Properties

Label 1764.2.i.f.373.3
Level $1764$
Weight $2$
Character 1764.373
Analytic conductor $14.086$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(373,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.373"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.3
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 1764.373
Dual form 1764.2.i.f.1537.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71053 + 0.272169i) q^{3} +(1.97141 + 3.41458i) q^{5} +(2.85185 + 0.931107i) q^{9} +(-0.471410 + 0.816506i) q^{11} +(0.500000 - 0.866025i) q^{13} +(2.44282 + 6.37731i) q^{15} +(-2.80150 - 4.85235i) q^{17} +(-0.641315 + 1.11079i) q^{19} +(2.33009 + 4.03584i) q^{23} +(-5.27292 + 9.13296i) q^{25} +(4.62476 + 2.36887i) q^{27} +(3.83009 + 6.63392i) q^{29} +7.82846 q^{31} +(-1.02859 + 1.26836i) q^{33} +(4.91423 - 8.51170i) q^{37} +(1.09097 - 1.34528i) q^{39} +(-0.471410 + 0.816506i) q^{41} +(-4.63160 - 8.02217i) q^{43} +(2.44282 + 11.5735i) q^{45} -5.28263 q^{47} +(-3.47141 - 9.06259i) q^{51} +(4.61273 + 7.98947i) q^{53} -3.71737 q^{55} +(-1.39931 + 1.72550i) q^{57} -9.54583 q^{59} -10.5458 q^{61} +3.94282 q^{65} -1.71737 q^{67} +(2.88727 + 7.53762i) q^{69} +3.54583 q^{71} +(-1.35868 - 2.35331i) q^{73} +(-11.5052 + 14.1871i) q^{75} -16.3743 q^{79} +(7.26608 + 5.31075i) q^{81} +(0.198495 + 0.343803i) q^{83} +(11.0458 - 19.1319i) q^{85} +(4.74596 + 12.3900i) q^{87} +(-2.75404 + 4.77014i) q^{89} +(13.3908 + 2.13066i) q^{93} -5.05718 q^{95} +(6.77292 + 11.7310i) q^{97} +(-2.10464 + 1.88962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} + 3 q^{5} + 8 q^{9} + 6 q^{11} + 3 q^{13} - 3 q^{15} - 3 q^{19} + 6 q^{23} - 6 q^{25} - 7 q^{27} + 15 q^{29} - 6 q^{31} - 15 q^{33} + 3 q^{37} - 2 q^{39} + 6 q^{41} - 3 q^{43} - 3 q^{45} - 30 q^{47}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71053 + 0.272169i 0.987577 + 0.157137i
\(4\) 0 0
\(5\) 1.97141 + 3.41458i 0.881641 + 1.52705i 0.849515 + 0.527564i \(0.176894\pi\)
0.0321260 + 0.999484i \(0.489772\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.85185 + 0.931107i 0.950616 + 0.310369i
\(10\) 0 0
\(11\) −0.471410 + 0.816506i −0.142135 + 0.246186i −0.928301 0.371831i \(-0.878730\pi\)
0.786165 + 0.618017i \(0.212064\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i −0.788320 0.615265i \(-0.789049\pi\)
0.926995 + 0.375073i \(0.122382\pi\)
\(14\) 0 0
\(15\) 2.44282 + 6.37731i 0.630733 + 1.64662i
\(16\) 0 0
\(17\) −2.80150 4.85235i −0.679465 1.17687i −0.975142 0.221580i \(-0.928879\pi\)
0.295678 0.955288i \(-0.404455\pi\)
\(18\) 0 0
\(19\) −0.641315 + 1.11079i −0.147128 + 0.254833i −0.930165 0.367142i \(-0.880336\pi\)
0.783037 + 0.621975i \(0.213670\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.33009 + 4.03584i 0.485858 + 0.841531i 0.999868 0.0162531i \(-0.00517374\pi\)
−0.514010 + 0.857784i \(0.671840\pi\)
\(24\) 0 0
\(25\) −5.27292 + 9.13296i −1.05458 + 1.82659i
\(26\) 0 0
\(27\) 4.62476 + 2.36887i 0.890036 + 0.455890i
\(28\) 0 0
\(29\) 3.83009 + 6.63392i 0.711231 + 1.23189i 0.964395 + 0.264465i \(0.0851952\pi\)
−0.253165 + 0.967423i \(0.581471\pi\)
\(30\) 0 0
\(31\) 7.82846 1.40603 0.703016 0.711174i \(-0.251836\pi\)
0.703016 + 0.711174i \(0.251836\pi\)
\(32\) 0 0
\(33\) −1.02859 + 1.26836i −0.179055 + 0.220793i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.91423 8.51170i 0.807894 1.39931i −0.106425 0.994321i \(-0.533940\pi\)
0.914320 0.404994i \(-0.132726\pi\)
\(38\) 0 0
\(39\) 1.09097 1.34528i 0.174695 0.215417i
\(40\) 0 0
\(41\) −0.471410 + 0.816506i −0.0736219 + 0.127517i −0.900486 0.434885i \(-0.856789\pi\)
0.826864 + 0.562402i \(0.190122\pi\)
\(42\) 0 0
\(43\) −4.63160 8.02217i −0.706312 1.22337i −0.966216 0.257734i \(-0.917024\pi\)
0.259903 0.965635i \(-0.416309\pi\)
\(44\) 0 0
\(45\) 2.44282 + 11.5735i 0.364154 + 1.72527i
\(46\) 0 0
\(47\) −5.28263 −0.770551 −0.385275 0.922802i \(-0.625894\pi\)
−0.385275 + 0.922802i \(0.625894\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.47141 9.06259i −0.486095 1.26902i
\(52\) 0 0
\(53\) 4.61273 + 7.98947i 0.633607 + 1.09744i 0.986809 + 0.161892i \(0.0517595\pi\)
−0.353202 + 0.935547i \(0.614907\pi\)
\(54\) 0 0
\(55\) −3.71737 −0.501250
\(56\) 0 0
\(57\) −1.39931 + 1.72550i −0.185344 + 0.228548i
\(58\) 0 0
\(59\) −9.54583 −1.24276 −0.621381 0.783509i \(-0.713428\pi\)
−0.621381 + 0.783509i \(0.713428\pi\)
\(60\) 0 0
\(61\) −10.5458 −1.35026 −0.675128 0.737701i \(-0.735911\pi\)
−0.675128 + 0.737701i \(0.735911\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.94282 0.489047
\(66\) 0 0
\(67\) −1.71737 −0.209810 −0.104905 0.994482i \(-0.533454\pi\)
−0.104905 + 0.994482i \(0.533454\pi\)
\(68\) 0 0
\(69\) 2.88727 + 7.53762i 0.347587 + 0.907423i
\(70\) 0 0
\(71\) 3.54583 0.420813 0.210406 0.977614i \(-0.432521\pi\)
0.210406 + 0.977614i \(0.432521\pi\)
\(72\) 0 0
\(73\) −1.35868 2.35331i −0.159022 0.275434i 0.775494 0.631355i \(-0.217501\pi\)
−0.934516 + 0.355920i \(0.884167\pi\)
\(74\) 0 0
\(75\) −11.5052 + 14.1871i −1.32851 + 1.63819i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −16.3743 −1.84225 −0.921126 0.389265i \(-0.872729\pi\)
−0.921126 + 0.389265i \(0.872729\pi\)
\(80\) 0 0
\(81\) 7.26608 + 5.31075i 0.807342 + 0.590084i
\(82\) 0 0
\(83\) 0.198495 + 0.343803i 0.0217877 + 0.0377373i 0.876714 0.481013i \(-0.159731\pi\)
−0.854926 + 0.518750i \(0.826398\pi\)
\(84\) 0 0
\(85\) 11.0458 19.1319i 1.19809 2.07515i
\(86\) 0 0
\(87\) 4.74596 + 12.3900i 0.508820 + 1.32834i
\(88\) 0 0
\(89\) −2.75404 + 4.77014i −0.291928 + 0.505634i −0.974266 0.225403i \(-0.927630\pi\)
0.682338 + 0.731037i \(0.260963\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13.3908 + 2.13066i 1.38857 + 0.220939i
\(94\) 0 0
\(95\) −5.05718 −0.518856
\(96\) 0 0
\(97\) 6.77292 + 11.7310i 0.687685 + 1.19111i 0.972585 + 0.232549i \(0.0747064\pi\)
−0.284899 + 0.958557i \(0.591960\pi\)
\(98\) 0 0
\(99\) −2.10464 + 1.88962i −0.211525 + 0.189914i
\(100\) 0 0
\(101\) 1.30150 2.25427i 0.129505 0.224309i −0.793980 0.607944i \(-0.791995\pi\)
0.923485 + 0.383635i \(0.125328\pi\)
\(102\) 0 0
\(103\) −7.99028 13.8396i −0.787306 1.36365i −0.927612 0.373546i \(-0.878142\pi\)
0.140305 0.990108i \(-0.455192\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.44282 9.42724i 0.526177 0.911366i −0.473358 0.880870i \(-0.656958\pi\)
0.999535 0.0304954i \(-0.00970850\pi\)
\(108\) 0 0
\(109\) 1.64132 + 2.84284i 0.157209 + 0.272295i 0.933861 0.357635i \(-0.116417\pi\)
−0.776652 + 0.629930i \(0.783084\pi\)
\(110\) 0 0
\(111\) 10.7226 13.2220i 1.01774 1.25498i
\(112\) 0 0
\(113\) 3.22545 5.58664i 0.303425 0.525547i −0.673485 0.739201i \(-0.735203\pi\)
0.976909 + 0.213654i \(0.0685365\pi\)
\(114\) 0 0
\(115\) −9.18715 + 15.9126i −0.856706 + 1.48386i
\(116\) 0 0
\(117\) 2.23229 2.00422i 0.206375 0.185290i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.05555 + 8.75646i 0.459595 + 0.796042i
\(122\) 0 0
\(123\) −1.02859 + 1.26836i −0.0927448 + 0.114364i
\(124\) 0 0
\(125\) −21.8662 −1.95577
\(126\) 0 0
\(127\) −0.828460 −0.0735140 −0.0367570 0.999324i \(-0.511703\pi\)
−0.0367570 + 0.999324i \(0.511703\pi\)
\(128\) 0 0
\(129\) −5.73912 14.9828i −0.505302 1.31916i
\(130\) 0 0
\(131\) −2.71574 4.70379i −0.237275 0.410972i 0.722656 0.691207i \(-0.242921\pi\)
−0.959931 + 0.280235i \(0.909588\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.02859 + 20.4617i 0.0885269 + 1.76106i
\(136\) 0 0
\(137\) 10.5744 18.3154i 0.903434 1.56479i 0.0804276 0.996760i \(-0.474371\pi\)
0.823006 0.568033i \(-0.192295\pi\)
\(138\) 0 0
\(139\) 0.923945 1.60032i 0.0783680 0.135737i −0.824178 0.566331i \(-0.808362\pi\)
0.902546 + 0.430594i \(0.141696\pi\)
\(140\) 0 0
\(141\) −9.03611 1.43777i −0.760978 0.121082i
\(142\) 0 0
\(143\) 0.471410 + 0.816506i 0.0394213 + 0.0682797i
\(144\) 0 0
\(145\) −15.1014 + 26.1563i −1.25410 + 2.17217i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.07442 10.5212i −0.497636 0.861931i 0.502360 0.864658i \(-0.332465\pi\)
−0.999996 + 0.00272771i \(0.999132\pi\)
\(150\) 0 0
\(151\) 4.49028 7.77740i 0.365414 0.632916i −0.623428 0.781880i \(-0.714261\pi\)
0.988843 + 0.148965i \(0.0475940\pi\)
\(152\) 0 0
\(153\) −3.47141 16.4467i −0.280647 1.32963i
\(154\) 0 0
\(155\) 15.4331 + 26.7309i 1.23962 + 2.14708i
\(156\) 0 0
\(157\) −11.8090 −0.942463 −0.471232 0.882010i \(-0.656190\pi\)
−0.471232 + 0.882010i \(0.656190\pi\)
\(158\) 0 0
\(159\) 5.71574 + 14.9217i 0.453287 + 1.18337i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.14132 10.6371i 0.481025 0.833160i −0.518738 0.854933i \(-0.673598\pi\)
0.999763 + 0.0217737i \(0.00693132\pi\)
\(164\) 0 0
\(165\) −6.35868 1.01175i −0.495023 0.0787648i
\(166\) 0 0
\(167\) 11.4428 19.8195i 0.885472 1.53368i 0.0403003 0.999188i \(-0.487169\pi\)
0.845172 0.534495i \(-0.179498\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 0 0
\(171\) −2.86320 + 2.57067i −0.218954 + 0.196584i
\(172\) 0 0
\(173\) 19.2632 1.46455 0.732277 0.681007i \(-0.238458\pi\)
0.732277 + 0.681007i \(0.238458\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −16.3285 2.59808i −1.22732 0.195283i
\(178\) 0 0
\(179\) 2.41586 + 4.18440i 0.180570 + 0.312757i 0.942075 0.335403i \(-0.108872\pi\)
−0.761505 + 0.648159i \(0.775539\pi\)
\(180\) 0 0
\(181\) 3.26320 0.242552 0.121276 0.992619i \(-0.461301\pi\)
0.121276 + 0.992619i \(0.461301\pi\)
\(182\) 0 0
\(183\) −18.0390 2.87024i −1.33348 0.212175i
\(184\) 0 0
\(185\) 38.7518 2.84909
\(186\) 0 0
\(187\) 5.28263 0.386304
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.6979 1.06351 0.531753 0.846900i \(-0.321534\pi\)
0.531753 + 0.846900i \(0.321534\pi\)
\(192\) 0 0
\(193\) 10.1111 0.727812 0.363906 0.931436i \(-0.381443\pi\)
0.363906 + 0.931436i \(0.381443\pi\)
\(194\) 0 0
\(195\) 6.74433 + 1.07311i 0.482971 + 0.0768472i
\(196\) 0 0
\(197\) 16.6375 1.18537 0.592686 0.805434i \(-0.298067\pi\)
0.592686 + 0.805434i \(0.298067\pi\)
\(198\) 0 0
\(199\) −6.55555 11.3545i −0.464710 0.804902i 0.534478 0.845182i \(-0.320508\pi\)
−0.999188 + 0.0402805i \(0.987175\pi\)
\(200\) 0 0
\(201\) −2.93762 0.467414i −0.207204 0.0329689i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.71737 −0.259632
\(206\) 0 0
\(207\) 2.88727 + 13.6792i 0.200679 + 0.950769i
\(208\) 0 0
\(209\) −0.604645 1.04728i −0.0418242 0.0724416i
\(210\) 0 0
\(211\) −1.06526 + 1.84509i −0.0733355 + 0.127021i −0.900361 0.435143i \(-0.856698\pi\)
0.827026 + 0.562164i \(0.190031\pi\)
\(212\) 0 0
\(213\) 6.06526 + 0.965064i 0.415585 + 0.0661251i
\(214\) 0 0
\(215\) 18.2616 31.6300i 1.24543 2.15715i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.68358 4.39521i −0.113766 0.297001i
\(220\) 0 0
\(221\) −5.60301 −0.376899
\(222\) 0 0
\(223\) 7.04583 + 12.2037i 0.471824 + 0.817223i 0.999480 0.0322352i \(-0.0102626\pi\)
−0.527657 + 0.849458i \(0.676929\pi\)
\(224\) 0 0
\(225\) −23.5413 + 21.1362i −1.56942 + 1.40908i
\(226\) 0 0
\(227\) −2.39536 + 4.14888i −0.158985 + 0.275371i −0.934503 0.355955i \(-0.884156\pi\)
0.775518 + 0.631326i \(0.217489\pi\)
\(228\) 0 0
\(229\) −9.04583 15.6678i −0.597765 1.03536i −0.993150 0.116844i \(-0.962722\pi\)
0.395385 0.918516i \(-0.370611\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.57442 2.72698i 0.103144 0.178650i −0.809835 0.586658i \(-0.800443\pi\)
0.912978 + 0.408008i \(0.133777\pi\)
\(234\) 0 0
\(235\) −10.4142 18.0380i −0.679349 1.17667i
\(236\) 0 0
\(237\) −28.0088 4.45657i −1.81937 0.289485i
\(238\) 0 0
\(239\) 6.16019 10.6698i 0.398470 0.690170i −0.595068 0.803676i \(-0.702875\pi\)
0.993537 + 0.113506i \(0.0362081\pi\)
\(240\) 0 0
\(241\) −7.27292 + 12.5971i −0.468490 + 0.811448i −0.999351 0.0360106i \(-0.988535\pi\)
0.530862 + 0.847458i \(0.321868\pi\)
\(242\) 0 0
\(243\) 10.9834 + 11.0618i 0.704589 + 0.709616i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.641315 + 1.11079i 0.0408059 + 0.0706779i
\(248\) 0 0
\(249\) 0.245960 + 0.642111i 0.0155871 + 0.0406922i
\(250\) 0 0
\(251\) −2.28263 −0.144078 −0.0720392 0.997402i \(-0.522951\pi\)
−0.0720392 + 0.997402i \(0.522951\pi\)
\(252\) 0 0
\(253\) −4.39372 −0.276231
\(254\) 0 0
\(255\) 24.1014 29.7195i 1.50929 1.86111i
\(256\) 0 0
\(257\) −0.396990 0.687607i −0.0247636 0.0428917i 0.853378 0.521293i \(-0.174550\pi\)
−0.878142 + 0.478401i \(0.841217\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.74596 + 22.4852i 0.293768 + 1.39180i
\(262\) 0 0
\(263\) −5.24433 + 9.08344i −0.323379 + 0.560109i −0.981183 0.193080i \(-0.938152\pi\)
0.657804 + 0.753189i \(0.271486\pi\)
\(264\) 0 0
\(265\) −18.1871 + 31.5011i −1.11723 + 1.93509i
\(266\) 0 0
\(267\) −6.00916 + 7.40992i −0.367755 + 0.453479i
\(268\) 0 0
\(269\) −5.16991 8.95454i −0.315215 0.545968i 0.664268 0.747494i \(-0.268743\pi\)
−0.979483 + 0.201526i \(0.935410\pi\)
\(270\) 0 0
\(271\) 15.4142 26.6982i 0.936348 1.62180i 0.164135 0.986438i \(-0.447517\pi\)
0.772213 0.635364i \(-0.219150\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.97141 8.61073i −0.299787 0.519247i
\(276\) 0 0
\(277\) −7.12188 + 12.3355i −0.427913 + 0.741166i −0.996687 0.0813269i \(-0.974084\pi\)
0.568775 + 0.822493i \(0.307418\pi\)
\(278\) 0 0
\(279\) 22.3256 + 7.28914i 1.33660 + 0.436389i
\(280\) 0 0
\(281\) 4.46169 + 7.72788i 0.266162 + 0.461007i 0.967868 0.251461i \(-0.0809109\pi\)
−0.701705 + 0.712468i \(0.747578\pi\)
\(282\) 0 0
\(283\) −23.2632 −1.38285 −0.691427 0.722446i \(-0.743018\pi\)
−0.691427 + 0.722446i \(0.743018\pi\)
\(284\) 0 0
\(285\) −8.65047 1.37641i −0.512410 0.0815313i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.19686 + 12.4653i −0.423345 + 0.733255i
\(290\) 0 0
\(291\) 8.39248 + 21.9097i 0.491976 + 1.28437i
\(292\) 0 0
\(293\) −11.9412 + 20.6827i −0.697611 + 1.20830i 0.271681 + 0.962387i \(0.412420\pi\)
−0.969292 + 0.245911i \(0.920913\pi\)
\(294\) 0 0
\(295\) −18.8187 32.5950i −1.09567 1.89776i
\(296\) 0 0
\(297\) −4.11436 + 2.65944i −0.238739 + 0.154316i
\(298\) 0 0
\(299\) 4.66019 0.269506
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.83981 3.50178i 0.163143 0.201172i
\(304\) 0 0
\(305\) −20.7902 36.0096i −1.19044 2.06190i
\(306\) 0 0
\(307\) −7.37429 −0.420873 −0.210436 0.977608i \(-0.567489\pi\)
−0.210436 + 0.977608i \(0.567489\pi\)
\(308\) 0 0
\(309\) −9.90095 25.8478i −0.563245 1.47043i
\(310\) 0 0
\(311\) 9.17154 0.520070 0.260035 0.965599i \(-0.416266\pi\)
0.260035 + 0.965599i \(0.416266\pi\)
\(312\) 0 0
\(313\) 16.1111 0.910653 0.455326 0.890325i \(-0.349523\pi\)
0.455326 + 0.890325i \(0.349523\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.26320 −0.239445 −0.119723 0.992807i \(-0.538201\pi\)
−0.119723 + 0.992807i \(0.538201\pi\)
\(318\) 0 0
\(319\) −7.22218 −0.404364
\(320\) 0 0
\(321\) 11.8759 14.6442i 0.662849 0.817362i
\(322\) 0 0
\(323\) 7.18659 0.399873
\(324\) 0 0
\(325\) 5.27292 + 9.13296i 0.292489 + 0.506605i
\(326\) 0 0
\(327\) 2.03379 + 5.30949i 0.112469 + 0.293615i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.2826 −0.675114 −0.337557 0.941305i \(-0.609601\pi\)
−0.337557 + 0.941305i \(0.609601\pi\)
\(332\) 0 0
\(333\) 21.9399 19.6984i 1.20230 1.07947i
\(334\) 0 0
\(335\) −3.38564 5.86410i −0.184977 0.320390i
\(336\) 0 0
\(337\) 13.4903 23.3659i 0.734863 1.27282i −0.219921 0.975518i \(-0.570580\pi\)
0.954784 0.297302i \(-0.0960867\pi\)
\(338\) 0 0
\(339\) 7.03775 8.67827i 0.382238 0.471339i
\(340\) 0 0
\(341\) −3.69041 + 6.39199i −0.199847 + 0.346145i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −20.0458 + 24.7186i −1.07923 + 1.33080i
\(346\) 0 0
\(347\) −21.5048 −1.15444 −0.577219 0.816589i \(-0.695862\pi\)
−0.577219 + 0.816589i \(0.695862\pi\)
\(348\) 0 0
\(349\) 2.54583 + 4.40951i 0.136275 + 0.236035i 0.926084 0.377318i \(-0.123154\pi\)
−0.789809 + 0.613353i \(0.789820\pi\)
\(350\) 0 0
\(351\) 4.36389 2.82073i 0.232927 0.150559i
\(352\) 0 0
\(353\) −4.78426 + 8.28659i −0.254641 + 0.441051i −0.964798 0.262993i \(-0.915291\pi\)
0.710157 + 0.704043i \(0.248624\pi\)
\(354\) 0 0
\(355\) 6.99028 + 12.1075i 0.371006 + 0.642601i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.48113 + 9.49359i −0.289283 + 0.501052i −0.973639 0.228096i \(-0.926750\pi\)
0.684356 + 0.729148i \(0.260083\pi\)
\(360\) 0 0
\(361\) 8.67743 + 15.0297i 0.456707 + 0.791039i
\(362\) 0 0
\(363\) 6.26444 + 16.3542i 0.328798 + 0.858372i
\(364\) 0 0
\(365\) 5.35705 9.27868i 0.280401 0.485668i
\(366\) 0 0
\(367\) −2.34897 + 4.06853i −0.122615 + 0.212376i −0.920798 0.390039i \(-0.872461\pi\)
0.798183 + 0.602415i \(0.205795\pi\)
\(368\) 0 0
\(369\) −2.10464 + 1.88962i −0.109563 + 0.0983696i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.63160 8.02217i −0.239815 0.415372i 0.720846 0.693095i \(-0.243754\pi\)
−0.960661 + 0.277723i \(0.910420\pi\)
\(374\) 0 0
\(375\) −37.4029 5.95130i −1.93148 0.307324i
\(376\) 0 0
\(377\) 7.66019 0.394520
\(378\) 0 0
\(379\) −13.5458 −0.695803 −0.347901 0.937531i \(-0.613106\pi\)
−0.347901 + 0.937531i \(0.613106\pi\)
\(380\) 0 0
\(381\) −1.41711 0.225481i −0.0726007 0.0115517i
\(382\) 0 0
\(383\) −6.13968 10.6342i −0.313723 0.543384i 0.665442 0.746449i \(-0.268243\pi\)
−0.979165 + 0.203065i \(0.934910\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.73912 27.1905i −0.291736 1.38217i
\(388\) 0 0
\(389\) 3.75567 6.50502i 0.190420 0.329818i −0.754969 0.655760i \(-0.772348\pi\)
0.945390 + 0.325943i \(0.105682\pi\)
\(390\) 0 0
\(391\) 13.0555 22.6129i 0.660247 1.14358i
\(392\) 0 0
\(393\) −3.36513 8.78513i −0.169748 0.443151i
\(394\) 0 0
\(395\) −32.2804 55.9114i −1.62421 2.81321i
\(396\) 0 0
\(397\) 11.4601 19.8494i 0.575164 0.996213i −0.420860 0.907126i \(-0.638272\pi\)
0.996024 0.0890875i \(-0.0283951\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.5631 + 18.2958i 0.527495 + 0.913647i 0.999486 + 0.0320445i \(0.0102018\pi\)
−0.471992 + 0.881603i \(0.656465\pi\)
\(402\) 0 0
\(403\) 3.91423 6.77965i 0.194982 0.337718i
\(404\) 0 0
\(405\) −3.80959 + 35.2803i −0.189300 + 1.75309i
\(406\) 0 0
\(407\) 4.63323 + 8.02500i 0.229661 + 0.397784i
\(408\) 0 0
\(409\) 3.43474 0.169837 0.0849185 0.996388i \(-0.472937\pi\)
0.0849185 + 0.996388i \(0.472937\pi\)
\(410\) 0 0
\(411\) 23.0728 28.4511i 1.13810 1.40339i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.782630 + 1.35556i −0.0384178 + 0.0665416i
\(416\) 0 0
\(417\) 2.01600 2.48593i 0.0987238 0.121737i
\(418\) 0 0
\(419\) 10.2157 17.6942i 0.499071 0.864417i −0.500928 0.865489i \(-0.667008\pi\)
0.999999 + 0.00107202i \(0.000341235\pi\)
\(420\) 0 0
\(421\) −7.90451 13.6910i −0.385242 0.667260i 0.606560 0.795037i \(-0.292549\pi\)
−0.991803 + 0.127778i \(0.959216\pi\)
\(422\) 0 0
\(423\) −15.0653 4.91870i −0.732498 0.239155i
\(424\) 0 0
\(425\) 59.0884 2.86621
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.584135 + 1.52496i 0.0282023 + 0.0736260i
\(430\) 0 0
\(431\) 13.3759 + 23.1678i 0.644296 + 1.11595i 0.984464 + 0.175588i \(0.0561827\pi\)
−0.340168 + 0.940365i \(0.610484\pi\)
\(432\) 0 0
\(433\) −14.4347 −0.693689 −0.346845 0.937923i \(-0.612747\pi\)
−0.346845 + 0.937923i \(0.612747\pi\)
\(434\) 0 0
\(435\) −32.9503 + 40.6312i −1.57985 + 1.94812i
\(436\) 0 0
\(437\) −5.97730 −0.285933
\(438\) 0 0
\(439\) −38.6375 −1.84407 −0.922033 0.387110i \(-0.873473\pi\)
−0.922033 + 0.387110i \(0.873473\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5653 0.501971 0.250985 0.967991i \(-0.419245\pi\)
0.250985 + 0.967991i \(0.419245\pi\)
\(444\) 0 0
\(445\) −21.7174 −1.02950
\(446\) 0 0
\(447\) −7.52696 19.6501i −0.356013 0.929420i
\(448\) 0 0
\(449\) −9.37429 −0.442400 −0.221200 0.975228i \(-0.570997\pi\)
−0.221200 + 0.975228i \(0.570997\pi\)
\(450\) 0 0
\(451\) −0.444455 0.769818i −0.0209286 0.0362493i
\(452\) 0 0
\(453\) 9.79755 12.0814i 0.460329 0.567633i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7174 0.969118 0.484559 0.874759i \(-0.338980\pi\)
0.484559 + 0.874759i \(0.338980\pi\)
\(458\) 0 0
\(459\) −1.46169 29.0774i −0.0682261 1.35722i
\(460\) 0 0
\(461\) −17.6300 30.5360i −0.821109 1.42220i −0.904857 0.425716i \(-0.860022\pi\)
0.0837475 0.996487i \(-0.473311\pi\)
\(462\) 0 0
\(463\) −3.55555 + 6.15838i −0.165240 + 0.286204i −0.936741 0.350024i \(-0.886173\pi\)
0.771500 + 0.636229i \(0.219507\pi\)
\(464\) 0 0
\(465\) 19.1235 + 49.9245i 0.886832 + 2.31520i
\(466\) 0 0
\(467\) −2.51724 + 4.35999i −0.116484 + 0.201756i −0.918372 0.395718i \(-0.870496\pi\)
0.801888 + 0.597474i \(0.203829\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −20.1997 3.21405i −0.930755 0.148096i
\(472\) 0 0
\(473\) 8.73353 0.401568
\(474\) 0 0
\(475\) −6.76320 11.7142i −0.310317 0.537485i
\(476\) 0 0
\(477\) 5.71574 + 27.0797i 0.261706 + 1.23989i
\(478\) 0 0
\(479\) −3.13323 + 5.42692i −0.143161 + 0.247962i −0.928685 0.370869i \(-0.879060\pi\)
0.785524 + 0.618831i \(0.212393\pi\)
\(480\) 0 0
\(481\) −4.91423 8.51170i −0.224070 0.388100i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −26.7044 + 46.2534i −1.21258 + 2.10026i
\(486\) 0 0
\(487\) −7.03611 12.1869i −0.318837 0.552242i 0.661409 0.750026i \(-0.269959\pi\)
−0.980246 + 0.197784i \(0.936626\pi\)
\(488\) 0 0
\(489\) 13.4000 16.5236i 0.605969 0.747222i
\(490\) 0 0
\(491\) −1.97141 + 3.41458i −0.0889685 + 0.154098i −0.907075 0.420968i \(-0.861690\pi\)
0.818107 + 0.575066i \(0.195024\pi\)
\(492\) 0 0
\(493\) 21.4601 37.1699i 0.966512 1.67405i
\(494\) 0 0
\(495\) −10.6014 3.46127i −0.476496 0.155573i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −9.82846 17.0234i −0.439982 0.762072i 0.557705 0.830039i \(-0.311682\pi\)
−0.997688 + 0.0679674i \(0.978349\pi\)
\(500\) 0 0
\(501\) 24.9676 30.7876i 1.11547 1.37549i
\(502\) 0 0
\(503\) −10.2632 −0.457613 −0.228807 0.973472i \(-0.573482\pi\)
−0.228807 + 0.973472i \(0.573482\pi\)
\(504\) 0 0
\(505\) 10.2632 0.456706
\(506\) 0 0
\(507\) 7.43474 + 19.4094i 0.330188 + 0.862002i
\(508\) 0 0
\(509\) −0.669905 1.16031i −0.0296930 0.0514298i 0.850797 0.525494i \(-0.176120\pi\)
−0.880490 + 0.474065i \(0.842786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.59725 + 3.61795i −0.247125 + 0.159736i
\(514\) 0 0
\(515\) 31.5043 54.5670i 1.38824 2.40451i
\(516\) 0 0
\(517\) 2.49028 4.31330i 0.109523 0.189699i
\(518\) 0 0
\(519\) 32.9503 + 5.24284i 1.44636 + 0.230135i
\(520\) 0 0
\(521\) −7.89699 13.6780i −0.345973 0.599244i 0.639557 0.768744i \(-0.279118\pi\)
−0.985530 + 0.169500i \(0.945785\pi\)
\(522\) 0 0
\(523\) 5.33818 9.24599i 0.233422 0.404299i −0.725391 0.688337i \(-0.758341\pi\)
0.958813 + 0.284038i \(0.0916743\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.9315 37.9864i −0.955350 1.65471i
\(528\) 0 0
\(529\) 0.641315 1.11079i 0.0278833 0.0482952i
\(530\) 0 0
\(531\) −27.2233 8.88819i −1.18139 0.385715i
\(532\) 0 0
\(533\) 0.471410 + 0.816506i 0.0204190 + 0.0353668i
\(534\) 0 0
\(535\) 42.9201 1.85560
\(536\) 0 0
\(537\) 2.99355 + 7.81508i 0.129181 + 0.337246i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.32846 + 14.4253i −0.358068 + 0.620193i −0.987638 0.156751i \(-0.949898\pi\)
0.629570 + 0.776944i \(0.283231\pi\)
\(542\) 0 0
\(543\) 5.58181 + 0.888141i 0.239538 + 0.0381138i
\(544\) 0 0
\(545\) −6.47141 + 11.2088i −0.277205 + 0.480133i
\(546\) 0 0
\(547\) −7.81875 13.5425i −0.334305 0.579034i 0.649046 0.760749i \(-0.275168\pi\)
−0.983351 + 0.181715i \(0.941835\pi\)
\(548\) 0 0
\(549\) −30.0751 9.81930i −1.28357 0.419077i
\(550\) 0 0
\(551\) −9.82519 −0.418567
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 66.2863 + 10.5470i 2.81370 + 0.447697i
\(556\) 0 0
\(557\) 8.39536 + 14.5412i 0.355723 + 0.616130i 0.987241 0.159231i \(-0.0509015\pi\)
−0.631519 + 0.775361i \(0.717568\pi\)
\(558\) 0 0
\(559\) −9.26320 −0.391792
\(560\) 0 0
\(561\) 9.03611 + 1.43777i 0.381505 + 0.0607026i
\(562\) 0 0
\(563\) 15.1715 0.639404 0.319702 0.947518i \(-0.396417\pi\)
0.319702 + 0.947518i \(0.396417\pi\)
\(564\) 0 0
\(565\) 25.4347 1.07005
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.5264 1.48934 0.744672 0.667431i \(-0.232606\pi\)
0.744672 + 0.667431i \(0.232606\pi\)
\(570\) 0 0
\(571\) −1.54583 −0.0646910 −0.0323455 0.999477i \(-0.510298\pi\)
−0.0323455 + 0.999477i \(0.510298\pi\)
\(572\) 0 0
\(573\) 25.1413 + 4.00032i 1.05029 + 0.167116i
\(574\) 0 0
\(575\) −49.1456 −2.04951
\(576\) 0 0
\(577\) 0.838175 + 1.45176i 0.0348937 + 0.0604377i 0.882945 0.469477i \(-0.155557\pi\)
−0.848051 + 0.529914i \(0.822224\pi\)
\(578\) 0 0
\(579\) 17.2954 + 2.75192i 0.718770 + 0.114366i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.69794 −0.360232
\(584\) 0 0
\(585\) 11.2443 + 3.67119i 0.464896 + 0.151785i
\(586\) 0 0
\(587\) 19.7346 + 34.1813i 0.814535 + 1.41082i 0.909662 + 0.415350i \(0.136341\pi\)
−0.0951271 + 0.995465i \(0.530326\pi\)
\(588\) 0 0
\(589\) −5.02051 + 8.69578i −0.206866 + 0.358303i
\(590\) 0 0
\(591\) 28.4590 + 4.52820i 1.17065 + 0.186265i
\(592\) 0 0
\(593\) −11.4159 + 19.7729i −0.468793 + 0.811974i −0.999364 0.0356669i \(-0.988644\pi\)
0.530570 + 0.847641i \(0.321978\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.12313 21.2065i −0.332458 0.867925i
\(598\) 0 0
\(599\) 45.2750 1.84989 0.924943 0.380106i \(-0.124113\pi\)
0.924943 + 0.380106i \(0.124113\pi\)
\(600\) 0 0
\(601\) −13.5253 23.4265i −0.551709 0.955589i −0.998151 0.0607761i \(-0.980642\pi\)
0.446442 0.894813i \(-0.352691\pi\)
\(602\) 0 0
\(603\) −4.89768 1.59906i −0.199449 0.0651186i
\(604\) 0 0
\(605\) −19.9331 + 34.5252i −0.810396 + 1.40365i
\(606\) 0 0
\(607\) 9.32846 + 16.1574i 0.378631 + 0.655807i 0.990863 0.134870i \(-0.0430618\pi\)
−0.612233 + 0.790678i \(0.709728\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.64132 + 4.57489i −0.106856 + 0.185080i
\(612\) 0 0
\(613\) 14.4806 + 25.0811i 0.584865 + 1.01302i 0.994892 + 0.100942i \(0.0321857\pi\)
−0.410028 + 0.912073i \(0.634481\pi\)
\(614\) 0 0
\(615\) −6.35868 1.01175i −0.256407 0.0407978i
\(616\) 0 0
\(617\) −18.8457 + 32.6417i −0.758699 + 1.31411i 0.184815 + 0.982773i \(0.440831\pi\)
−0.943514 + 0.331332i \(0.892502\pi\)
\(618\) 0 0
\(619\) −0.00971516 + 0.0168272i −0.000390485 + 0.000676340i −0.866221 0.499662i \(-0.833458\pi\)
0.865830 + 0.500338i \(0.166791\pi\)
\(620\) 0 0
\(621\) 1.21574 + 24.1845i 0.0487858 + 0.970491i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −16.7427 28.9992i −0.669708 1.15997i
\(626\) 0 0
\(627\) −0.749229 1.95596i −0.0299213 0.0781137i
\(628\) 0 0
\(629\) −55.0690 −2.19574
\(630\) 0 0
\(631\) 28.4854 1.13399 0.566993 0.823723i \(-0.308107\pi\)
0.566993 + 0.823723i \(0.308107\pi\)
\(632\) 0 0
\(633\) −2.32434 + 2.86615i −0.0923841 + 0.113919i
\(634\) 0 0
\(635\) −1.63323 2.82885i −0.0648129 0.112259i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.1122 + 3.30155i 0.400031 + 0.130607i
\(640\) 0 0
\(641\) −22.2696 + 38.5722i −0.879598 + 1.52351i −0.0278156 + 0.999613i \(0.508855\pi\)
−0.851783 + 0.523896i \(0.824478\pi\)
\(642\) 0 0
\(643\) −4.50972 + 7.81106i −0.177846 + 0.308038i −0.941142 0.338010i \(-0.890246\pi\)
0.763297 + 0.646048i \(0.223579\pi\)
\(644\) 0 0
\(645\) 39.8457 49.1339i 1.56892 1.93464i
\(646\) 0 0
\(647\) −21.4126 37.0877i −0.841816 1.45807i −0.888358 0.459152i \(-0.848153\pi\)
0.0465419 0.998916i \(-0.485180\pi\)
\(648\) 0 0
\(649\) 4.50000 7.79423i 0.176640 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.80150 4.85235i −0.109631 0.189887i 0.805990 0.591930i \(-0.201634\pi\)
−0.915621 + 0.402043i \(0.868300\pi\)
\(654\) 0 0
\(655\) 10.7077 18.5462i 0.418383 0.724660i
\(656\) 0 0
\(657\) −1.68358 7.97637i −0.0656826 0.311188i
\(658\) 0 0
\(659\) 3.26376 + 5.65299i 0.127138 + 0.220209i 0.922567 0.385838i \(-0.126088\pi\)
−0.795429 + 0.606047i \(0.792754\pi\)
\(660\) 0 0
\(661\) −11.0194 −0.428606 −0.214303 0.976767i \(-0.568748\pi\)
−0.214303 + 0.976767i \(0.568748\pi\)
\(662\) 0 0
\(663\) −9.58414 1.52496i −0.372217 0.0592247i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17.8490 + 30.9153i −0.691115 + 1.19705i
\(668\) 0 0
\(669\) 8.73065 + 22.7926i 0.337547 + 0.881211i
\(670\) 0 0
\(671\) 4.97141 8.61073i 0.191919 0.332414i
\(672\) 0 0
\(673\) 1.67743 + 2.90539i 0.0646602 + 0.111995i 0.896543 0.442956i \(-0.146070\pi\)
−0.831883 + 0.554951i \(0.812737\pi\)
\(674\) 0 0
\(675\) −46.0208 + 29.7469i −1.77134 + 1.14496i
\(676\) 0 0
\(677\) −40.6375 −1.56183 −0.780913 0.624640i \(-0.785246\pi\)
−0.780913 + 0.624640i \(0.785246\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −5.22653 + 6.44485i −0.200281 + 0.246967i
\(682\) 0 0
\(683\) 7.03775 + 12.1897i 0.269292 + 0.466427i 0.968679 0.248316i \(-0.0798770\pi\)
−0.699387 + 0.714743i \(0.746544\pi\)
\(684\) 0 0
\(685\) 83.3861 3.18602
\(686\) 0 0
\(687\) −11.2089 29.2623i −0.427646 1.11643i
\(688\) 0 0
\(689\) 9.22545 0.351462
\(690\) 0 0
\(691\) −43.9201 −1.67080 −0.835400 0.549642i \(-0.814764\pi\)
−0.835400 + 0.549642i \(0.814764\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.28590 0.276370
\(696\) 0 0
\(697\) 5.28263 0.200094
\(698\) 0 0
\(699\) 3.43530 4.23607i 0.129935 0.160223i
\(700\) 0 0
\(701\) 7.69578 0.290666 0.145333 0.989383i \(-0.453575\pi\)
0.145333 + 0.989383i \(0.453575\pi\)
\(702\) 0 0
\(703\) 6.30314 + 10.9174i 0.237727 + 0.411756i
\(704\) 0 0
\(705\) −12.9045 33.6890i −0.486012 1.26880i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.222181 0.00834417 0.00417209 0.999991i \(-0.498672\pi\)
0.00417209 + 0.999991i \(0.498672\pi\)
\(710\) 0 0
\(711\) −46.6970 15.2462i −1.75127 0.571778i
\(712\) 0 0
\(713\) 18.2411 + 31.5944i 0.683133 + 1.18322i
\(714\) 0 0
\(715\) −1.85868 + 3.21934i −0.0695109 + 0.120396i
\(716\) 0 0
\(717\) 13.4412 16.5744i 0.501970 0.618981i
\(718\) 0 0
\(719\) 1.32201 2.28980i 0.0493028 0.0853950i −0.840321 0.542089i \(-0.817633\pi\)
0.889624 + 0.456694i \(0.150967\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −15.8691 + 19.5682i −0.590178 + 0.727750i
\(724\) 0 0
\(725\) −80.7831 −3.00021
\(726\) 0 0
\(727\) −12.7427 22.0710i −0.472600 0.818568i 0.526908 0.849922i \(-0.323351\pi\)
−0.999508 + 0.0313547i \(0.990018\pi\)
\(728\) 0 0
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) 0 0
\(731\) −25.9509 + 44.9483i −0.959829 + 1.66247i
\(732\) 0 0
\(733\) −0.934740 1.61902i −0.0345254 0.0597997i 0.848246 0.529602i \(-0.177659\pi\)
−0.882772 + 0.469802i \(0.844325\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.809585 1.40224i 0.0298215 0.0516523i
\(738\) 0 0
\(739\) −25.5819 44.3092i −0.941047 1.62994i −0.763479 0.645833i \(-0.776510\pi\)
−0.177568 0.984108i \(-0.556823\pi\)
\(740\) 0 0
\(741\) 0.794668 + 2.07459i 0.0291929 + 0.0762120i
\(742\) 0 0
\(743\) 19.3668 33.5442i 0.710498 1.23062i −0.254173 0.967159i \(-0.581803\pi\)
0.964671 0.263459i \(-0.0848635\pi\)
\(744\) 0 0
\(745\) 23.9503 41.4832i 0.877473 1.51983i
\(746\) 0 0
\(747\) 0.245960 + 1.16530i 0.00899920 + 0.0426359i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3.09549 5.36154i −0.112956 0.195645i 0.804005 0.594623i \(-0.202699\pi\)
−0.916961 + 0.398977i \(0.869365\pi\)
\(752\) 0 0
\(753\) −3.90451 0.621261i −0.142288 0.0226400i
\(754\) 0 0
\(755\) 35.4088 1.28866
\(756\) 0 0
\(757\) −13.7174 −0.498566 −0.249283 0.968431i \(-0.580195\pi\)
−0.249283 + 0.968431i \(0.580195\pi\)
\(758\) 0 0
\(759\) −7.51561 1.19583i −0.272799 0.0434060i
\(760\) 0 0
\(761\) −19.6602 34.0524i −0.712681 1.23440i −0.963847 0.266456i \(-0.914147\pi\)
0.251166 0.967944i \(-0.419186\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 49.3149 44.2765i 1.78298 1.60082i
\(766\) 0 0
\(767\) −4.77292 + 8.26693i −0.172340 + 0.298502i
\(768\) 0 0
\(769\) −11.3646 + 19.6840i −0.409817 + 0.709824i −0.994869 0.101172i \(-0.967741\pi\)
0.585052 + 0.810996i \(0.301074\pi\)
\(770\) 0 0
\(771\) −0.491920 1.28422i −0.0177161 0.0462502i
\(772\) 0 0
\(773\) 14.3662 + 24.8830i 0.516717 + 0.894979i 0.999812 + 0.0194115i \(0.00617926\pi\)
−0.483095 + 0.875568i \(0.660487\pi\)
\(774\) 0 0
\(775\) −41.2788 + 71.4970i −1.48278 + 2.56825i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.604645 1.04728i −0.0216636 0.0375225i
\(780\) 0 0
\(781\) −1.67154 + 2.89519i −0.0598124 + 0.103598i
\(782\) 0 0
\(783\) 1.99837 + 39.7533i 0.0714157 + 1.42067i
\(784\) 0 0
\(785\) −23.2804 40.3229i −0.830915 1.43919i
\(786\) 0 0
\(787\) −54.0118 −1.92531 −0.962656 0.270728i \(-0.912736\pi\)
−0.962656 + 0.270728i \(0.912736\pi\)
\(788\) 0 0
\(789\) −11.4428 + 14.1102i −0.407375 + 0.502336i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.27292 + 9.13296i −0.187247 + 0.324321i
\(794\) 0 0
\(795\) −39.6833 + 48.9336i −1.40742 + 1.73550i
\(796\) 0 0
\(797\) 0.103565 0.179381i 0.00366848 0.00635399i −0.864185 0.503174i \(-0.832166\pi\)
0.867854 + 0.496820i \(0.165499\pi\)
\(798\) 0 0
\(799\) 14.7993 + 25.6332i 0.523562 + 0.906836i
\(800\) 0 0
\(801\) −12.2956 + 11.0394i −0.434444 + 0.390058i
\(802\) 0 0
\(803\) 2.56199 0.0904107
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.40615 16.7241i −0.225507 0.588717i
\(808\) 0 0
\(809\) 18.0270 + 31.2236i 0.633794 + 1.09776i 0.986769 + 0.162131i \(0.0518366\pi\)
−0.352975 + 0.935633i \(0.614830\pi\)
\(810\) 0 0
\(811\) −2.01943 −0.0709118 −0.0354559 0.999371i \(-0.511288\pi\)
−0.0354559 + 0.999371i \(0.511288\pi\)
\(812\) 0 0
\(813\) 33.6330 41.4729i 1.17956 1.45452i
\(814\) 0 0
\(815\) 48.4282 1.69637
\(816\) 0 0
\(817\) 11.8813 0.415673
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.3743 −1.06007 −0.530035 0.847976i \(-0.677821\pi\)
−0.530035 + 0.847976i \(0.677821\pi\)
\(822\) 0 0
\(823\) −13.1305 −0.457701 −0.228851 0.973462i \(-0.573497\pi\)
−0.228851 + 0.973462i \(0.573497\pi\)
\(824\) 0 0
\(825\) −6.16019 16.0820i −0.214470 0.559904i
\(826\) 0 0
\(827\) −11.3236 −0.393762 −0.196881 0.980427i \(-0.563081\pi\)
−0.196881 + 0.980427i \(0.563081\pi\)
\(828\) 0 0
\(829\) 5.53022 + 9.57863i 0.192073 + 0.332680i 0.945937 0.324351i \(-0.105146\pi\)
−0.753864 + 0.657030i \(0.771812\pi\)
\(830\) 0 0
\(831\) −15.5395 + 19.1619i −0.539061 + 0.664718i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 90.2340 3.12267
\(836\) 0 0
\(837\) 36.2048 + 18.5446i 1.25142 + 0.640996i
\(838\) 0 0
\(839\) −5.27128 9.13013i −0.181985 0.315207i 0.760572 0.649254i \(-0.224919\pi\)
−0.942556 + 0.334047i \(0.891586\pi\)
\(840\) 0 0
\(841\) −14.8393 + 25.7023i −0.511698 + 0.886288i
\(842\) 0 0
\(843\) 5.52859 + 14.4331i 0.190415 + 0.497104i
\(844\) 0 0
\(845\) −23.6569 + 40.9750i −0.813823 + 1.40958i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −39.7925 6.33152i −1.36567 0.217297i
\(850\) 0 0
\(851\) 45.8025 1.57009
\(852\) 0 0
\(853\) 13.6413 + 23.6275i 0.467070 + 0.808989i 0.999292 0.0376160i \(-0.0119764\pi\)
−0.532223 + 0.846604i \(0.678643\pi\)
\(854\) 0 0
\(855\) −14.4223 4.70878i −0.493233 0.161037i
\(856\) 0 0
\(857\) 1.21574 2.10571i 0.0415287 0.0719299i −0.844514 0.535534i \(-0.820111\pi\)
0.886043 + 0.463604i \(0.153444\pi\)
\(858\) 0 0
\(859\) 15.8743 + 27.4951i 0.541624 + 0.938120i 0.998811 + 0.0487495i \(0.0155236\pi\)
−0.457187 + 0.889370i \(0.651143\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.9126 24.0973i 0.473590 0.820282i −0.525953 0.850514i \(-0.676291\pi\)
0.999543 + 0.0302315i \(0.00962444\pi\)
\(864\) 0 0
\(865\) 37.9757 + 65.7758i 1.29121 + 2.23644i
\(866\) 0 0
\(867\) −15.7031 + 19.3636i −0.533307 + 0.657622i
\(868\) 0 0
\(869\) 7.71900 13.3697i 0.261849 0.453536i
\(870\) 0 0
\(871\) −0.858685 + 1.48729i −0.0290954 + 0.0503948i
\(872\) 0 0
\(873\) 8.39248 + 39.7614i 0.284042 + 1.34572i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.29342 + 3.97233i 0.0774434 + 0.134136i 0.902146 0.431430i \(-0.141991\pi\)
−0.824703 + 0.565566i \(0.808658\pi\)
\(878\) 0 0
\(879\) −26.0550 + 32.1285i −0.878813 + 1.08367i
\(880\) 0 0
\(881\) 57.4465 1.93542 0.967711 0.252062i \(-0.0811085\pi\)
0.967711 + 0.252062i \(0.0811085\pi\)
\(882\) 0 0
\(883\) 36.3937 1.22475 0.612373 0.790569i \(-0.290215\pi\)
0.612373 + 0.790569i \(0.290215\pi\)
\(884\) 0 0
\(885\) −23.3187 60.8767i −0.783851 2.04635i
\(886\) 0 0
\(887\) 21.7238 + 37.6268i 0.729414 + 1.26338i 0.957131 + 0.289655i \(0.0935407\pi\)
−0.227717 + 0.973727i \(0.573126\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −7.76157 + 3.42926i −0.260022 + 0.114884i
\(892\) 0 0
\(893\) 3.38783 5.86789i 0.113369 0.196362i
\(894\) 0 0
\(895\) −9.52532 + 16.4983i −0.318396 + 0.551479i
\(896\) 0 0
\(897\) 7.97141 + 1.26836i 0.266158 + 0.0423492i
\(898\) 0 0
\(899\) 29.9837 + 51.9334i 1.00001 + 1.73207i
\(900\) 0 0
\(901\) 25.8451 44.7651i 0.861027 1.49134i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.43310 + 11.1425i 0.213844 + 0.370388i
\(906\) 0 0
\(907\) −11.1569 + 19.3244i −0.370459 + 0.641655i −0.989636 0.143597i \(-0.954133\pi\)
0.619177 + 0.785252i \(0.287466\pi\)
\(908\) 0 0
\(909\) 5.81066 5.21700i 0.192728 0.173037i
\(910\) 0 0
\(911\) 7.67799 + 13.2987i 0.254383 + 0.440604i 0.964728 0.263250i \(-0.0847943\pi\)
−0.710345 + 0.703854i \(0.751461\pi\)
\(912\) 0 0
\(913\) −0.374290 −0.0123872
\(914\) 0 0
\(915\) −25.7616 67.2541i −0.851651 2.22335i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.4142 31.8944i 0.607429 1.05210i −0.384233 0.923236i \(-0.625534\pi\)
0.991662 0.128862i \(-0.0411326\pi\)
\(920\) 0 0
\(921\) −12.6140 2.00705i −0.415644 0.0661346i
\(922\) 0 0
\(923\) 1.77292 3.07078i 0.0583562 0.101076i
\(924\) 0 0
\(925\) 51.8246 + 89.7629i 1.70398 + 2.95139i
\(926\) 0 0
\(927\) −9.90095 46.9082i −0.325190 1.54067i
\(928\) 0 0
\(929\) −41.7292 −1.36909 −0.684545 0.728971i \(-0.739999\pi\)
−0.684545 + 0.728971i \(0.739999\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 15.6882 + 2.49621i 0.513609 + 0.0817221i
\(934\) 0 0
\(935\) 10.4142 + 18.0380i 0.340582 + 0.589905i
\(936\) 0 0
\(937\) −25.3743 −0.828942 −0.414471 0.910063i \(-0.636033\pi\)
−0.414471 + 0.910063i \(0.636033\pi\)
\(938\) 0 0
\(939\) 27.5586 + 4.38493i 0.899340 + 0.143097i
\(940\) 0 0
\(941\) 47.1423 1.53680 0.768398 0.639973i \(-0.221054\pi\)
0.768398 + 0.639973i \(0.221054\pi\)
\(942\) 0 0
\(943\) −4.39372 −0.143079
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −34.5070 −1.12133 −0.560663 0.828044i \(-0.689454\pi\)
−0.560663 + 0.828044i \(0.689454\pi\)
\(948\) 0 0
\(949\) −2.71737 −0.0882096
\(950\) 0 0
\(951\) −7.29235 1.16031i −0.236470 0.0376256i
\(952\) 0 0
\(953\) −44.1833 −1.43124 −0.715619 0.698491i \(-0.753855\pi\)
−0.715619 + 0.698491i \(0.753855\pi\)
\(954\) 0 0
\(955\) 28.9757 + 50.1873i 0.937631 + 1.62402i
\(956\) 0 0
\(957\) −12.3538 1.96565i −0.399341 0.0635405i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.2848 0.976929
\(962\) 0 0
\(963\) 24.2999 21.8172i 0.783052 0.703050i
\(964\) 0 0
\(965\) 19.9331 + 34.5252i 0.641669 + 1.11140i
\(966\) 0 0
\(967\) −21.2330 + 36.7766i −0.682806 + 1.18266i 0.291314 + 0.956627i \(0.405907\pi\)
−0.974121 + 0.226028i \(0.927426\pi\)
\(968\) 0 0
\(969\) 12.2929 + 1.95596i 0.394905 + 0.0628346i
\(970\) 0 0
\(971\) −3.02696 + 5.24284i −0.0971396 + 0.168251i −0.910500 0.413510i \(-0.864303\pi\)
0.813360 + 0.581761i \(0.197636\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.53379 + 17.0573i 0.209249 + 0.546272i
\(976\) 0 0
\(977\) −44.0528 −1.40937 −0.704687 0.709518i \(-0.748913\pi\)
−0.704687 + 0.709518i \(0.748913\pi\)
\(978\) 0 0
\(979\) −2.59656 4.49738i −0.0829866 0.143737i
\(980\) 0 0
\(981\) 2.03379 + 9.63559i 0.0649340 + 0.307641i
\(982\) 0 0
\(983\) 2.23517 3.87142i 0.0712907 0.123479i −0.828177 0.560467i \(-0.810622\pi\)
0.899467 + 0.436988i \(0.143955\pi\)
\(984\) 0 0
\(985\) 32.7993 + 56.8101i 1.04507 + 1.81012i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.5841 37.3848i 0.686336 1.18877i
\(990\) 0 0
\(991\) 15.7524 + 27.2840i 0.500392 + 0.866704i 1.00000 0.000452297i \(0.000143971\pi\)
−0.499608 + 0.866251i \(0.666523\pi\)
\(992\) 0 0
\(993\) −21.0098 3.34295i −0.666727 0.106085i
\(994\) 0 0
\(995\) 25.8473 44.7689i 0.819416 1.41927i
\(996\) 0 0
\(997\) −13.0000 + 22.5167i −0.411714 + 0.713110i −0.995077 0.0991016i \(-0.968403\pi\)
0.583363 + 0.812211i \(0.301736\pi\)
\(998\) 0 0
\(999\) 42.8903 27.7234i 1.35699 0.877129i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.i.f.373.3 6
3.2 odd 2 5292.2.i.d.1549.1 6
7.2 even 3 252.2.j.b.85.1 6
7.3 odd 6 1764.2.l.g.949.2 6
7.4 even 3 1764.2.l.d.949.2 6
7.5 odd 6 1764.2.j.d.589.3 6
7.6 odd 2 1764.2.i.e.373.1 6
9.2 odd 6 5292.2.l.g.3313.3 6
9.7 even 3 1764.2.l.d.961.2 6
21.2 odd 6 756.2.j.a.253.1 6
21.5 even 6 5292.2.j.e.1765.3 6
21.11 odd 6 5292.2.l.g.361.3 6
21.17 even 6 5292.2.l.d.361.1 6
21.20 even 2 5292.2.i.g.1549.3 6
28.23 odd 6 1008.2.r.g.337.3 6
63.2 odd 6 756.2.j.a.505.1 6
63.11 odd 6 5292.2.i.d.2125.1 6
63.16 even 3 252.2.j.b.169.1 yes 6
63.20 even 6 5292.2.l.d.3313.1 6
63.23 odd 6 2268.2.a.j.1.3 3
63.25 even 3 inner 1764.2.i.f.1537.3 6
63.34 odd 6 1764.2.l.g.961.2 6
63.38 even 6 5292.2.i.g.2125.3 6
63.47 even 6 5292.2.j.e.3529.3 6
63.52 odd 6 1764.2.i.e.1537.1 6
63.58 even 3 2268.2.a.g.1.1 3
63.61 odd 6 1764.2.j.d.1177.3 6
84.23 even 6 3024.2.r.i.1009.1 6
252.23 even 6 9072.2.a.bz.1.3 3
252.79 odd 6 1008.2.r.g.673.3 6
252.191 even 6 3024.2.r.i.2017.1 6
252.247 odd 6 9072.2.a.bt.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.1 6 7.2 even 3
252.2.j.b.169.1 yes 6 63.16 even 3
756.2.j.a.253.1 6 21.2 odd 6
756.2.j.a.505.1 6 63.2 odd 6
1008.2.r.g.337.3 6 28.23 odd 6
1008.2.r.g.673.3 6 252.79 odd 6
1764.2.i.e.373.1 6 7.6 odd 2
1764.2.i.e.1537.1 6 63.52 odd 6
1764.2.i.f.373.3 6 1.1 even 1 trivial
1764.2.i.f.1537.3 6 63.25 even 3 inner
1764.2.j.d.589.3 6 7.5 odd 6
1764.2.j.d.1177.3 6 63.61 odd 6
1764.2.l.d.949.2 6 7.4 even 3
1764.2.l.d.961.2 6 9.7 even 3
1764.2.l.g.949.2 6 7.3 odd 6
1764.2.l.g.961.2 6 63.34 odd 6
2268.2.a.g.1.1 3 63.58 even 3
2268.2.a.j.1.3 3 63.23 odd 6
3024.2.r.i.1009.1 6 84.23 even 6
3024.2.r.i.2017.1 6 252.191 even 6
5292.2.i.d.1549.1 6 3.2 odd 2
5292.2.i.d.2125.1 6 63.11 odd 6
5292.2.i.g.1549.3 6 21.20 even 2
5292.2.i.g.2125.3 6 63.38 even 6
5292.2.j.e.1765.3 6 21.5 even 6
5292.2.j.e.3529.3 6 63.47 even 6
5292.2.l.d.361.1 6 21.17 even 6
5292.2.l.d.3313.1 6 63.20 even 6
5292.2.l.g.361.3 6 21.11 odd 6
5292.2.l.g.3313.3 6 9.2 odd 6
9072.2.a.bt.1.1 3 252.247 odd 6
9072.2.a.bz.1.3 3 252.23 even 6