Properties

Label 2-42e2-1.1-c3-0-30
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.6·5-s + 19.6·11-s + 54·13-s + 39.2·17-s − 2·19-s + 196.·23-s + 259.·25-s + 98.1·29-s − 201·31-s − 202·37-s − 470.·41-s − 244·43-s + 235.·47-s + 647.·53-s + 384.·55-s + 608.·59-s + 588·61-s + 1.05e3·65-s − 302·67-s − 156.·71-s + 446·73-s − 267·79-s − 725.·83-s + 769.·85-s + 117.·89-s − 39.2·95-s − 595·97-s + ⋯
L(s)  = 1  + 1.75·5-s + 0.537·11-s + 1.15·13-s + 0.559·17-s − 0.0241·19-s + 1.77·23-s + 2.07·25-s + 0.628·29-s − 1.16·31-s − 0.897·37-s − 1.79·41-s − 0.865·43-s + 0.730·47-s + 1.67·53-s + 0.943·55-s + 1.34·59-s + 1.23·61-s + 2.02·65-s − 0.550·67-s − 0.262·71-s + 0.715·73-s − 0.380·79-s − 0.960·83-s + 0.982·85-s + 0.140·89-s − 0.0423·95-s − 0.622·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.964215480\)
\(L(\frac12)\) \(\approx\) \(3.964215480\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 19.6T + 125T^{2} \)
11 \( 1 - 19.6T + 1.33e3T^{2} \)
13 \( 1 - 54T + 2.19e3T^{2} \)
17 \( 1 - 39.2T + 4.91e3T^{2} \)
19 \( 1 + 2T + 6.85e3T^{2} \)
23 \( 1 - 196.T + 1.21e4T^{2} \)
29 \( 1 - 98.1T + 2.43e4T^{2} \)
31 \( 1 + 201T + 2.97e4T^{2} \)
37 \( 1 + 202T + 5.06e4T^{2} \)
41 \( 1 + 470.T + 6.89e4T^{2} \)
43 \( 1 + 244T + 7.95e4T^{2} \)
47 \( 1 - 235.T + 1.03e5T^{2} \)
53 \( 1 - 647.T + 1.48e5T^{2} \)
59 \( 1 - 608.T + 2.05e5T^{2} \)
61 \( 1 - 588T + 2.26e5T^{2} \)
67 \( 1 + 302T + 3.00e5T^{2} \)
71 \( 1 + 156.T + 3.57e5T^{2} \)
73 \( 1 - 446T + 3.89e5T^{2} \)
79 \( 1 + 267T + 4.93e5T^{2} \)
83 \( 1 + 725.T + 5.71e5T^{2} \)
89 \( 1 - 117.T + 7.04e5T^{2} \)
97 \( 1 + 595T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.870149107048123352840541687699, −8.545219305561585976393953223822, −6.97871178973125800396754433976, −6.63199857316967915236907191484, −5.54342882285696911851858016211, −5.24317458482210161900916835175, −3.81626891204726869422986486217, −2.86604894553626255750391243953, −1.73344126364117142192173170123, −1.04520667818275745770923256936, 1.04520667818275745770923256936, 1.73344126364117142192173170123, 2.86604894553626255750391243953, 3.81626891204726869422986486217, 5.24317458482210161900916835175, 5.54342882285696911851858016211, 6.63199857316967915236907191484, 6.97871178973125800396754433976, 8.545219305561585976393953223822, 8.870149107048123352840541687699

Graph of the $Z$-function along the critical line