020.00 + 12159.0i −1.19815 + 2.07526i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4868.00 + 8431.62i 0.808367 + 1.40013i 0.913994 + 0.405727i \(0.132982\pi\)
−0.105627 + 0.994406i \(0.533685\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5925.67 −0.966429
\(336\) 0 0
\(337\) −6747.00 −1.09060 −0.545300 0.838241i \(-0.683584\pi\)
−0.545300 + 0.838241i \(0.683584\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1971.95 + 3415.52i 0.313159 + 0.542407i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1059.56 1835.21i 0.163919 0.283916i −0.772352 0.635195i \(-0.780920\pi\)
0.936271 + 0.351279i \(0.114253\pi\)
\(348\) 0 0
\(349\) −9646.00 −1.47948 −0.739740 0.672893i \(-0.765052\pi\)
−0.739740 + 0.672893i \(0.765052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 235.457 407.823i 0.0355017 0.0614908i −0.847729 0.530430i \(-0.822030\pi\)
0.883230 + 0.468939i \(0.155364\pi\)
\(354\) 0 0
\(355\) 1540.00 + 2667.36i 0.230239 + 0.398785i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3198.29 5539.60i −0.470193 0.814398i 0.529226 0.848481i \(-0.322482\pi\)
−0.999419 + 0.0340826i \(0.989149\pi\)
\(360\) 0 0
\(361\) 3427.50 5936.60i 0.499708 0.865520i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8751.15 1.25495
\(366\) 0 0
\(367\) −3378.50 + 5851.73i −0.480535 + 0.832311i −0.999751 0.0223325i \(-0.992891\pi\)
0.519216 + 0.854643i \(0.326224\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4322.00 7485.92i −0.599959 1.03916i −0.992826 0.119564i \(-0.961850\pi\)
0.392868 0.919595i \(-0.371483\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5297.78 0.723739
\(378\) 0 0
\(379\) 7372.00 0.999140 0.499570 0.866273i \(-0.333491\pi\)
0.499570 + 0.866273i \(0.333491\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3747.69 + 6491.19i 0.499995 + 0.866017i 1.00000 5.89356e-6i \(-1.87598e-6\pi\)
−0.500005 + 0.866022i \(0.666669\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6808.63 11792.9i 0.887433 1.53708i 0.0445330 0.999008i \(-0.485820\pi\)
0.842900 0.538071i \(-0.180847\pi\)
\(390\) 0 0
\(391\) 7700.00 0.995923
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2619.46 4537.04i 0.333669 0.577932i
\(396\) 0 0
\(397\) −2316.00 4011.43i −0.292788 0.507123i 0.681680 0.731650i \(-0.261250\pi\)
−0.974468 + 0.224527i \(0.927916\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2590.03 + 4486.06i 0.322543 + 0.558661i 0.981012 0.193947i \(-0.0621289\pi\)
−0.658469 + 0.752608i \(0.728796\pi\)
\(402\) 0 0
\(403\) 5427.00 9399.84i 0.670814 1.16188i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3963.53 −0.482714
\(408\) 0 0
\(409\) −2286.50 + 3960.33i −0.276431 + 0.478792i −0.970495 0.241121i \(-0.922485\pi\)
0.694064 + 0.719913i \(0.255818\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7122.50 + 12336.5i 0.842481 + 1.45922i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2590.03 0.301984 0.150992 0.988535i \(-0.451753\pi\)
0.150992 + 0.988535i \(0.451753\pi\)
\(420\) 0 0
\(421\) 6096.00 0.705703 0.352851 0.935679i \(-0.385212\pi\)
0.352851 + 0.935679i \(0.385212\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5101.57 8836.18i −0.582265 1.00851i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8476.45 + 14681.6i −0.947323 + 1.64081i −0.196292 + 0.980546i \(0.562890\pi\)
−0.751031 + 0.660267i \(0.770443\pi\)
\(432\) 0 0
\(433\) 5206.00 0.577793 0.288897 0.957360i \(-0.406712\pi\)
0.288897 + 0.957360i \(0.406712\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 196.214 339.853i 0.0214787 0.0372022i
\(438\) 0 0
\(439\) −6205.50 10748.2i −0.674652 1.16853i −0.976570 0.215198i \(-0.930960\pi\)
0.301918 0.953334i \(-0.402373\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6700.71 + 11606.0i 0.718647 + 1.24473i 0.961536 + 0.274679i \(0.0885715\pi\)
−0.242889 + 0.970054i \(0.578095\pi\)
\(444\) 0 0
\(445\) −1155.00 + 2000.52i −0.123039 + 0.213109i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4669.90 −0.490838 −0.245419 0.969417i \(-0.578925\pi\)
−0.245419 + 0.969417i \(0.578925\pi\)
\(450\) 0 0
\(451\) 4620.00 8002.07i 0.482367 0.835483i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7413.50 12840.6i −0.758838 1.31435i −0.943444 0.331533i \(-0.892434\pi\)
0.184606 0.982813i \(-0.440899\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1451.98 −0.146693 −0.0733467 0.997307i \(-0.523368\pi\)
−0.0733467 + 0.997307i \(0.523368\pi\)
\(462\) 0 0
\(463\) −2276.00 −0.228455 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2786.24 + 4825.91i 0.276085 + 0.478194i 0.970408 0.241470i \(-0.0776294\pi\)
−0.694323 + 0.719664i \(0.744296\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2393.81 4146.21i 0.232701 0.403050i
\(474\) 0 0
\(475\) −520.000 −0.0502300
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5572.48 9651.82i 0.531552 0.920674i −0.467770 0.883850i \(-0.654942\pi\)
0.999322 0.0368242i \(-0.0117242\pi\)
\(480\) 0 0
\(481\) 5454.00 + 9446.61i 0.517008 + 0.895485i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5837.37 + 10110.6i 0.546518 + 0.946598i
\(486\) 0 0
\(487\) −9233.50 + 15992.9i −0.859158 + 1.48810i 0.0135757 + 0.999908i \(0.495679\pi\)
−0.872733 + 0.488197i \(0.837655\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3826.18 −0.351676 −0.175838 0.984419i \(-0.556263\pi\)
−0.175838 + 0.984419i \(0.556263\pi\)
\(492\) 0 0
\(493\) −1925.00 + 3334.20i −0.175857 + 0.304594i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6961.00 + 12056.8i 0.624483 + 1.08164i 0.988641 + 0.150299i \(0.0480237\pi\)
−0.364157 + 0.931337i \(0.618643\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20837.9 1.84715 0.923577 0.383414i \(-0.125252\pi\)
0.923577 + 0.383414i \(0.125252\pi\)
\(504\) 0 0
\(505\) −23870.0 −2.10337
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7034.28 + 12183.7i 0.612552 + 1.06097i 0.990809 + 0.135270i \(0.0431903\pi\)
−0.378257 + 0.925701i \(0.623476\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16325.0 28275.8i 1.39683 2.41938i
\(516\) 0 0
\(517\) 4620.00 0.393012
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6357.34 + 11011.2i −0.534587 + 0.925933i 0.464596 + 0.885523i \(0.346200\pi\)
−0.999183 + 0.0404098i \(0.987134\pi\)
\(522\) 0 0
\(523\) 8233.00 + 14260.0i 0.688344 + 1.19225i 0.972373 + 0.233431i \(0.0749954\pi\)
−0.284029 + 0.958816i \(0.591671\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3943.90 + 6831.04i 0.325995 + 0.564639i
\(528\) 0 0
\(529\) −13166.5 + 22805.0i −1.08215 + 1.87434i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25429.4 −2.06654
\(534\) 0 0
\(535\) 15592.5 27007.0i 1.26004 2.18246i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −192.000 332.554i −0.0152583 0.0264281i 0.858295 0.513156i \(-0.171524\pi\)
−0.873554 + 0.486728i \(0.838190\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7024.47 0.552101
\(546\) 0 0
\(547\) 10110.0 0.790260 0.395130 0.918625i \(-0.370699\pi\)
0.395130 + 0.918625i \(0.370699\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 98.1071 + 169.926i 0.00758530 + 0.0131381i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −814.289 + 1410.39i −0.0619435 + 0.107289i −0.895334 0.445395i \(-0.853063\pi\)
0.833391 + 0.552684i \(0.186397\pi\)
\(558\) 0 0
\(559\) −13176.0 −0.996933
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6838.06 11843.9i 0.511883 0.886607i −0.488022 0.872831i \(-0.662282\pi\)
0.999905 0.0137759i \(-0.00438514\pi\)
\(564\) 0 0
\(565\) −10780.0 18671.5i −0.802687 1.39029i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7475.76 + 12948.4i 0.550791 + 0.953998i 0.998218 + 0.0596776i \(0.0190073\pi\)
−0.447427 + 0.894321i \(0.647659\pi\)
\(570\) 0 0
\(571\) 5268.00 9124.44i 0.386093 0.668732i −0.605827 0.795596i \(-0.707158\pi\)
0.991920 + 0.126864i \(0.0404911\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 51015.7 3.70000
\(576\) 0 0
\(577\) 1143.50 1980.60i 0.0825035 0.142900i −0.821821 0.569746i \(-0.807042\pi\)
0.904325 + 0.426845i \(0.140375\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6352.50 11002.9i −0.451276 0.781632i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3904.66 −0.274553 −0.137277 0.990533i \(-0.543835\pi\)
−0.137277 + 0.990533i \(0.543835\pi\)
\(588\) 0 0
\(589\) 402.000 0.0281224
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7828.95 + 13560.1i 0.542152 + 0.939035i 0.998780 + 0.0493774i \(0.0157237\pi\)
−0.456628 + 0.889658i \(0.650943\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10772.2 + 18657.9i −0.734789 + 1.27269i 0.220027 + 0.975494i \(0.429385\pi\)
−0.954816 + 0.297198i \(0.903948\pi\)
\(600\) 0 0
\(601\) 17089.0 1.15986 0.579929 0.814667i \(-0.303080\pi\)
0.579929 + 0.814667i \(0.303080\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9280.93 16075.0i 0.623675 1.08024i
\(606\) 0 0
\(607\) 2473.50 + 4284.23i 0.165397 + 0.286477i 0.936796 0.349875i \(-0.113776\pi\)
−0.771399 + 0.636352i \(0.780443\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6357.34 11011.2i −0.420934 0.729078i
\(612\) 0 0
\(613\) 9015.00 15614.4i 0.593984 1.02881i −0.399705 0.916644i \(-0.630887\pi\)
0.993689 0.112167i \(-0.0357792\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16403.5 −1.07031 −0.535154 0.844754i \(-0.679746\pi\)
−0.535154 + 0.844754i \(0.679746\pi\)
\(618\) 0 0
\(619\) 13154.0 22783.4i 0.854126 1.47939i −0.0233278 0.999728i \(-0.507426\pi\)
0.877454 0.479661i \(-0.159241\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9737.50 16865.8i −0.623200 1.07941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7927.05 −0.502500
\(630\) 0 0
\(631\) −10813.0 −0.682185 −0.341092 0.940030i \(-0.610797\pi\)
−0.341092 + 0.940030i \(0.610797\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20867.4 36143.4i −1.30409 2.25875i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6318.10 10943.3i 0.389313 0.674310i −0.603044 0.797708i \(-0.706046\pi\)
0.992357 + 0.123398i \(0.0393790\pi\)
\(642\) 0 0
\(643\) −11174.0 −0.685318 −0.342659 0.939460i \(-0.611328\pi\)
−0.342659 + 0.939460i \(0.611328\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9771.47 + 16924.7i −0.593750 + 1.02840i 0.399972 + 0.916527i \(0.369020\pi\)
−0.993722 + 0.111877i \(0.964314\pi\)
\(648\) 0 0
\(649\) −5967.50 10336.0i −0.360932 0.625153i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7328.60 12693.5i −0.439189 0.760697i 0.558438 0.829546i \(-0.311401\pi\)
−0.997627 + 0.0688488i \(0.978067\pi\)
\(654\) 0 0
\(655\) 14822.5 25673.3i 0.884218 1.53151i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9810.71 −0.579926 −0.289963 0.957038i \(-0.593643\pi\)
−0.289963 + 0.957038i \(0.593643\pi\)
\(660\) 0 0
\(661\) −4012.00 + 6948.99i −0.236080 + 0.408902i −0.959586 0.281416i \(-0.909196\pi\)
0.723506 + 0.690318i \(0.242529\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9625.00 16671.0i −0.558743 0.967771i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11537.4 0.663780
\(672\) 0 0
\(673\) −29791.0 −1.70633 −0.853164 0.521643i \(-0.825319\pi\)
−0.853164 + 0.521643i \(0.825319\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4444.25 7697.67i −0.252299 0.436995i 0.711859 0.702322i \(-0.247853\pi\)
−0.964158 + 0.265327i \(0.914520\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2501.73 + 4333.12i −0.140155 + 0.242756i −0.927555 0.373687i \(-0.878094\pi\)
0.787400 + 0.616443i \(0.211427\pi\)
\(684\) 0 0
\(685\) −50050.0 −2.79170
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17482.7 + 30280.9i −0.966672 + 1.67433i
\(690\) 0 0
\(691\) 13588.0 + 23535.1i 0.748064 + 1.29568i 0.948750 + 0.316028i \(0.102349\pi\)
−0.200686 + 0.979656i \(0.564317\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23918.5 41428.1i −1.30544 2.26109i
\(696\) 0 0
\(697\) 9240.00 16004.1i 0.502138 0.869728i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9320.17 −0.502166 −0.251083 0.967966i \(-0.580787\pi\)
−0.251083 + 0.967966i \(0.580787\pi\)
\(702\) 0 0
\(703\) −202.000 + 349.874i −0.0108372 + 0.0187706i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2717.00 + 4705.98i 0.143920 + 0.249276i 0.928969 0.370157i \(-0.120696\pi\)
−0.785050 + 0.619433i \(0.787363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39439.0 −2.07153
\(714\) 0 0
\(715\) 20790.0 1.08742
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9006.23 + 15599.2i 0.467143 + 0.809115i 0.999295 0.0375333i \(-0.0119500\pi\)
−0.532153 + 0.846649i \(0.678617\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12753.9 + 22090.4i −0.653336 + 1.13161i
\(726\) 0 0
\(727\) −29353.0 −1.49744 −0.748722 0.662884i \(-0.769332\pi\)
−0.748722 + 0.662884i \(0.769332\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4787.63 8292.41i 0.242239 0.419570i
\(732\) 0 0
\(733\) −5718.00 9903.87i −0.288130 0.499055i 0.685234 0.728323i \(-0.259700\pi\)
−0.973363 + 0.229268i \(0.926367\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2962.83 + 5131.78i 0.148083 + 0.256488i
\(738\) 0 0
\(739\) 39.0000 67.5500i 0.00194132 0.00336247i −0.865053 0.501680i \(-0.832715\pi\)
0.866994 + 0.498318i \(0.166049\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17306.1 0.854507 0.427254 0.904132i \(-0.359481\pi\)
0.427254 + 0.904132i \(0.359481\pi\)
\(744\) 0 0
\(745\) 15015.0 26006.7i 0.738399 1.27894i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −13195.5 22855.3i −0.641159 1.11052i −0.985174 0.171556i \(-0.945120\pi\)
0.344015 0.938964i \(-0.388213\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18581.5 −0.895695
\(756\) 0 0
\(757\) −660.000 −0.0316884 −0.0158442 0.999874i \(-0.505044\pi\)
−0.0158442 + 0.999874i \(0.505044\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2570.41 + 4452.07i 0.122440 + 0.212073i 0.920730 0.390201i \(-0.127595\pi\)
−0.798289 + 0.602274i \(0.794261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16423.1 + 28445.7i −0.773148 + 1.33913i
\(768\) 0 0
\(769\) −8773.00 −0.411395 −0.205697 0.978616i \(-0.565946\pi\)
−0.205697 + 0.978616i \(0.565946\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5513.62 + 9549.87i −0.256547 + 0.444353i −0.965315 0.261089i \(-0.915918\pi\)
0.708767 + 0.705442i \(0.249252\pi\)
\(774\) 0 0
\(775\) 26130.0 + 45258.5i 1.21112 + 2.09772i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −470.914 815.647i −0.0216589 0.0375142i
\(780\) 0 0
\(781\) 1540.00 2667.36i 0.0705577 0.122209i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30217.0 1.37387
\(786\) 0 0
\(787\) −2940.00 + 5092.23i −0.133164 + 0.230646i −0.924894 0.380224i \(-0.875847\pi\)
0.791731 + 0.610870i \(0.209180\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −15876.0 27498.0i −0.710937 1.23138i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22898.2 −1.01769 −0.508843 0.860859i \(-0.669927\pi\)
−0.508843 + 0.860859i \(0.669927\pi\)
\(798\) 0 0
\(799\) 9240.00 0.409121
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4375.58 7578.72i −0.192292 0.333060i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1608.96 + 2786.79i −0.0699232 + 0.121111i −0.898867 0.438221i \(-0.855609\pi\)
0.828944 + 0.559331i \(0.188942\pi\)
\(810\) 0 0
\(811\) 6062.00 0.262473 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10693.7 18522.0i 0.459611 0.796070i
\(816\) 0 0
\(817\) −244.000 422.620i −0.0104486 0.0180974i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3404.32 + 5896.45i 0.144716 + 0.250655i 0.929267 0.369409i \(-0.120440\pi\)
−0.784551 + 0.620064i \(0.787107\pi\)
\(822\) 0 0
\(823\) 16120.0 27920.7i 0.682756 1.18257i −0.291381 0.956607i \(-0.594115\pi\)
0.974137 0.225960i \(-0.0725520\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28313.7 −1.19052 −0.595262 0.803531i \(-0.702952\pi\)
−0.595262 + 0.803531i \(0.702952\pi\)
\(828\) 0 0
\(829\) 16001.0 27714.5i 0.670371 1.16112i −0.307428 0.951571i \(-0.599468\pi\)
0.977799 0.209545i \(-0.0671984\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −20405.0 35342.5i −0.845682 1.46476i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5376.27 −0.221227 −0.110613 0.993864i \(-0.535282\pi\)
−0.110613 + 0.993864i \(0.535282\pi\)
\(840\) 0 0
\(841\) −14764.0 −0.605355
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7053.90 12217.7i −0.287173 0.497399i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19817.6 34325.1i 0.798284 1.38267i
\(852\) 0 0
\(853\) 19966.0 0.801434 0.400717 0.916202i \(-0.368761\pi\)
0.400717 + 0.916202i \(0.368761\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6945.98 + 12030.8i −0.276861 + 0.479538i −0.970603 0.240686i \(-0.922628\pi\)
0.693742 + 0.720224i \(0.255961\pi\)
\(858\) 0 0
\(859\) −16688.0 28904.5i −0.662849 1.14809i −0.979864 0.199667i \(-0.936014\pi\)
0.317015 0.948421i \(-0.397320\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4493.30 7782.63i −0.177235 0.306980i 0.763697 0.645574i \(-0.223382\pi\)
−0.940932 + 0.338594i \(0.890049\pi\)
\(864\) 0 0
\(865\) −18095.0 + 31341.5i −0.711270 + 1.23196i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5238.92 −0.204509
\(870\) 0 0
\(871\) 8154.00 14123.1i 0.317208 0.549420i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2260.00 + 3914.43i 0.0870180 + 0.150720i 0.906249 0.422744i \(-0.138933\pi\)
−0.819231 + 0.573463i \(0.805600\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37555.4 1.43618 0.718089 0.695951i \(-0.245017\pi\)
0.718089 + 0.695951i \(0.245017\pi\)
\(882\) 0 0
\(883\) −7636.00 −0.291021 −0.145511 0.989357i \(-0.546483\pi\)
−0.145511 + 0.989357i \(0.546483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12184.9 + 21104.9i 0.461250 + 0.798909i 0.999024 0.0441807i \(-0.0140677\pi\)
−0.537773 + 0.843089i \(0.680734\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 235.457 407.823i 0.00882337 0.0152825i
\(894\) 0 0
\(895\) −23100.0 −0.862735
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9859.76 17077.6i 0.365786 0.633560i
\(900\) 0 0
\(901\) −12705.0 22005.7i −0.469772 0.813670i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19660.7 34053.3i −0.722146 1.25079i
\(906\) 0 0
\(907\) 6051.00 10480.6i 0.221522 0.383687i −0.733749 0.679421i \(-0.762231\pi\)
0.955270 + 0.295734i \(0.0955643\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5180.05 0.188390 0.0941948 0.995554i \(-0.469972\pi\)
0.0941948 + 0.995554i \(0.469972\pi\)
\(912\) 0 0
\(913\) 7122.50 12336.5i 0.258182 0.447185i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16894.0 + 29261.3i 0.606400 + 1.05032i 0.991829 + 0.127578i \(0.0407203\pi\)
−0.385429 + 0.922738i \(0.625946\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8476.45 −0.302281
\(924\) 0 0
\(925\) −52520.0 −1.86686
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −706.371 1223.47i −0.0249465 0.0432086i 0.853283 0.521449i \(-0.174608\pi\)
−0.878229 + 0.478240i \(0.841275\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7554.25 + 13084.3i −0.264225 + 0.457651i
\(936\) 0 0
\(937\) −17603.0 −0.613730 −0.306865 0.951753i \(-0.599280\pi\)
−0.306865 + 0.951753i \(0.599280\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9545.82 + 16533.8i −0.330696 + 0.572782i −0.982648 0.185478i \(-0.940617\pi\)
0.651953 + 0.758260i \(0.273950\pi\)
\(942\) 0 0
\(943\) 46200.0 + 80020.7i 1.59542 + 2.76334i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27823.2 + 48191.1i 0.954732 + 1.65364i 0.734980 + 0.678089i \(0.237192\pi\)
0.219753 + 0.975556i \(0.429475\pi\)
\(948\) 0 0
\(949\) −12042.0 + 20857.4i −0.411907 + 0.713444i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17345.3 −0.589581 −0.294790 0.955562i \(-0.595250\pi\)
−0.294790 + 0.955562i \(0.595250\pi\)
\(954\) 0 0
\(955\) 43890.0 76019.7i 1.48717 2.57585i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5305.00 9188.53i −0.178074 0.308433i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 91220.0 3.04298
\(966\) 0 0
\(967\) −4747.00 −0.157863 −0.0789313 0.996880i \(-0.525151\pi\)
−0.0789313 + 0.996880i \(0.525151\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16452.6 28496.7i −0.543757 0.941814i −0.998684 0.0512856i \(-0.983668\pi\)
0.454927 0.890529i \(-0.349665\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10477.8 18148.1i 0.343107 0.594279i −0.641901 0.766788i \(-0.721854\pi\)
0.985008 + 0.172509i \(0.0551873\pi\)
\(978\) 0 0
\(979\) 2310.00 0.0754116
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16952.9 + 29363.3i −0.550065 + 0.952740i 0.448204 + 0.893931i \(0.352064\pi\)
−0.998269 + 0.0588091i \(0.981270\pi\)
\(984\) 0 0
\(985\) −41195.0 71351.8i −1.33257 2.30808i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 23938.1 + 41462.1i 0.769654 + 1.33308i
\(990\) 0 0
\(991\) −6734.50 + 11664.5i −0.215871 + 0.373900i −0.953542 0.301261i \(-0.902592\pi\)
0.737670 + 0.675161i \(0.235926\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12086.8 0.385103
\(996\) 0 0
\(997\) 7141.00 12368.6i 0.226838 0.392895i −0.730031 0.683414i \(-0.760494\pi\)
0.956869 + 0.290519i \(0.0938278\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.4.k.x.361.1 4
3.2 odd 2 inner 1764.4.k.x.361.2 4
7.2 even 3 inner 1764.4.k.x.1549.1 4
7.3 odd 6 1764.4.a.r.1.1 2
7.4 even 3 1764.4.a.u.1.2 2
7.5 odd 6 252.4.k.e.37.2 yes 4
7.6 odd 2 252.4.k.e.109.2 yes 4
21.2 odd 6 inner 1764.4.k.x.1549.2 4
21.5 even 6 252.4.k.e.37.1 4
21.11 odd 6 1764.4.a.u.1.1 2
21.17 even 6 1764.4.a.r.1.2 2
21.20 even 2 252.4.k.e.109.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.k.e.37.1 4 21.5 even 6
252.4.k.e.37.2 yes 4 7.5 odd 6
252.4.k.e.109.1 yes 4 21.20 even 2
252.4.k.e.109.2 yes 4 7.6 odd 2
1764.4.a.r.1.1 2 7.3 odd 6
1764.4.a.r.1.2 2 21.17 even 6
1764.4.a.u.1.1 2 21.11 odd 6
1764.4.a.u.1.2 2 7.4 even 3
1764.4.k.x.361.1 4 1.1 even 1 trivial
1764.4.k.x.361.2 4 3.2 odd 2 inner
1764.4.k.x.1549.1 4 7.2 even 3 inner
1764.4.k.x.1549.2 4 21.2 odd 6 inner