Properties

Label 5292.2.l.d.3313.1
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.d.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.94282 q^{5} -0.942820 q^{11} +(-0.500000 - 0.866025i) q^{13} +(-2.80150 - 4.85235i) q^{17} +(0.641315 - 1.11079i) q^{19} +4.66019 q^{23} +10.5458 q^{25} +(-3.83009 + 6.63392i) q^{29} +(3.91423 - 6.77965i) q^{31} +(4.91423 - 8.51170i) q^{37} +(-0.471410 - 0.816506i) q^{41} +(-4.63160 + 8.02217i) q^{43} +(2.64132 + 4.57489i) q^{47} +(-4.61273 - 7.98947i) q^{53} +3.71737 q^{55} +(4.77292 - 8.26693i) q^{59} +(-5.27292 - 9.13296i) q^{61} +(1.97141 + 3.41458i) q^{65} +(0.858685 - 1.48729i) q^{67} -3.54583 q^{71} +(1.35868 + 2.35331i) q^{73} +(8.18715 + 14.1806i) q^{79} +(0.198495 - 0.343803i) q^{83} +(11.0458 + 19.1319i) q^{85} +(-2.75404 + 4.77014i) q^{89} +(-2.52859 + 4.37965i) q^{95} +(-6.77292 + 11.7310i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} + 12 q^{11} - 3 q^{13} + 3 q^{19} + 12 q^{23} + 12 q^{25} - 15 q^{29} - 3 q^{31} + 3 q^{37} + 6 q^{41} - 3 q^{43} + 15 q^{47} - 18 q^{53} + 24 q^{55} + 3 q^{59} - 6 q^{61} + 3 q^{65} + 6 q^{67}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.94282 −1.76328 −0.881641 0.471920i \(-0.843561\pi\)
−0.881641 + 0.471920i \(0.843561\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.942820 −0.284271 −0.142135 0.989847i \(-0.545397\pi\)
−0.142135 + 0.989847i \(0.545397\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.80150 4.85235i −0.679465 1.17687i −0.975142 0.221580i \(-0.928879\pi\)
0.295678 0.955288i \(-0.404455\pi\)
\(18\) 0 0
\(19\) 0.641315 1.11079i 0.147128 0.254833i −0.783037 0.621975i \(-0.786330\pi\)
0.930165 + 0.367142i \(0.119664\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.66019 0.971717 0.485858 0.874038i \(-0.338507\pi\)
0.485858 + 0.874038i \(0.338507\pi\)
\(24\) 0 0
\(25\) 10.5458 2.10917
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.83009 + 6.63392i −0.711231 + 1.23189i 0.253165 + 0.967423i \(0.418529\pi\)
−0.964395 + 0.264465i \(0.914805\pi\)
\(30\) 0 0
\(31\) 3.91423 6.77965i 0.703016 1.21766i −0.264386 0.964417i \(-0.585169\pi\)
0.967403 0.253243i \(-0.0814973\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.91423 8.51170i 0.807894 1.39931i −0.106425 0.994321i \(-0.533940\pi\)
0.914320 0.404994i \(-0.132726\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.471410 0.816506i −0.0736219 0.127517i 0.826864 0.562402i \(-0.190122\pi\)
−0.900486 + 0.434885i \(0.856789\pi\)
\(42\) 0 0
\(43\) −4.63160 + 8.02217i −0.706312 + 1.22337i 0.259903 + 0.965635i \(0.416309\pi\)
−0.966216 + 0.257734i \(0.917024\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.64132 + 4.57489i 0.385275 + 0.667317i 0.991807 0.127743i \(-0.0407731\pi\)
−0.606532 + 0.795059i \(0.707440\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.61273 7.98947i −0.633607 1.09744i −0.986809 0.161892i \(-0.948241\pi\)
0.353202 0.935547i \(-0.385093\pi\)
\(54\) 0 0
\(55\) 3.71737 0.501250
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.77292 8.26693i 0.621381 1.07626i −0.367848 0.929886i \(-0.619905\pi\)
0.989229 0.146377i \(-0.0467612\pi\)
\(60\) 0 0
\(61\) −5.27292 9.13296i −0.675128 1.16936i −0.976432 0.215827i \(-0.930755\pi\)
0.301304 0.953528i \(-0.402578\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.97141 + 3.41458i 0.244523 + 0.423527i
\(66\) 0 0
\(67\) 0.858685 1.48729i 0.104905 0.181701i −0.808794 0.588092i \(-0.799879\pi\)
0.913699 + 0.406391i \(0.133213\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.54583 −0.420813 −0.210406 0.977614i \(-0.567479\pi\)
−0.210406 + 0.977614i \(0.567479\pi\)
\(72\) 0 0
\(73\) 1.35868 + 2.35331i 0.159022 + 0.275434i 0.934516 0.355920i \(-0.115833\pi\)
−0.775494 + 0.631355i \(0.782499\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.18715 + 14.1806i 0.921126 + 1.59544i 0.797676 + 0.603086i \(0.206062\pi\)
0.123449 + 0.992351i \(0.460604\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.198495 0.343803i 0.0217877 0.0377373i −0.854926 0.518750i \(-0.826398\pi\)
0.876714 + 0.481013i \(0.159731\pi\)
\(84\) 0 0
\(85\) 11.0458 + 19.1319i 1.19809 + 2.07515i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.75404 + 4.77014i −0.291928 + 0.505634i −0.974266 0.225403i \(-0.927630\pi\)
0.682338 + 0.731037i \(0.260963\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.52859 + 4.37965i −0.259428 + 0.449342i
\(96\) 0 0
\(97\) −6.77292 + 11.7310i −0.687685 + 1.19111i 0.284899 + 0.958557i \(0.408040\pi\)
−0.972585 + 0.232549i \(0.925294\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.60301 −0.259009 −0.129505 0.991579i \(-0.541339\pi\)
−0.129505 + 0.991579i \(0.541339\pi\)
\(102\) 0 0
\(103\) −15.9806 −1.57461 −0.787306 0.616562i \(-0.788525\pi\)
−0.787306 + 0.616562i \(0.788525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.44282 + 9.42724i −0.526177 + 0.911366i 0.473358 + 0.880870i \(0.343042\pi\)
−0.999535 + 0.0304954i \(0.990291\pi\)
\(108\) 0 0
\(109\) 1.64132 + 2.84284i 0.157209 + 0.272295i 0.933861 0.357635i \(-0.116417\pi\)
−0.776652 + 0.629930i \(0.783084\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.22545 5.58664i −0.303425 0.525547i 0.673485 0.739201i \(-0.264797\pi\)
−0.976909 + 0.213654i \(0.931463\pi\)
\(114\) 0 0
\(115\) −18.3743 −1.71341
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.1111 −0.919190
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −21.8662 −1.95577
\(126\) 0 0
\(127\) −0.828460 −0.0735140 −0.0367570 0.999324i \(-0.511703\pi\)
−0.0367570 + 0.999324i \(0.511703\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.43147 0.474550 0.237275 0.971443i \(-0.423746\pi\)
0.237275 + 0.971443i \(0.423746\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.1488 1.80687 0.903434 0.428728i \(-0.141038\pi\)
0.903434 + 0.428728i \(0.141038\pi\)
\(138\) 0 0
\(139\) −0.923945 1.60032i −0.0783680 0.135737i 0.824178 0.566331i \(-0.191638\pi\)
−0.902546 + 0.430594i \(0.858304\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.471410 + 0.816506i 0.0394213 + 0.0682797i
\(144\) 0 0
\(145\) 15.1014 26.1563i 1.25410 2.17217i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.1488 −0.995272 −0.497636 0.867386i \(-0.665798\pi\)
−0.497636 + 0.867386i \(0.665798\pi\)
\(150\) 0 0
\(151\) −8.98057 −0.730828 −0.365414 0.930845i \(-0.619073\pi\)
−0.365414 + 0.930845i \(0.619073\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.4331 + 26.7309i −1.23962 + 2.14708i
\(156\) 0 0
\(157\) −5.90451 + 10.2269i −0.471232 + 0.816197i −0.999458 0.0329062i \(-0.989524\pi\)
0.528227 + 0.849103i \(0.322857\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.14132 10.6371i 0.481025 0.833160i −0.518738 0.854933i \(-0.673598\pi\)
0.999763 + 0.0217737i \(0.00693132\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.4428 + 19.8195i 0.885472 + 1.53368i 0.845172 + 0.534495i \(0.179498\pi\)
0.0403003 + 0.999188i \(0.487169\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.63160 16.6824i −0.732277 1.26834i −0.955908 0.293667i \(-0.905124\pi\)
0.223631 0.974674i \(-0.428209\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.41586 4.18440i −0.180570 0.312757i 0.761505 0.648159i \(-0.224461\pi\)
−0.942075 + 0.335403i \(0.891128\pi\)
\(180\) 0 0
\(181\) −3.26320 −0.242552 −0.121276 0.992619i \(-0.538699\pi\)
−0.121276 + 0.992619i \(0.538699\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −19.3759 + 33.5601i −1.42455 + 2.46739i
\(186\) 0 0
\(187\) 2.64132 + 4.57489i 0.193152 + 0.334549i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.34897 + 12.7288i 0.531753 + 0.921023i 0.999313 + 0.0370616i \(0.0117998\pi\)
−0.467560 + 0.883961i \(0.654867\pi\)
\(192\) 0 0
\(193\) −5.05555 + 8.75646i −0.363906 + 0.630304i −0.988600 0.150566i \(-0.951890\pi\)
0.624694 + 0.780870i \(0.285224\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6375 −1.18537 −0.592686 0.805434i \(-0.701933\pi\)
−0.592686 + 0.805434i \(0.701933\pi\)
\(198\) 0 0
\(199\) 6.55555 + 11.3545i 0.464710 + 0.804902i 0.999188 0.0402805i \(-0.0128251\pi\)
−0.534478 + 0.845182i \(0.679492\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.85868 + 3.21934i 0.129816 + 0.224848i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.604645 + 1.04728i −0.0418242 + 0.0724416i
\(210\) 0 0
\(211\) −1.06526 1.84509i −0.0733355 0.127021i 0.827026 0.562164i \(-0.190031\pi\)
−0.900361 + 0.435143i \(0.856698\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.2616 31.6300i 1.24543 2.15715i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.80150 + 4.85235i −0.188450 + 0.326404i
\(222\) 0 0
\(223\) −7.04583 + 12.2037i −0.471824 + 0.817223i −0.999480 0.0322352i \(-0.989737\pi\)
0.527657 + 0.849458i \(0.323071\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.79071 0.317971 0.158985 0.987281i \(-0.449178\pi\)
0.158985 + 0.987281i \(0.449178\pi\)
\(228\) 0 0
\(229\) −18.0917 −1.19553 −0.597765 0.801671i \(-0.703945\pi\)
−0.597765 + 0.801671i \(0.703945\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.57442 + 2.72698i −0.103144 + 0.178650i −0.912978 0.408008i \(-0.866223\pi\)
0.809835 + 0.586658i \(0.199557\pi\)
\(234\) 0 0
\(235\) −10.4142 18.0380i −0.679349 1.17667i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.16019 10.6698i −0.398470 0.690170i 0.595068 0.803676i \(-0.297125\pi\)
−0.993537 + 0.113506i \(0.963792\pi\)
\(240\) 0 0
\(241\) −14.5458 −0.936979 −0.468490 0.883469i \(-0.655202\pi\)
−0.468490 + 0.883469i \(0.655202\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.28263 −0.0816118
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.28263 −0.144078 −0.0720392 0.997402i \(-0.522951\pi\)
−0.0720392 + 0.997402i \(0.522951\pi\)
\(252\) 0 0
\(253\) −4.39372 −0.276231
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.793980 0.0495271 0.0247636 0.999693i \(-0.492117\pi\)
0.0247636 + 0.999693i \(0.492117\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.4887 −0.646758 −0.323379 0.946270i \(-0.604819\pi\)
−0.323379 + 0.946270i \(0.604819\pi\)
\(264\) 0 0
\(265\) 18.1871 + 31.5011i 1.11723 + 1.93509i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.16991 8.95454i −0.315215 0.545968i 0.664268 0.747494i \(-0.268743\pi\)
−0.979483 + 0.201526i \(0.935410\pi\)
\(270\) 0 0
\(271\) −15.4142 + 26.6982i −0.936348 + 1.62180i −0.164135 + 0.986438i \(0.552483\pi\)
−0.772213 + 0.635364i \(0.780850\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.94282 −0.599575
\(276\) 0 0
\(277\) 14.2438 0.855825 0.427913 0.903820i \(-0.359249\pi\)
0.427913 + 0.903820i \(0.359249\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.46169 + 7.72788i −0.266162 + 0.461007i −0.967868 0.251461i \(-0.919089\pi\)
0.701705 + 0.712468i \(0.252422\pi\)
\(282\) 0 0
\(283\) −11.6316 + 20.1465i −0.691427 + 1.19759i 0.279944 + 0.960016i \(0.409684\pi\)
−0.971370 + 0.237570i \(0.923649\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.19686 + 12.4653i −0.423345 + 0.733255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.9412 20.6827i −0.697611 1.20830i −0.969292 0.245911i \(-0.920913\pi\)
0.271681 0.962387i \(-0.412420\pi\)
\(294\) 0 0
\(295\) −18.8187 + 32.5950i −1.09567 + 1.89776i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.33009 4.03584i −0.134753 0.233399i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 20.7902 + 36.0096i 1.19044 + 2.06190i
\(306\) 0 0
\(307\) 7.37429 0.420873 0.210436 0.977608i \(-0.432511\pi\)
0.210436 + 0.977608i \(0.432511\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.58577 + 7.94279i −0.260035 + 0.450394i −0.966251 0.257603i \(-0.917067\pi\)
0.706216 + 0.707997i \(0.250401\pi\)
\(312\) 0 0
\(313\) 8.05555 + 13.9526i 0.455326 + 0.788648i 0.998707 0.0508381i \(-0.0161893\pi\)
−0.543381 + 0.839486i \(0.682856\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.13160 3.69204i −0.119723 0.207366i 0.799935 0.600086i \(-0.204867\pi\)
−0.919658 + 0.392721i \(0.871534\pi\)
\(318\) 0 0
\(319\) 3.61109 6.25459i 0.202182 0.350190i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.18659 −0.399873
\(324\) 0 0
\(325\) −5.27292 9.13296i −0.292489 0.506605i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.14132 + 10.6371i 0.337557 + 0.584666i 0.983973 0.178319i \(-0.0570660\pi\)
−0.646415 + 0.762986i \(0.723733\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.38564 + 5.86410i −0.184977 + 0.320390i
\(336\) 0 0
\(337\) 13.4903 + 23.3659i 0.734863 + 1.27282i 0.954784 + 0.297302i \(0.0960867\pi\)
−0.219921 + 0.975518i \(0.570580\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.69041 + 6.39199i −0.199847 + 0.346145i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.7524 + 18.6237i −0.577219 + 0.999773i 0.418577 + 0.908181i \(0.362529\pi\)
−0.995797 + 0.0915921i \(0.970804\pi\)
\(348\) 0 0
\(349\) −2.54583 + 4.40951i −0.136275 + 0.236035i −0.926084 0.377318i \(-0.876846\pi\)
0.789809 + 0.613353i \(0.210180\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.56853 0.509281 0.254641 0.967036i \(-0.418043\pi\)
0.254641 + 0.967036i \(0.418043\pi\)
\(354\) 0 0
\(355\) 13.9806 0.742012
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.48113 9.49359i 0.289283 0.501052i −0.684356 0.729148i \(-0.739917\pi\)
0.973639 + 0.228096i \(0.0732499\pi\)
\(360\) 0 0
\(361\) 8.67743 + 15.0297i 0.456707 + 0.791039i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.35705 9.27868i −0.280401 0.485668i
\(366\) 0 0
\(367\) −4.69794 −0.245230 −0.122615 0.992454i \(-0.539128\pi\)
−0.122615 + 0.992454i \(0.539128\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.26320 0.479630 0.239815 0.970819i \(-0.422913\pi\)
0.239815 + 0.970819i \(0.422913\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.66019 0.394520
\(378\) 0 0
\(379\) −13.5458 −0.695803 −0.347901 0.937531i \(-0.613106\pi\)
−0.347901 + 0.937531i \(0.613106\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.2794 0.627446 0.313723 0.949515i \(-0.398424\pi\)
0.313723 + 0.949515i \(0.398424\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.51135 0.380841 0.190420 0.981703i \(-0.439015\pi\)
0.190420 + 0.981703i \(0.439015\pi\)
\(390\) 0 0
\(391\) −13.0555 22.6129i −0.660247 1.14358i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −32.2804 55.9114i −1.62421 2.81321i
\(396\) 0 0
\(397\) −11.4601 + 19.8494i −0.575164 + 0.996213i 0.420860 + 0.907126i \(0.361728\pi\)
−0.996024 + 0.0890875i \(0.971605\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.1261 1.05499 0.527495 0.849558i \(-0.323132\pi\)
0.527495 + 0.849558i \(0.323132\pi\)
\(402\) 0 0
\(403\) −7.82846 −0.389963
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.63323 + 8.02500i −0.229661 + 0.397784i
\(408\) 0 0
\(409\) 1.71737 2.97457i 0.0849185 0.147083i −0.820438 0.571736i \(-0.806270\pi\)
0.905356 + 0.424652i \(0.139604\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.782630 + 1.35556i −0.0384178 + 0.0665416i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.2157 + 17.6942i 0.499071 + 0.864417i 0.999999 0.00107202i \(-0.000341235\pi\)
−0.500928 + 0.865489i \(0.667008\pi\)
\(420\) 0 0
\(421\) −7.90451 + 13.6910i −0.385242 + 0.667260i −0.991803 0.127778i \(-0.959216\pi\)
0.606560 + 0.795037i \(0.292549\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −29.5442 51.1720i −1.43310 2.48221i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.3759 23.1678i −0.644296 1.11595i −0.984464 0.175588i \(-0.943817\pi\)
0.340168 0.940365i \(-0.389516\pi\)
\(432\) 0 0
\(433\) 14.4347 0.693689 0.346845 0.937923i \(-0.387253\pi\)
0.346845 + 0.937923i \(0.387253\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.98865 5.17649i 0.142967 0.247625i
\(438\) 0 0
\(439\) −19.3187 33.4610i −0.922033 1.59701i −0.796264 0.604949i \(-0.793193\pi\)
−0.125769 0.992060i \(-0.540140\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.28263 + 9.14978i 0.250985 + 0.434719i 0.963797 0.266636i \(-0.0859121\pi\)
−0.712812 + 0.701355i \(0.752579\pi\)
\(444\) 0 0
\(445\) 10.8587 18.8078i 0.514751 0.891575i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.37429 0.442400 0.221200 0.975228i \(-0.429003\pi\)
0.221200 + 0.975228i \(0.429003\pi\)
\(450\) 0 0
\(451\) 0.444455 + 0.769818i 0.0209286 + 0.0362493i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.3587 17.9418i −0.484559 0.839281i 0.515284 0.857020i \(-0.327687\pi\)
−0.999843 + 0.0177391i \(0.994353\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.6300 + 30.5360i −0.821109 + 1.42220i 0.0837475 + 0.996487i \(0.473311\pi\)
−0.904857 + 0.425716i \(0.860022\pi\)
\(462\) 0 0
\(463\) −3.55555 6.15838i −0.165240 0.286204i 0.771500 0.636229i \(-0.219507\pi\)
−0.936741 + 0.350024i \(0.886173\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.51724 + 4.35999i −0.116484 + 0.201756i −0.918372 0.395718i \(-0.870496\pi\)
0.801888 + 0.597474i \(0.203829\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.36677 7.56346i 0.200784 0.347768i
\(474\) 0 0
\(475\) 6.76320 11.7142i 0.310317 0.537485i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.26647 0.286322 0.143161 0.989699i \(-0.454273\pi\)
0.143161 + 0.989699i \(0.454273\pi\)
\(480\) 0 0
\(481\) −9.82846 −0.448139
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 26.7044 46.2534i 1.21258 2.10026i
\(486\) 0 0
\(487\) −7.03611 12.1869i −0.318837 0.552242i 0.661409 0.750026i \(-0.269959\pi\)
−0.980246 + 0.197784i \(0.936626\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.97141 + 3.41458i 0.0889685 + 0.154098i 0.907075 0.420968i \(-0.138310\pi\)
−0.818107 + 0.575066i \(0.804976\pi\)
\(492\) 0 0
\(493\) 42.9201 1.93302
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.6569 0.879965 0.439982 0.898006i \(-0.354985\pi\)
0.439982 + 0.898006i \(0.354985\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.2632 −0.457613 −0.228807 0.973472i \(-0.573482\pi\)
−0.228807 + 0.973472i \(0.573482\pi\)
\(504\) 0 0
\(505\) 10.2632 0.456706
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.33981 0.0593860 0.0296930 0.999559i \(-0.490547\pi\)
0.0296930 + 0.999559i \(0.490547\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 63.0085 2.77649
\(516\) 0 0
\(517\) −2.49028 4.31330i −0.109523 0.189699i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.89699 13.6780i −0.345973 0.599244i 0.639557 0.768744i \(-0.279118\pi\)
−0.985530 + 0.169500i \(0.945785\pi\)
\(522\) 0 0
\(523\) −5.33818 + 9.24599i −0.233422 + 0.404299i −0.958813 0.284038i \(-0.908326\pi\)
0.725391 + 0.688337i \(0.241659\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −43.8629 −1.91070
\(528\) 0 0
\(529\) −1.28263 −0.0557665
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.471410 + 0.816506i −0.0204190 + 0.0353668i
\(534\) 0 0
\(535\) 21.4601 37.1699i 0.927799 1.60700i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.32846 + 14.4253i −0.358068 + 0.620193i −0.987638 0.156751i \(-0.949898\pi\)
0.629570 + 0.776944i \(0.283231\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.47141 11.2088i −0.277205 0.480133i
\(546\) 0 0
\(547\) −7.81875 + 13.5425i −0.334305 + 0.579034i −0.983351 0.181715i \(-0.941835\pi\)
0.649046 + 0.760749i \(0.275168\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.91260 + 8.50886i 0.209284 + 0.362490i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.39536 14.5412i −0.355723 0.616130i 0.631519 0.775361i \(-0.282432\pi\)
−0.987241 + 0.159231i \(0.949099\pi\)
\(558\) 0 0
\(559\) 9.26320 0.391792
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.58577 + 13.1389i −0.319702 + 0.553740i −0.980426 0.196889i \(-0.936916\pi\)
0.660724 + 0.750629i \(0.270249\pi\)
\(564\) 0 0
\(565\) 12.7174 + 22.0271i 0.535024 + 0.926688i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.7632 + 30.7668i 0.744672 + 1.28981i 0.950348 + 0.311190i \(0.100727\pi\)
−0.205676 + 0.978620i \(0.565939\pi\)
\(570\) 0 0
\(571\) 0.772915 1.33873i 0.0323455 0.0560240i −0.849400 0.527750i \(-0.823036\pi\)
0.881745 + 0.471726i \(0.156369\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 49.1456 2.04951
\(576\) 0 0
\(577\) −0.838175 1.45176i −0.0348937 0.0604377i 0.848051 0.529914i \(-0.177776\pi\)
−0.882945 + 0.469477i \(0.844443\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.34897 + 7.53264i 0.180116 + 0.311970i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.7346 34.1813i 0.814535 1.41082i −0.0951271 0.995465i \(-0.530326\pi\)
0.909662 0.415350i \(-0.136341\pi\)
\(588\) 0 0
\(589\) −5.02051 8.69578i −0.206866 0.358303i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.4159 + 19.7729i −0.468793 + 0.811974i −0.999364 0.0356669i \(-0.988644\pi\)
0.530570 + 0.847641i \(0.321978\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.6375 39.2093i 0.924943 1.60205i 0.133290 0.991077i \(-0.457446\pi\)
0.791653 0.610971i \(-0.209221\pi\)
\(600\) 0 0
\(601\) 13.5253 23.4265i 0.551709 0.955589i −0.446442 0.894813i \(-0.647309\pi\)
0.998151 0.0607761i \(-0.0193576\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 39.8662 1.62079
\(606\) 0 0
\(607\) 18.6569 0.757261 0.378631 0.925548i \(-0.376395\pi\)
0.378631 + 0.925548i \(0.376395\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.64132 4.57489i 0.106856 0.185080i
\(612\) 0 0
\(613\) 14.4806 + 25.0811i 0.584865 + 1.01302i 0.994892 + 0.100942i \(0.0321857\pi\)
−0.410028 + 0.912073i \(0.634481\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.8457 + 32.6417i 0.758699 + 1.31411i 0.943514 + 0.331332i \(0.107498\pi\)
−0.184815 + 0.982773i \(0.559169\pi\)
\(618\) 0 0
\(619\) −0.0194303 −0.000780971 −0.000390485 1.00000i \(-0.500124\pi\)
−0.000390485 1.00000i \(0.500124\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 33.4854 1.33942
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −55.0690 −2.19574
\(630\) 0 0
\(631\) 28.4854 1.13399 0.566993 0.823723i \(-0.308107\pi\)
0.566993 + 0.823723i \(0.308107\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.26647 0.129626
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −44.5393 −1.75920 −0.879598 0.475718i \(-0.842188\pi\)
−0.879598 + 0.475718i \(0.842188\pi\)
\(642\) 0 0
\(643\) 4.50972 + 7.81106i 0.177846 + 0.308038i 0.941142 0.338010i \(-0.109754\pi\)
−0.763297 + 0.646048i \(0.776421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.4126 37.0877i −0.841816 1.45807i −0.888358 0.459152i \(-0.848153\pi\)
0.0465419 0.998916i \(-0.485180\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.60301 −0.219263 −0.109631 0.993972i \(-0.534967\pi\)
−0.109631 + 0.993972i \(0.534967\pi\)
\(654\) 0 0
\(655\) −21.4153 −0.836765
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.26376 + 5.65299i −0.127138 + 0.220209i −0.922567 0.385838i \(-0.873912\pi\)
0.795429 + 0.606047i \(0.207246\pi\)
\(660\) 0 0
\(661\) −5.50972 + 9.54311i −0.214303 + 0.371184i −0.953057 0.302792i \(-0.902081\pi\)
0.738754 + 0.673976i \(0.235415\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −17.8490 + 30.9153i −0.691115 + 1.19705i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.97141 + 8.61073i 0.191919 + 0.332414i
\(672\) 0 0
\(673\) 1.67743 2.90539i 0.0646602 0.111995i −0.831883 0.554951i \(-0.812737\pi\)
0.896543 + 0.442956i \(0.146070\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.3187 + 35.1931i 0.780913 + 1.35258i 0.931411 + 0.363970i \(0.118579\pi\)
−0.150498 + 0.988610i \(0.548088\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.03775 12.1897i −0.269292 0.466427i 0.699387 0.714743i \(-0.253456\pi\)
−0.968679 + 0.248316i \(0.920123\pi\)
\(684\) 0 0
\(685\) −83.3861 −3.18602
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.61273 + 7.98947i −0.175731 + 0.304375i
\(690\) 0 0
\(691\) −21.9601 38.0359i −0.835400 1.44696i −0.893704 0.448656i \(-0.851903\pi\)
0.0583042 0.998299i \(-0.481431\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.64295 + 6.30977i 0.138185 + 0.239343i
\(696\) 0 0
\(697\) −2.64132 + 4.57489i −0.100047 + 0.173286i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.69578 −0.290666 −0.145333 0.989383i \(-0.546425\pi\)
−0.145333 + 0.989383i \(0.546425\pi\)
\(702\) 0 0
\(703\) −6.30314 10.9174i −0.237727 0.411756i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.111090 0.192414i −0.00417209 0.00722626i 0.863932 0.503609i \(-0.167995\pi\)
−0.868104 + 0.496383i \(0.834661\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.2411 31.5944i 0.683133 1.18322i
\(714\) 0 0
\(715\) −1.85868 3.21934i −0.0695109 0.120396i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.32201 2.28980i 0.0493028 0.0853950i −0.840321 0.542089i \(-0.817633\pi\)
0.889624 + 0.456694i \(0.150967\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −40.3915 + 69.9602i −1.50010 + 2.59826i
\(726\) 0 0
\(727\) 12.7427 22.0710i 0.472600 0.818568i −0.526908 0.849922i \(-0.676649\pi\)
0.999508 + 0.0313547i \(0.00998214\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 51.9018 1.91966
\(732\) 0 0
\(733\) −1.86948 −0.0690508 −0.0345254 0.999404i \(-0.510992\pi\)
−0.0345254 + 0.999404i \(0.510992\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.809585 + 1.40224i −0.0298215 + 0.0516523i
\(738\) 0 0
\(739\) −25.5819 44.3092i −0.941047 1.62994i −0.763479 0.645833i \(-0.776510\pi\)
−0.177568 0.984108i \(-0.556823\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.3668 33.5442i −0.710498 1.23062i −0.964671 0.263459i \(-0.915137\pi\)
0.254173 0.967159i \(-0.418197\pi\)
\(744\) 0 0
\(745\) 47.9007 1.75495
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.19097 0.225912 0.112956 0.993600i \(-0.463968\pi\)
0.112956 + 0.993600i \(0.463968\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 35.4088 1.28866
\(756\) 0 0
\(757\) −13.7174 −0.498566 −0.249283 0.968431i \(-0.580195\pi\)
−0.249283 + 0.968431i \(0.580195\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.3204 1.42536 0.712681 0.701488i \(-0.247481\pi\)
0.712681 + 0.701488i \(0.247481\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.54583 −0.344680
\(768\) 0 0
\(769\) 11.3646 + 19.6840i 0.409817 + 0.709824i 0.994869 0.101172i \(-0.0322592\pi\)
−0.585052 + 0.810996i \(0.698926\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.3662 + 24.8830i 0.516717 + 0.894979i 0.999812 + 0.0194115i \(0.00617926\pi\)
−0.483095 + 0.875568i \(0.660487\pi\)
\(774\) 0 0
\(775\) 41.2788 71.4970i 1.48278 2.56825i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.20929 −0.0433273
\(780\) 0 0
\(781\) 3.34308 0.119625
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.2804 40.3229i 0.830915 1.43919i
\(786\) 0 0
\(787\) −27.0059 + 46.7756i −0.962656 + 1.66737i −0.246871 + 0.969048i \(0.579402\pi\)
−0.715785 + 0.698321i \(0.753931\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.27292 + 9.13296i −0.187247 + 0.324321i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.103565 + 0.179381i 0.00366848 + 0.00635399i 0.867854 0.496820i \(-0.165499\pi\)
−0.864185 + 0.503174i \(0.832166\pi\)
\(798\) 0 0
\(799\) 14.7993 25.6332i 0.523562 0.906836i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.28100 2.21875i −0.0452053 0.0782980i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.0270 31.2236i −0.633794 1.09776i −0.986769 0.162131i \(-0.948163\pi\)
0.352975 0.935633i \(-0.385170\pi\)
\(810\) 0 0
\(811\) 2.01943 0.0709118 0.0354559 0.999371i \(-0.488712\pi\)
0.0354559 + 0.999371i \(0.488712\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.2141 + 41.9401i −0.848183 + 1.46910i
\(816\) 0 0
\(817\) 5.94063 + 10.2895i 0.207836 + 0.359983i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.1871 26.3049i −0.530035 0.918048i −0.999386 0.0350359i \(-0.988845\pi\)
0.469351 0.883012i \(-0.344488\pi\)
\(822\) 0 0
\(823\) 6.56526 11.3714i 0.228851 0.396381i −0.728617 0.684921i \(-0.759837\pi\)
0.957468 + 0.288540i \(0.0931699\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.3236 0.393762 0.196881 0.980427i \(-0.436919\pi\)
0.196881 + 0.980427i \(0.436919\pi\)
\(828\) 0 0
\(829\) −5.53022 9.57863i −0.192073 0.332680i 0.753864 0.657030i \(-0.228188\pi\)
−0.945937 + 0.324351i \(0.894854\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −45.1170 78.1449i −1.56134 2.70432i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.27128 + 9.13013i −0.181985 + 0.315207i −0.942556 0.334047i \(-0.891586\pi\)
0.760572 + 0.649254i \(0.224919\pi\)
\(840\) 0 0
\(841\) −14.8393 25.7023i −0.511698 0.886288i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23.6569 + 40.9750i −0.813823 + 1.40958i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22.9012 39.6661i 0.785045 1.35974i
\(852\) 0 0
\(853\) −13.6413 + 23.6275i −0.467070 + 0.808989i −0.999292 0.0376160i \(-0.988024\pi\)
0.532223 + 0.846604i \(0.321357\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.43147 −0.0830574 −0.0415287 0.999137i \(-0.513223\pi\)
−0.0415287 + 0.999137i \(0.513223\pi\)
\(858\) 0 0
\(859\) 31.7486 1.08325 0.541624 0.840621i \(-0.317810\pi\)
0.541624 + 0.840621i \(0.317810\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.9126 + 24.0973i −0.473590 + 0.820282i −0.999543 0.0302315i \(-0.990376\pi\)
0.525953 + 0.850514i \(0.323709\pi\)
\(864\) 0 0
\(865\) 37.9757 + 65.7758i 1.29121 + 2.23644i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.71900 13.3697i −0.261849 0.453536i
\(870\) 0 0
\(871\) −1.71737 −0.0581909
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.58685 −0.154887 −0.0774434 0.996997i \(-0.524676\pi\)
−0.0774434 + 0.996997i \(0.524676\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.4465 1.93542 0.967711 0.252062i \(-0.0811085\pi\)
0.967711 + 0.252062i \(0.0811085\pi\)
\(882\) 0 0
\(883\) 36.3937 1.22475 0.612373 0.790569i \(-0.290215\pi\)
0.612373 + 0.790569i \(0.290215\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43.4476 −1.45883 −0.729414 0.684072i \(-0.760207\pi\)
−0.729414 + 0.684072i \(0.760207\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.77566 0.226739
\(894\) 0 0
\(895\) 9.52532 + 16.4983i 0.318396 + 0.551479i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.9837 + 51.9334i 1.00001 + 1.73207i
\(900\) 0 0
\(901\) −25.8451 + 44.7651i −0.861027 + 1.49134i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.8662 0.427687
\(906\) 0 0
\(907\) 22.3138 0.740919 0.370459 0.928849i \(-0.379200\pi\)
0.370459 + 0.928849i \(0.379200\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.67799 + 13.2987i −0.254383 + 0.440604i −0.964728 0.263250i \(-0.915206\pi\)
0.710345 + 0.703854i \(0.248539\pi\)
\(912\) 0 0
\(913\) −0.187145 + 0.324145i −0.00619360 + 0.0107276i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.4142 31.8944i 0.607429 1.05210i −0.384233 0.923236i \(-0.625534\pi\)
0.991662 0.128862i \(-0.0411326\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.77292 + 3.07078i 0.0583562 + 0.101076i
\(924\) 0 0
\(925\) 51.8246 89.7629i 1.70398 2.95139i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.8646 + 36.1385i 0.684545 + 1.18567i 0.973580 + 0.228347i \(0.0733322\pi\)
−0.289035 + 0.957318i \(0.593334\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.4142 18.0380i −0.340582 0.589905i
\(936\) 0 0
\(937\) 25.3743 0.828942 0.414471 0.910063i \(-0.363967\pi\)
0.414471 + 0.910063i \(0.363967\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.5712 + 40.8264i −0.768398 + 1.33090i 0.170034 + 0.985438i \(0.445612\pi\)
−0.938431 + 0.345465i \(0.887721\pi\)
\(942\) 0 0
\(943\) −2.19686 3.80507i −0.0715396 0.123910i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.2535 29.8839i −0.560663 0.971097i −0.997439 0.0715263i \(-0.977213\pi\)
0.436776 0.899570i \(-0.356120\pi\)
\(948\) 0 0
\(949\) 1.35868 2.35331i 0.0441048 0.0763917i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.1833 1.43124 0.715619 0.698491i \(-0.246145\pi\)
0.715619 + 0.698491i \(0.246145\pi\)
\(954\) 0 0
\(955\) −28.9757 50.1873i −0.937631 1.62402i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.1424 26.2274i −0.488464 0.846045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.9331 34.5252i 0.641669 1.11140i
\(966\) 0 0
\(967\) −21.2330 36.7766i −0.682806 1.18266i −0.974121 0.226028i \(-0.927426\pi\)
0.291314 0.956627i \(-0.405907\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.02696 + 5.24284i −0.0971396 + 0.168251i −0.910500 0.413510i \(-0.864303\pi\)
0.813360 + 0.581761i \(0.197636\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.0264 + 38.1508i −0.704687 + 1.22055i 0.262117 + 0.965036i \(0.415579\pi\)
−0.966804 + 0.255518i \(0.917754\pi\)
\(978\) 0 0
\(979\) 2.59656 4.49738i 0.0829866 0.143737i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.47033 −0.142581 −0.0712907 0.997456i \(-0.522712\pi\)
−0.0712907 + 0.997456i \(0.522712\pi\)
\(984\) 0 0
\(985\) 65.5986 2.09015
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.5841 + 37.3848i −0.686336 + 1.18877i
\(990\) 0 0
\(991\) 15.7524 + 27.2840i 0.500392 + 0.866704i 1.00000 0.000452297i \(0.000143971\pi\)
−0.499608 + 0.866251i \(0.666523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25.8473 44.7689i −0.819416 1.41927i
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.d.3313.1 6
3.2 odd 2 1764.2.l.g.961.2 6
7.2 even 3 5292.2.j.e.3529.3 6
7.3 odd 6 5292.2.i.d.2125.1 6
7.4 even 3 5292.2.i.g.2125.3 6
7.5 odd 6 756.2.j.a.505.1 6
7.6 odd 2 5292.2.l.g.3313.3 6
9.4 even 3 5292.2.i.g.1549.3 6
9.5 odd 6 1764.2.i.e.373.1 6
21.2 odd 6 1764.2.j.d.1177.3 6
21.5 even 6 252.2.j.b.169.1 yes 6
21.11 odd 6 1764.2.i.e.1537.1 6
21.17 even 6 1764.2.i.f.1537.3 6
21.20 even 2 1764.2.l.d.961.2 6
28.19 even 6 3024.2.r.i.2017.1 6
63.4 even 3 inner 5292.2.l.d.361.1 6
63.5 even 6 252.2.j.b.85.1 6
63.13 odd 6 5292.2.i.d.1549.1 6
63.23 odd 6 1764.2.j.d.589.3 6
63.31 odd 6 5292.2.l.g.361.3 6
63.32 odd 6 1764.2.l.g.949.2 6
63.40 odd 6 756.2.j.a.253.1 6
63.41 even 6 1764.2.i.f.373.3 6
63.47 even 6 2268.2.a.g.1.1 3
63.58 even 3 5292.2.j.e.1765.3 6
63.59 even 6 1764.2.l.d.949.2 6
63.61 odd 6 2268.2.a.j.1.3 3
84.47 odd 6 1008.2.r.g.673.3 6
252.47 odd 6 9072.2.a.bt.1.1 3
252.103 even 6 3024.2.r.i.1009.1 6
252.131 odd 6 1008.2.r.g.337.3 6
252.187 even 6 9072.2.a.bz.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.1 6 63.5 even 6
252.2.j.b.169.1 yes 6 21.5 even 6
756.2.j.a.253.1 6 63.40 odd 6
756.2.j.a.505.1 6 7.5 odd 6
1008.2.r.g.337.3 6 252.131 odd 6
1008.2.r.g.673.3 6 84.47 odd 6
1764.2.i.e.373.1 6 9.5 odd 6
1764.2.i.e.1537.1 6 21.11 odd 6
1764.2.i.f.373.3 6 63.41 even 6
1764.2.i.f.1537.3 6 21.17 even 6
1764.2.j.d.589.3 6 63.23 odd 6
1764.2.j.d.1177.3 6 21.2 odd 6
1764.2.l.d.949.2 6 63.59 even 6
1764.2.l.d.961.2 6 21.20 even 2
1764.2.l.g.949.2 6 63.32 odd 6
1764.2.l.g.961.2 6 3.2 odd 2
2268.2.a.g.1.1 3 63.47 even 6
2268.2.a.j.1.3 3 63.61 odd 6
3024.2.r.i.1009.1 6 252.103 even 6
3024.2.r.i.2017.1 6 28.19 even 6
5292.2.i.d.1549.1 6 63.13 odd 6
5292.2.i.d.2125.1 6 7.3 odd 6
5292.2.i.g.1549.3 6 9.4 even 3
5292.2.i.g.2125.3 6 7.4 even 3
5292.2.j.e.1765.3 6 63.58 even 3
5292.2.j.e.3529.3 6 7.2 even 3
5292.2.l.d.361.1 6 63.4 even 3 inner
5292.2.l.d.3313.1 6 1.1 even 1 trivial
5292.2.l.g.361.3 6 63.31 odd 6
5292.2.l.g.3313.3 6 7.6 odd 2
9072.2.a.bt.1.1 3 252.47 odd 6
9072.2.a.bz.1.3 3 252.187 even 6