Defining parameters
Level: | \( N \) | \(=\) | \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1764.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1764))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1056 | 51 | 1005 |
Cusp forms | 960 | 51 | 909 |
Eisenstein series | 96 | 0 | 96 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(12\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(16\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(15\) |
Plus space | \(+\) | \(28\) | ||
Minus space | \(-\) | \(23\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1764))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1764))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1764)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(882))\)\(^{\oplus 2}\)