Properties

Label 252.2.j.b.169.1
Level $252$
Weight $2$
Character 252.169
Analytic conductor $2.012$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(85,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.85"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 169.1
Root \(0.500000 - 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 252.169
Dual form 252.2.j.b.85.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09097 - 1.34528i) q^{3} +(1.97141 + 3.41458i) q^{5} +(-0.500000 + 0.866025i) q^{7} +(-0.619562 + 2.93533i) q^{9} +(-0.471410 + 0.816506i) q^{11} +(0.500000 + 0.866025i) q^{13} +(2.44282 - 6.37731i) q^{15} +5.60301 q^{17} +1.28263 q^{19} +(1.71053 - 0.272169i) q^{21} +(2.33009 + 4.03584i) q^{23} +(-5.27292 + 9.13296i) q^{25} +(4.62476 - 2.36887i) q^{27} +(3.83009 - 6.63392i) q^{29} +(-3.91423 - 6.77965i) q^{31} +(1.61273 - 0.256606i) q^{33} -3.94282 q^{35} -9.82846 q^{37} +(0.619562 - 1.61745i) q^{39} +(-0.471410 - 0.816506i) q^{41} +(-4.63160 + 8.02217i) q^{43} +(-11.2443 + 3.67119i) q^{45} +(2.64132 - 4.57489i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(-6.11273 - 7.53762i) q^{51} -9.22545 q^{53} -3.71737 q^{55} +(-1.39931 - 1.72550i) q^{57} +(4.77292 + 8.26693i) q^{59} +(5.27292 - 9.13296i) q^{61} +(-2.23229 - 2.00422i) q^{63} +(-1.97141 + 3.41458i) q^{65} +(0.858685 + 1.48729i) q^{67} +(2.88727 - 7.53762i) q^{69} +3.54583 q^{71} +2.71737 q^{73} +(18.0390 - 2.87024i) q^{75} +(-0.471410 - 0.816506i) q^{77} +(8.18715 - 14.1806i) q^{79} +(-8.23229 - 3.63723i) q^{81} +(0.198495 - 0.343803i) q^{83} +(11.0458 + 19.1319i) q^{85} +(-13.1030 + 2.08486i) q^{87} +5.50808 q^{89} -1.00000 q^{91} +(-4.85021 + 12.6621i) q^{93} +(2.52859 + 4.37965i) q^{95} +(6.77292 - 11.7310i) q^{97} +(-2.10464 - 1.88962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} + 3 q^{5} - 3 q^{7} - 4 q^{9} + 6 q^{11} + 3 q^{13} - 3 q^{15} + 6 q^{19} + 2 q^{21} + 6 q^{23} - 6 q^{25} - 7 q^{27} + 15 q^{29} + 3 q^{31} - 6 q^{35} - 6 q^{37} + 4 q^{39} + 6 q^{41} - 3 q^{43}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.09097 1.34528i −0.629873 0.776698i
\(4\) 0 0
\(5\) 1.97141 + 3.41458i 0.881641 + 1.52705i 0.849515 + 0.527564i \(0.176894\pi\)
0.0321260 + 0.999484i \(0.489772\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) −0.619562 + 2.93533i −0.206521 + 0.978442i
\(10\) 0 0
\(11\) −0.471410 + 0.816506i −0.142135 + 0.246186i −0.928301 0.371831i \(-0.878730\pi\)
0.786165 + 0.618017i \(0.212064\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) 2.44282 6.37731i 0.630733 1.64662i
\(16\) 0 0
\(17\) 5.60301 1.35893 0.679465 0.733708i \(-0.262212\pi\)
0.679465 + 0.733708i \(0.262212\pi\)
\(18\) 0 0
\(19\) 1.28263 0.294256 0.147128 0.989117i \(-0.452997\pi\)
0.147128 + 0.989117i \(0.452997\pi\)
\(20\) 0 0
\(21\) 1.71053 0.272169i 0.373269 0.0593921i
\(22\) 0 0
\(23\) 2.33009 + 4.03584i 0.485858 + 0.841531i 0.999868 0.0162531i \(-0.00517374\pi\)
−0.514010 + 0.857784i \(0.671840\pi\)
\(24\) 0 0
\(25\) −5.27292 + 9.13296i −1.05458 + 1.82659i
\(26\) 0 0
\(27\) 4.62476 2.36887i 0.890036 0.455890i
\(28\) 0 0
\(29\) 3.83009 6.63392i 0.711231 1.23189i −0.253165 0.967423i \(-0.581471\pi\)
0.964395 0.264465i \(-0.0851952\pi\)
\(30\) 0 0
\(31\) −3.91423 6.77965i −0.703016 1.21766i −0.967403 0.253243i \(-0.918503\pi\)
0.264386 0.964417i \(-0.414831\pi\)
\(32\) 0 0
\(33\) 1.61273 0.256606i 0.280739 0.0446694i
\(34\) 0 0
\(35\) −3.94282 −0.666458
\(36\) 0 0
\(37\) −9.82846 −1.61579 −0.807894 0.589327i \(-0.799393\pi\)
−0.807894 + 0.589327i \(0.799393\pi\)
\(38\) 0 0
\(39\) 0.619562 1.61745i 0.0992093 0.258999i
\(40\) 0 0
\(41\) −0.471410 0.816506i −0.0736219 0.127517i 0.826864 0.562402i \(-0.190122\pi\)
−0.900486 + 0.434885i \(0.856789\pi\)
\(42\) 0 0
\(43\) −4.63160 + 8.02217i −0.706312 + 1.22337i 0.259903 + 0.965635i \(0.416309\pi\)
−0.966216 + 0.257734i \(0.917024\pi\)
\(44\) 0 0
\(45\) −11.2443 + 3.67119i −1.67621 + 0.547268i
\(46\) 0 0
\(47\) 2.64132 4.57489i 0.385275 0.667317i −0.606532 0.795059i \(-0.707440\pi\)
0.991807 + 0.127743i \(0.0407731\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) −6.11273 7.53762i −0.855953 1.05548i
\(52\) 0 0
\(53\) −9.22545 −1.26721 −0.633607 0.773655i \(-0.718426\pi\)
−0.633607 + 0.773655i \(0.718426\pi\)
\(54\) 0 0
\(55\) −3.71737 −0.501250
\(56\) 0 0
\(57\) −1.39931 1.72550i −0.185344 0.228548i
\(58\) 0 0
\(59\) 4.77292 + 8.26693i 0.621381 + 1.07626i 0.989229 + 0.146377i \(0.0467612\pi\)
−0.367848 + 0.929886i \(0.619905\pi\)
\(60\) 0 0
\(61\) 5.27292 9.13296i 0.675128 1.16936i −0.301304 0.953528i \(-0.597422\pi\)
0.976432 0.215827i \(-0.0692448\pi\)
\(62\) 0 0
\(63\) −2.23229 2.00422i −0.281242 0.252508i
\(64\) 0 0
\(65\) −1.97141 + 3.41458i −0.244523 + 0.423527i
\(66\) 0 0
\(67\) 0.858685 + 1.48729i 0.104905 + 0.181701i 0.913699 0.406391i \(-0.133213\pi\)
−0.808794 + 0.588092i \(0.799879\pi\)
\(68\) 0 0
\(69\) 2.88727 7.53762i 0.347587 0.907423i
\(70\) 0 0
\(71\) 3.54583 0.420813 0.210406 0.977614i \(-0.432521\pi\)
0.210406 + 0.977614i \(0.432521\pi\)
\(72\) 0 0
\(73\) 2.71737 0.318044 0.159022 0.987275i \(-0.449166\pi\)
0.159022 + 0.987275i \(0.449166\pi\)
\(74\) 0 0
\(75\) 18.0390 2.87024i 2.08296 0.331427i
\(76\) 0 0
\(77\) −0.471410 0.816506i −0.0537222 0.0930495i
\(78\) 0 0
\(79\) 8.18715 14.1806i 0.921126 1.59544i 0.123449 0.992351i \(-0.460604\pi\)
0.797676 0.603086i \(-0.206062\pi\)
\(80\) 0 0
\(81\) −8.23229 3.63723i −0.914699 0.404137i
\(82\) 0 0
\(83\) 0.198495 0.343803i 0.0217877 0.0377373i −0.854926 0.518750i \(-0.826398\pi\)
0.876714 + 0.481013i \(0.159731\pi\)
\(84\) 0 0
\(85\) 11.0458 + 19.1319i 1.19809 + 2.07515i
\(86\) 0 0
\(87\) −13.1030 + 2.08486i −1.40479 + 0.223521i
\(88\) 0 0
\(89\) 5.50808 0.583855 0.291928 0.956440i \(-0.405703\pi\)
0.291928 + 0.956440i \(0.405703\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) −4.85021 + 12.6621i −0.502944 + 1.31300i
\(94\) 0 0
\(95\) 2.52859 + 4.37965i 0.259428 + 0.449342i
\(96\) 0 0
\(97\) 6.77292 11.7310i 0.687685 1.19111i −0.284899 0.958557i \(-0.591960\pi\)
0.972585 0.232549i \(-0.0747064\pi\)
\(98\) 0 0
\(99\) −2.10464 1.88962i −0.211525 0.189914i
\(100\) 0 0
\(101\) 1.30150 2.25427i 0.129505 0.224309i −0.793980 0.607944i \(-0.791995\pi\)
0.923485 + 0.383635i \(0.125328\pi\)
\(102\) 0 0
\(103\) −7.99028 13.8396i −0.787306 1.36365i −0.927612 0.373546i \(-0.878142\pi\)
0.140305 0.990108i \(-0.455192\pi\)
\(104\) 0 0
\(105\) 4.30150 + 5.30420i 0.419784 + 0.517637i
\(106\) 0 0
\(107\) −10.8856 −1.05235 −0.526177 0.850375i \(-0.676375\pi\)
−0.526177 + 0.850375i \(0.676375\pi\)
\(108\) 0 0
\(109\) −3.28263 −0.314419 −0.157209 0.987565i \(-0.550250\pi\)
−0.157209 + 0.987565i \(0.550250\pi\)
\(110\) 0 0
\(111\) 10.7226 + 13.2220i 1.01774 + 1.25498i
\(112\) 0 0
\(113\) 3.22545 + 5.58664i 0.303425 + 0.525547i 0.976909 0.213654i \(-0.0685365\pi\)
−0.673485 + 0.739201i \(0.735203\pi\)
\(114\) 0 0
\(115\) −9.18715 + 15.9126i −0.856706 + 1.48386i
\(116\) 0 0
\(117\) −2.85185 + 0.931107i −0.263653 + 0.0860809i
\(118\) 0 0
\(119\) −2.80150 + 4.85235i −0.256814 + 0.444814i
\(120\) 0 0
\(121\) 5.05555 + 8.75646i 0.459595 + 0.796042i
\(122\) 0 0
\(123\) −0.584135 + 1.52496i −0.0526697 + 0.137501i
\(124\) 0 0
\(125\) −21.8662 −1.95577
\(126\) 0 0
\(127\) −0.828460 −0.0735140 −0.0367570 0.999324i \(-0.511703\pi\)
−0.0367570 + 0.999324i \(0.511703\pi\)
\(128\) 0 0
\(129\) 15.8450 2.52115i 1.39508 0.221975i
\(130\) 0 0
\(131\) −2.71574 4.70379i −0.237275 0.410972i 0.722656 0.691207i \(-0.242921\pi\)
−0.959931 + 0.280235i \(0.909588\pi\)
\(132\) 0 0
\(133\) −0.641315 + 1.11079i −0.0556091 + 0.0963177i
\(134\) 0 0
\(135\) 17.2060 + 11.1216i 1.48086 + 0.957196i
\(136\) 0 0
\(137\) 10.5744 18.3154i 0.903434 1.56479i 0.0804276 0.996760i \(-0.474371\pi\)
0.823006 0.568033i \(-0.192295\pi\)
\(138\) 0 0
\(139\) 0.923945 + 1.60032i 0.0783680 + 0.135737i 0.902546 0.430594i \(-0.141696\pi\)
−0.824178 + 0.566331i \(0.808362\pi\)
\(140\) 0 0
\(141\) −9.03611 + 1.43777i −0.760978 + 0.121082i
\(142\) 0 0
\(143\) −0.942820 −0.0788426
\(144\) 0 0
\(145\) 30.2028 2.50820
\(146\) 0 0
\(147\) −0.619562 + 1.61745i −0.0511006 + 0.133405i
\(148\) 0 0
\(149\) −6.07442 10.5212i −0.497636 0.861931i 0.502360 0.864658i \(-0.332465\pi\)
−0.999996 + 0.00272771i \(0.999132\pi\)
\(150\) 0 0
\(151\) 4.49028 7.77740i 0.365414 0.632916i −0.623428 0.781880i \(-0.714261\pi\)
0.988843 + 0.148965i \(0.0475940\pi\)
\(152\) 0 0
\(153\) −3.47141 + 16.4467i −0.280647 + 1.32963i
\(154\) 0 0
\(155\) 15.4331 26.7309i 1.23962 2.14708i
\(156\) 0 0
\(157\) 5.90451 + 10.2269i 0.471232 + 0.816197i 0.999458 0.0329062i \(-0.0104763\pi\)
−0.528227 + 0.849103i \(0.677143\pi\)
\(158\) 0 0
\(159\) 10.0647 + 12.4108i 0.798183 + 0.984242i
\(160\) 0 0
\(161\) −4.66019 −0.367274
\(162\) 0 0
\(163\) −12.2826 −0.962050 −0.481025 0.876707i \(-0.659735\pi\)
−0.481025 + 0.876707i \(0.659735\pi\)
\(164\) 0 0
\(165\) 4.05555 + 5.00091i 0.315724 + 0.389320i
\(166\) 0 0
\(167\) 11.4428 + 19.8195i 0.885472 + 1.53368i 0.845172 + 0.534495i \(0.179498\pi\)
0.0403003 + 0.999188i \(0.487169\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) −0.794668 + 3.76494i −0.0607698 + 0.287912i
\(172\) 0 0
\(173\) −9.63160 + 16.6824i −0.732277 + 1.26834i 0.223631 + 0.974674i \(0.428209\pi\)
−0.955908 + 0.293667i \(0.905124\pi\)
\(174\) 0 0
\(175\) −5.27292 9.13296i −0.398595 0.690387i
\(176\) 0 0
\(177\) 5.91423 15.4399i 0.444541 1.16053i
\(178\) 0 0
\(179\) −4.83173 −0.361140 −0.180570 0.983562i \(-0.557794\pi\)
−0.180570 + 0.983562i \(0.557794\pi\)
\(180\) 0 0
\(181\) 3.26320 0.242552 0.121276 0.992619i \(-0.461301\pi\)
0.121276 + 0.992619i \(0.461301\pi\)
\(182\) 0 0
\(183\) −18.0390 + 2.87024i −1.33348 + 0.212175i
\(184\) 0 0
\(185\) −19.3759 33.5601i −1.42455 2.46739i
\(186\) 0 0
\(187\) −2.64132 + 4.57489i −0.193152 + 0.334549i
\(188\) 0 0
\(189\) −0.260877 + 5.18960i −0.0189760 + 0.377488i
\(190\) 0 0
\(191\) −7.34897 + 12.7288i −0.531753 + 0.921023i 0.467560 + 0.883961i \(0.345133\pi\)
−0.999313 + 0.0370616i \(0.988200\pi\)
\(192\) 0 0
\(193\) −5.05555 8.75646i −0.363906 0.630304i 0.624694 0.780870i \(-0.285224\pi\)
−0.988600 + 0.150566i \(0.951890\pi\)
\(194\) 0 0
\(195\) 6.74433 1.07311i 0.482971 0.0768472i
\(196\) 0 0
\(197\) 16.6375 1.18537 0.592686 0.805434i \(-0.298067\pi\)
0.592686 + 0.805434i \(0.298067\pi\)
\(198\) 0 0
\(199\) 13.1111 0.929421 0.464710 0.885463i \(-0.346158\pi\)
0.464710 + 0.885463i \(0.346158\pi\)
\(200\) 0 0
\(201\) 1.06402 2.77776i 0.0750499 0.195928i
\(202\) 0 0
\(203\) 3.83009 + 6.63392i 0.268820 + 0.465610i
\(204\) 0 0
\(205\) 1.85868 3.21934i 0.129816 0.224848i
\(206\) 0 0
\(207\) −13.2902 + 4.33914i −0.923730 + 0.301591i
\(208\) 0 0
\(209\) −0.604645 + 1.04728i −0.0418242 + 0.0724416i
\(210\) 0 0
\(211\) −1.06526 1.84509i −0.0733355 0.127021i 0.827026 0.562164i \(-0.190031\pi\)
−0.900361 + 0.435143i \(0.856698\pi\)
\(212\) 0 0
\(213\) −3.86840 4.77014i −0.265058 0.326844i
\(214\) 0 0
\(215\) −36.5231 −2.49086
\(216\) 0 0
\(217\) 7.82846 0.531431
\(218\) 0 0
\(219\) −2.96457 3.65563i −0.200327 0.247024i
\(220\) 0 0
\(221\) 2.80150 + 4.85235i 0.188450 + 0.326404i
\(222\) 0 0
\(223\) 7.04583 12.2037i 0.471824 0.817223i −0.527657 0.849458i \(-0.676929\pi\)
0.999480 + 0.0322352i \(0.0102626\pi\)
\(224\) 0 0
\(225\) −23.5413 21.1362i −1.56942 1.40908i
\(226\) 0 0
\(227\) −2.39536 + 4.14888i −0.158985 + 0.275371i −0.934503 0.355955i \(-0.884156\pi\)
0.775518 + 0.631326i \(0.217489\pi\)
\(228\) 0 0
\(229\) −9.04583 15.6678i −0.597765 1.03536i −0.993150 0.116844i \(-0.962722\pi\)
0.395385 0.918516i \(-0.370611\pi\)
\(230\) 0 0
\(231\) −0.584135 + 1.52496i −0.0384333 + 0.100335i
\(232\) 0 0
\(233\) −3.14884 −0.206287 −0.103144 0.994666i \(-0.532890\pi\)
−0.103144 + 0.994666i \(0.532890\pi\)
\(234\) 0 0
\(235\) 20.8285 1.35870
\(236\) 0 0
\(237\) −28.0088 + 4.45657i −1.81937 + 0.289485i
\(238\) 0 0
\(239\) 6.16019 + 10.6698i 0.398470 + 0.690170i 0.993537 0.113506i \(-0.0362081\pi\)
−0.595068 + 0.803676i \(0.702875\pi\)
\(240\) 0 0
\(241\) −7.27292 + 12.5971i −0.468490 + 0.811448i −0.999351 0.0360106i \(-0.988535\pi\)
0.530862 + 0.847458i \(0.321868\pi\)
\(242\) 0 0
\(243\) 4.08809 + 15.0429i 0.262251 + 0.965000i
\(244\) 0 0
\(245\) 1.97141 3.41458i 0.125949 0.218150i
\(246\) 0 0
\(247\) 0.641315 + 1.11079i 0.0408059 + 0.0706779i
\(248\) 0 0
\(249\) −0.679065 + 0.108048i −0.0430340 + 0.00684728i
\(250\) 0 0
\(251\) −2.28263 −0.144078 −0.0720392 0.997402i \(-0.522951\pi\)
−0.0720392 + 0.997402i \(0.522951\pi\)
\(252\) 0 0
\(253\) −4.39372 −0.276231
\(254\) 0 0
\(255\) 13.6871 35.7321i 0.857122 2.23763i
\(256\) 0 0
\(257\) −0.396990 0.687607i −0.0247636 0.0428917i 0.853378 0.521293i \(-0.174550\pi\)
−0.878142 + 0.478401i \(0.841217\pi\)
\(258\) 0 0
\(259\) 4.91423 8.51170i 0.305355 0.528891i
\(260\) 0 0
\(261\) 17.0997 + 15.3527i 1.05845 + 0.950308i
\(262\) 0 0
\(263\) −5.24433 + 9.08344i −0.323379 + 0.560109i −0.981183 0.193080i \(-0.938152\pi\)
0.657804 + 0.753189i \(0.271486\pi\)
\(264\) 0 0
\(265\) −18.1871 31.5011i −1.11723 1.93509i
\(266\) 0 0
\(267\) −6.00916 7.40992i −0.367755 0.453479i
\(268\) 0 0
\(269\) 10.3398 0.630429 0.315215 0.949020i \(-0.397923\pi\)
0.315215 + 0.949020i \(0.397923\pi\)
\(270\) 0 0
\(271\) −30.8285 −1.87270 −0.936348 0.351074i \(-0.885817\pi\)
−0.936348 + 0.351074i \(0.885817\pi\)
\(272\) 0 0
\(273\) 1.09097 + 1.34528i 0.0660286 + 0.0814201i
\(274\) 0 0
\(275\) −4.97141 8.61073i −0.299787 0.519247i
\(276\) 0 0
\(277\) −7.12188 + 12.3355i −0.427913 + 0.741166i −0.996687 0.0813269i \(-0.974084\pi\)
0.568775 + 0.822493i \(0.307418\pi\)
\(278\) 0 0
\(279\) 22.3256 7.28914i 1.33660 0.436389i
\(280\) 0 0
\(281\) 4.46169 7.72788i 0.266162 0.461007i −0.701705 0.712468i \(-0.747578\pi\)
0.967868 + 0.251461i \(0.0809109\pi\)
\(282\) 0 0
\(283\) 11.6316 + 20.1465i 0.691427 + 1.19759i 0.971370 + 0.237570i \(0.0763509\pi\)
−0.279944 + 0.960016i \(0.590316\pi\)
\(284\) 0 0
\(285\) 3.13323 8.17973i 0.185597 0.484526i
\(286\) 0 0
\(287\) 0.942820 0.0556529
\(288\) 0 0
\(289\) 14.3937 0.846689
\(290\) 0 0
\(291\) −23.1706 + 3.68675i −1.35828 + 0.216121i
\(292\) 0 0
\(293\) −11.9412 20.6827i −0.697611 1.20830i −0.969292 0.245911i \(-0.920913\pi\)
0.271681 0.962387i \(-0.412420\pi\)
\(294\) 0 0
\(295\) −18.8187 + 32.5950i −1.09567 + 1.89776i
\(296\) 0 0
\(297\) −0.245960 + 4.89286i −0.0142720 + 0.283912i
\(298\) 0 0
\(299\) −2.33009 + 4.03584i −0.134753 + 0.233399i
\(300\) 0 0
\(301\) −4.63160 8.02217i −0.266961 0.462390i
\(302\) 0 0
\(303\) −4.45254 + 0.708458i −0.255791 + 0.0406998i
\(304\) 0 0
\(305\) 41.5803 2.38088
\(306\) 0 0
\(307\) −7.37429 −0.420873 −0.210436 0.977608i \(-0.567489\pi\)
−0.210436 + 0.977608i \(0.567489\pi\)
\(308\) 0 0
\(309\) −9.90095 + 25.8478i −0.563245 + 1.47043i
\(310\) 0 0
\(311\) −4.58577 7.94279i −0.260035 0.450394i 0.706216 0.707997i \(-0.250401\pi\)
−0.966251 + 0.257603i \(0.917067\pi\)
\(312\) 0 0
\(313\) −8.05555 + 13.9526i −0.455326 + 0.788648i −0.998707 0.0508381i \(-0.983811\pi\)
0.543381 + 0.839486i \(0.317144\pi\)
\(314\) 0 0
\(315\) 2.44282 11.5735i 0.137637 0.652091i
\(316\) 0 0
\(317\) 2.13160 3.69204i 0.119723 0.207366i −0.799935 0.600086i \(-0.795133\pi\)
0.919658 + 0.392721i \(0.128466\pi\)
\(318\) 0 0
\(319\) 3.61109 + 6.25459i 0.202182 + 0.350190i
\(320\) 0 0
\(321\) 11.8759 + 14.6442i 0.662849 + 0.817362i
\(322\) 0 0
\(323\) 7.18659 0.399873
\(324\) 0 0
\(325\) −10.5458 −0.584977
\(326\) 0 0
\(327\) 3.58126 + 4.41606i 0.198044 + 0.244209i
\(328\) 0 0
\(329\) 2.64132 + 4.57489i 0.145620 + 0.252222i
\(330\) 0 0
\(331\) 6.14132 10.6371i 0.337557 0.584666i −0.646415 0.762986i \(-0.723733\pi\)
0.983973 + 0.178319i \(0.0570660\pi\)
\(332\) 0 0
\(333\) 6.08934 28.8497i 0.333694 1.58096i
\(334\) 0 0
\(335\) −3.38564 + 5.86410i −0.184977 + 0.320390i
\(336\) 0 0
\(337\) 13.4903 + 23.3659i 0.734863 + 1.27282i 0.954784 + 0.297302i \(0.0960867\pi\)
−0.219921 + 0.975518i \(0.570580\pi\)
\(338\) 0 0
\(339\) 3.99673 10.4340i 0.217073 0.566697i
\(340\) 0 0
\(341\) 7.38083 0.399694
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 31.4298 5.00091i 1.69213 0.269240i
\(346\) 0 0
\(347\) 10.7524 + 18.6237i 0.577219 + 0.999773i 0.995797 + 0.0915921i \(0.0291956\pi\)
−0.418577 + 0.908181i \(0.637471\pi\)
\(348\) 0 0
\(349\) 2.54583 4.40951i 0.136275 0.236035i −0.789809 0.613353i \(-0.789820\pi\)
0.926084 + 0.377318i \(0.123154\pi\)
\(350\) 0 0
\(351\) 4.36389 + 2.82073i 0.232927 + 0.150559i
\(352\) 0 0
\(353\) −4.78426 + 8.28659i −0.254641 + 0.441051i −0.964798 0.262993i \(-0.915291\pi\)
0.710157 + 0.704043i \(0.248624\pi\)
\(354\) 0 0
\(355\) 6.99028 + 12.1075i 0.371006 + 0.642601i
\(356\) 0 0
\(357\) 9.58414 1.52496i 0.507246 0.0807097i
\(358\) 0 0
\(359\) 10.9623 0.578565 0.289283 0.957244i \(-0.406583\pi\)
0.289283 + 0.957244i \(0.406583\pi\)
\(360\) 0 0
\(361\) −17.3549 −0.913414
\(362\) 0 0
\(363\) 6.26444 16.3542i 0.328798 0.858372i
\(364\) 0 0
\(365\) 5.35705 + 9.27868i 0.280401 + 0.485668i
\(366\) 0 0
\(367\) −2.34897 + 4.06853i −0.122615 + 0.212376i −0.920798 0.390039i \(-0.872461\pi\)
0.798183 + 0.602415i \(0.205795\pi\)
\(368\) 0 0
\(369\) 2.68878 0.877867i 0.139972 0.0456999i
\(370\) 0 0
\(371\) 4.61273 7.98947i 0.239481 0.414793i
\(372\) 0 0
\(373\) −4.63160 8.02217i −0.239815 0.415372i 0.720846 0.693095i \(-0.243754\pi\)
−0.960661 + 0.277723i \(0.910420\pi\)
\(374\) 0 0
\(375\) 23.8554 + 29.4162i 1.23189 + 1.51905i
\(376\) 0 0
\(377\) 7.66019 0.394520
\(378\) 0 0
\(379\) −13.5458 −0.695803 −0.347901 0.937531i \(-0.613106\pi\)
−0.347901 + 0.937531i \(0.613106\pi\)
\(380\) 0 0
\(381\) 0.903827 + 1.11451i 0.0463044 + 0.0570982i
\(382\) 0 0
\(383\) −6.13968 10.6342i −0.313723 0.543384i 0.665442 0.746449i \(-0.268243\pi\)
−0.979165 + 0.203065i \(0.934910\pi\)
\(384\) 0 0
\(385\) 1.85868 3.21934i 0.0947274 0.164073i
\(386\) 0 0
\(387\) −20.6781 18.5655i −1.05113 0.943737i
\(388\) 0 0
\(389\) 3.75567 6.50502i 0.190420 0.329818i −0.754969 0.655760i \(-0.772348\pi\)
0.945390 + 0.325943i \(0.105682\pi\)
\(390\) 0 0
\(391\) 13.0555 + 22.6129i 0.660247 + 1.14358i
\(392\) 0 0
\(393\) −3.36513 + 8.78513i −0.169748 + 0.443151i
\(394\) 0 0
\(395\) 64.5609 3.24841
\(396\) 0 0
\(397\) −22.9201 −1.15033 −0.575164 0.818038i \(-0.695062\pi\)
−0.575164 + 0.818038i \(0.695062\pi\)
\(398\) 0 0
\(399\) 2.19398 0.349092i 0.109836 0.0174764i
\(400\) 0 0
\(401\) 10.5631 + 18.2958i 0.527495 + 0.913647i 0.999486 + 0.0320445i \(0.0102018\pi\)
−0.471992 + 0.881603i \(0.656465\pi\)
\(402\) 0 0
\(403\) 3.91423 6.77965i 0.194982 0.337718i
\(404\) 0 0
\(405\) −3.80959 35.2803i −0.189300 1.75309i
\(406\) 0 0
\(407\) 4.63323 8.02500i 0.229661 0.397784i
\(408\) 0 0
\(409\) −1.71737 2.97457i −0.0849185 0.147083i 0.820438 0.571736i \(-0.193730\pi\)
−0.905356 + 0.424652i \(0.860396\pi\)
\(410\) 0 0
\(411\) −36.1758 + 5.75605i −1.78442 + 0.283925i
\(412\) 0 0
\(413\) −9.54583 −0.469720
\(414\) 0 0
\(415\) 1.56526 0.0768356
\(416\) 0 0
\(417\) 1.14488 2.98887i 0.0560651 0.146366i
\(418\) 0 0
\(419\) 10.2157 + 17.6942i 0.499071 + 0.864417i 0.999999 0.00107202i \(-0.000341235\pi\)
−0.500928 + 0.865489i \(0.667008\pi\)
\(420\) 0 0
\(421\) −7.90451 + 13.6910i −0.385242 + 0.667260i −0.991803 0.127778i \(-0.959216\pi\)
0.606560 + 0.795037i \(0.292549\pi\)
\(422\) 0 0
\(423\) 11.7923 + 10.5876i 0.573363 + 0.514784i
\(424\) 0 0
\(425\) −29.5442 + 51.1720i −1.43310 + 2.48221i
\(426\) 0 0
\(427\) 5.27292 + 9.13296i 0.255174 + 0.441975i
\(428\) 0 0
\(429\) 1.02859 + 1.26836i 0.0496608 + 0.0612369i
\(430\) 0 0
\(431\) −26.7518 −1.28859 −0.644296 0.764777i \(-0.722849\pi\)
−0.644296 + 0.764777i \(0.722849\pi\)
\(432\) 0 0
\(433\) −14.4347 −0.693689 −0.346845 0.937923i \(-0.612747\pi\)
−0.346845 + 0.937923i \(0.612747\pi\)
\(434\) 0 0
\(435\) −32.9503 40.6312i −1.57985 1.94812i
\(436\) 0 0
\(437\) 2.98865 + 5.17649i 0.142967 + 0.247625i
\(438\) 0 0
\(439\) 19.3187 33.4610i 0.922033 1.59701i 0.125769 0.992060i \(-0.459860\pi\)
0.796264 0.604949i \(-0.206807\pi\)
\(440\) 0 0
\(441\) 2.85185 0.931107i 0.135802 0.0443384i
\(442\) 0 0
\(443\) −5.28263 + 9.14978i −0.250985 + 0.434719i −0.963797 0.266636i \(-0.914088\pi\)
0.712812 + 0.701355i \(0.247421\pi\)
\(444\) 0 0
\(445\) 10.8587 + 18.8078i 0.514751 + 0.891575i
\(446\) 0 0
\(447\) −7.52696 + 19.6501i −0.356013 + 0.929420i
\(448\) 0 0
\(449\) −9.37429 −0.442400 −0.221200 0.975228i \(-0.570997\pi\)
−0.221200 + 0.975228i \(0.570997\pi\)
\(450\) 0 0
\(451\) 0.888910 0.0418571
\(452\) 0 0
\(453\) −15.3616 + 2.44423i −0.721749 + 0.114840i
\(454\) 0 0
\(455\) −1.97141 3.41458i −0.0924211 0.160078i
\(456\) 0 0
\(457\) −10.3587 + 17.9418i −0.484559 + 0.839281i −0.999843 0.0177391i \(-0.994353\pi\)
0.515284 + 0.857020i \(0.327687\pi\)
\(458\) 0 0
\(459\) 25.9126 13.2728i 1.20950 0.619522i
\(460\) 0 0
\(461\) −17.6300 + 30.5360i −0.821109 + 1.42220i 0.0837475 + 0.996487i \(0.473311\pi\)
−0.904857 + 0.425716i \(0.860022\pi\)
\(462\) 0 0
\(463\) −3.55555 6.15838i −0.165240 0.286204i 0.771500 0.636229i \(-0.219507\pi\)
−0.936741 + 0.350024i \(0.886173\pi\)
\(464\) 0 0
\(465\) −52.7977 + 8.40082i −2.44843 + 0.389579i
\(466\) 0 0
\(467\) 5.03448 0.232968 0.116484 0.993193i \(-0.462838\pi\)
0.116484 + 0.993193i \(0.462838\pi\)
\(468\) 0 0
\(469\) −1.71737 −0.0793008
\(470\) 0 0
\(471\) 7.31642 19.1005i 0.337123 0.880105i
\(472\) 0 0
\(473\) −4.36677 7.56346i −0.200784 0.347768i
\(474\) 0 0
\(475\) −6.76320 + 11.7142i −0.310317 + 0.537485i
\(476\) 0 0
\(477\) 5.71574 27.0797i 0.261706 1.23989i
\(478\) 0 0
\(479\) −3.13323 + 5.42692i −0.143161 + 0.247962i −0.928685 0.370869i \(-0.879060\pi\)
0.785524 + 0.618831i \(0.212393\pi\)
\(480\) 0 0
\(481\) −4.91423 8.51170i −0.224070 0.388100i
\(482\) 0 0
\(483\) 5.08414 + 6.26926i 0.231336 + 0.285261i
\(484\) 0 0
\(485\) 53.4088 2.42517
\(486\) 0 0
\(487\) 14.0722 0.637674 0.318837 0.947810i \(-0.396708\pi\)
0.318837 + 0.947810i \(0.396708\pi\)
\(488\) 0 0
\(489\) 13.4000 + 16.5236i 0.605969 + 0.747222i
\(490\) 0 0
\(491\) −1.97141 3.41458i −0.0889685 0.154098i 0.818107 0.575066i \(-0.195024\pi\)
−0.907075 + 0.420968i \(0.861690\pi\)
\(492\) 0 0
\(493\) 21.4601 37.1699i 0.966512 1.67405i
\(494\) 0 0
\(495\) 2.30314 10.9117i 0.103518 0.490444i
\(496\) 0 0
\(497\) −1.77292 + 3.07078i −0.0795261 + 0.137743i
\(498\) 0 0
\(499\) −9.82846 17.0234i −0.439982 0.762072i 0.557705 0.830039i \(-0.311682\pi\)
−0.997688 + 0.0679674i \(0.978349\pi\)
\(500\) 0 0
\(501\) 14.1791 37.0164i 0.633474 1.65377i
\(502\) 0 0
\(503\) −10.2632 −0.457613 −0.228807 0.973472i \(-0.573482\pi\)
−0.228807 + 0.973472i \(0.573482\pi\)
\(504\) 0 0
\(505\) 10.2632 0.456706
\(506\) 0 0
\(507\) −20.5264 + 3.26602i −0.911609 + 0.145049i
\(508\) 0 0
\(509\) −0.669905 1.16031i −0.0296930 0.0514298i 0.850797 0.525494i \(-0.176120\pi\)
−0.880490 + 0.474065i \(0.842786\pi\)
\(510\) 0 0
\(511\) −1.35868 + 2.35331i −0.0601047 + 0.104104i
\(512\) 0 0
\(513\) 5.93186 3.03839i 0.261898 0.134148i
\(514\) 0 0
\(515\) 31.5043 54.5670i 1.38824 2.40451i
\(516\) 0 0
\(517\) 2.49028 + 4.31330i 0.109523 + 0.189699i
\(518\) 0 0
\(519\) 32.9503 5.24284i 1.44636 0.230135i
\(520\) 0 0
\(521\) 15.7940 0.691947 0.345973 0.938244i \(-0.387549\pi\)
0.345973 + 0.938244i \(0.387549\pi\)
\(522\) 0 0
\(523\) −10.6764 −0.466844 −0.233422 0.972376i \(-0.574992\pi\)
−0.233422 + 0.972376i \(0.574992\pi\)
\(524\) 0 0
\(525\) −6.53379 + 17.0573i −0.285158 + 0.744444i
\(526\) 0 0
\(527\) −21.9315 37.9864i −0.955350 1.65471i
\(528\) 0 0
\(529\) 0.641315 1.11079i 0.0278833 0.0482952i
\(530\) 0 0
\(531\) −27.2233 + 8.88819i −1.18139 + 0.385715i
\(532\) 0 0
\(533\) 0.471410 0.816506i 0.0204190 0.0353668i
\(534\) 0 0
\(535\) −21.4601 37.1699i −0.927799 1.60700i
\(536\) 0 0
\(537\) 5.27128 + 6.50003i 0.227473 + 0.280497i
\(538\) 0 0
\(539\) 0.942820 0.0406101
\(540\) 0 0
\(541\) 16.6569 0.716137 0.358068 0.933695i \(-0.383435\pi\)
0.358068 + 0.933695i \(0.383435\pi\)
\(542\) 0 0
\(543\) −3.56006 4.38992i −0.152777 0.188390i
\(544\) 0 0
\(545\) −6.47141 11.2088i −0.277205 0.480133i
\(546\) 0 0
\(547\) −7.81875 + 13.5425i −0.334305 + 0.579034i −0.983351 0.181715i \(-0.941835\pi\)
0.649046 + 0.760749i \(0.275168\pi\)
\(548\) 0 0
\(549\) 23.5413 + 21.1362i 1.00472 + 0.902069i
\(550\) 0 0
\(551\) 4.91260 8.50886i 0.209284 0.362490i
\(552\) 0 0
\(553\) 8.18715 + 14.1806i 0.348153 + 0.603018i
\(554\) 0 0
\(555\) −24.0092 + 62.6792i −1.01913 + 2.66058i
\(556\) 0 0
\(557\) −16.7907 −0.711445 −0.355723 0.934592i \(-0.615765\pi\)
−0.355723 + 0.934592i \(0.615765\pi\)
\(558\) 0 0
\(559\) −9.26320 −0.391792
\(560\) 0 0
\(561\) 9.03611 1.43777i 0.381505 0.0607026i
\(562\) 0 0
\(563\) −7.58577 13.1389i −0.319702 0.553740i 0.660724 0.750629i \(-0.270249\pi\)
−0.980426 + 0.196889i \(0.936916\pi\)
\(564\) 0 0
\(565\) −12.7174 + 22.0271i −0.535024 + 0.926688i
\(566\) 0 0
\(567\) 7.26608 5.31075i 0.305147 0.223031i
\(568\) 0 0
\(569\) −17.7632 + 30.7668i −0.744672 + 1.28981i 0.205676 + 0.978620i \(0.434061\pi\)
−0.950348 + 0.311190i \(0.899273\pi\)
\(570\) 0 0
\(571\) 0.772915 + 1.33873i 0.0323455 + 0.0560240i 0.881745 0.471726i \(-0.156369\pi\)
−0.849400 + 0.527750i \(0.823036\pi\)
\(572\) 0 0
\(573\) 25.1413 4.00032i 1.05029 0.167116i
\(574\) 0 0
\(575\) −49.1456 −2.04951
\(576\) 0 0
\(577\) −1.67635 −0.0697874 −0.0348937 0.999391i \(-0.511109\pi\)
−0.0348937 + 0.999391i \(0.511109\pi\)
\(578\) 0 0
\(579\) −6.26444 + 16.3542i −0.260341 + 0.679657i
\(580\) 0 0
\(581\) 0.198495 + 0.343803i 0.00823496 + 0.0142634i
\(582\) 0 0
\(583\) 4.34897 7.53264i 0.180116 0.311970i
\(584\) 0 0
\(585\) −8.80150 7.90228i −0.363897 0.326719i
\(586\) 0 0
\(587\) 19.7346 34.1813i 0.814535 1.41082i −0.0951271 0.995465i \(-0.530326\pi\)
0.909662 0.415350i \(-0.136341\pi\)
\(588\) 0 0
\(589\) −5.02051 8.69578i −0.206866 0.358303i
\(590\) 0 0
\(591\) −18.1510 22.3821i −0.746634 0.920677i
\(592\) 0 0
\(593\) 22.8317 0.937587 0.468793 0.883308i \(-0.344689\pi\)
0.468793 + 0.883308i \(0.344689\pi\)
\(594\) 0 0
\(595\) −22.0917 −0.905670
\(596\) 0 0
\(597\) −14.3038 17.6381i −0.585417 0.721879i
\(598\) 0 0
\(599\) −22.6375 39.2093i −0.924943 1.60205i −0.791653 0.610971i \(-0.790779\pi\)
−0.133290 0.991077i \(-0.542554\pi\)
\(600\) 0 0
\(601\) −13.5253 + 23.4265i −0.551709 + 0.955589i 0.446442 + 0.894813i \(0.352691\pi\)
−0.998151 + 0.0607761i \(0.980642\pi\)
\(602\) 0 0
\(603\) −4.89768 + 1.59906i −0.199449 + 0.0651186i
\(604\) 0 0
\(605\) −19.9331 + 34.5252i −0.810396 + 1.40365i
\(606\) 0 0
\(607\) 9.32846 + 16.1574i 0.378631 + 0.655807i 0.990863 0.134870i \(-0.0430618\pi\)
−0.612233 + 0.790678i \(0.709728\pi\)
\(608\) 0 0
\(609\) 4.74596 12.3900i 0.192316 0.502067i
\(610\) 0 0
\(611\) 5.28263 0.213712
\(612\) 0 0
\(613\) −28.9611 −1.16973 −0.584865 0.811131i \(-0.698852\pi\)
−0.584865 + 0.811131i \(0.698852\pi\)
\(614\) 0 0
\(615\) −6.35868 + 1.01175i −0.256407 + 0.0407978i
\(616\) 0 0
\(617\) −18.8457 32.6417i −0.758699 1.31411i −0.943514 0.331332i \(-0.892502\pi\)
0.184815 0.982773i \(-0.440831\pi\)
\(618\) 0 0
\(619\) −0.00971516 + 0.0168272i −0.000390485 + 0.000676340i −0.866221 0.499662i \(-0.833458\pi\)
0.865830 + 0.500338i \(0.166791\pi\)
\(620\) 0 0
\(621\) 20.3365 + 13.1451i 0.816077 + 0.527495i
\(622\) 0 0
\(623\) −2.75404 + 4.77014i −0.110338 + 0.191112i
\(624\) 0 0
\(625\) −16.7427 28.9992i −0.669708 1.15997i
\(626\) 0 0
\(627\) 2.06853 0.329131i 0.0826091 0.0131442i
\(628\) 0 0
\(629\) −55.0690 −2.19574
\(630\) 0 0
\(631\) 28.4854 1.13399 0.566993 0.823723i \(-0.308107\pi\)
0.566993 + 0.823723i \(0.308107\pi\)
\(632\) 0 0
\(633\) −1.31999 + 3.44601i −0.0524648 + 0.136967i
\(634\) 0 0
\(635\) −1.63323 2.82885i −0.0648129 0.112259i
\(636\) 0 0
\(637\) 0.500000 0.866025i 0.0198107 0.0343132i
\(638\) 0 0
\(639\) −2.19686 + 10.4082i −0.0869064 + 0.411741i
\(640\) 0 0
\(641\) −22.2696 + 38.5722i −0.879598 + 1.52351i −0.0278156 + 0.999613i \(0.508855\pi\)
−0.851783 + 0.523896i \(0.824478\pi\)
\(642\) 0 0
\(643\) −4.50972 7.81106i −0.177846 0.308038i 0.763297 0.646048i \(-0.223579\pi\)
−0.941142 + 0.338010i \(0.890246\pi\)
\(644\) 0 0
\(645\) 39.8457 + 49.1339i 1.56892 + 1.93464i
\(646\) 0 0
\(647\) 42.8252 1.68363 0.841816 0.539765i \(-0.181487\pi\)
0.841816 + 0.539765i \(0.181487\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) −8.54063 10.5315i −0.334734 0.412761i
\(652\) 0 0
\(653\) −2.80150 4.85235i −0.109631 0.189887i 0.805990 0.591930i \(-0.201634\pi\)
−0.915621 + 0.402043i \(0.868300\pi\)
\(654\) 0 0
\(655\) 10.7077 18.5462i 0.418383 0.724660i
\(656\) 0 0
\(657\) −1.68358 + 7.97637i −0.0656826 + 0.311188i
\(658\) 0 0
\(659\) 3.26376 5.65299i 0.127138 0.220209i −0.795429 0.606047i \(-0.792754\pi\)
0.922567 + 0.385838i \(0.126088\pi\)
\(660\) 0 0
\(661\) 5.50972 + 9.54311i 0.214303 + 0.371184i 0.953057 0.302792i \(-0.0979186\pi\)
−0.738754 + 0.673976i \(0.764585\pi\)
\(662\) 0 0
\(663\) 3.47141 9.06259i 0.134818 0.351962i
\(664\) 0 0
\(665\) −5.05718 −0.196109
\(666\) 0 0
\(667\) 35.6979 1.38223
\(668\) 0 0
\(669\) −24.1043 + 3.83531i −0.931924 + 0.148282i
\(670\) 0 0
\(671\) 4.97141 + 8.61073i 0.191919 + 0.332414i
\(672\) 0 0
\(673\) 1.67743 2.90539i 0.0646602 0.111995i −0.831883 0.554951i \(-0.812737\pi\)
0.896543 + 0.442956i \(0.146070\pi\)
\(674\) 0 0
\(675\) −2.75116 + 54.7286i −0.105892 + 2.10651i
\(676\) 0 0
\(677\) 20.3187 35.1931i 0.780913 1.35258i −0.150498 0.988610i \(-0.548088\pi\)
0.931411 0.363970i \(-0.118579\pi\)
\(678\) 0 0
\(679\) 6.77292 + 11.7310i 0.259921 + 0.450196i
\(680\) 0 0
\(681\) 8.19467 1.30388i 0.314020 0.0499648i
\(682\) 0 0
\(683\) −14.0755 −0.538584 −0.269292 0.963059i \(-0.586790\pi\)
−0.269292 + 0.963059i \(0.586790\pi\)
\(684\) 0 0
\(685\) 83.3861 3.18602
\(686\) 0 0
\(687\) −11.2089 + 29.2623i −0.427646 + 1.11643i
\(688\) 0 0
\(689\) −4.61273 7.98947i −0.175731 0.304375i
\(690\) 0 0
\(691\) 21.9601 38.0359i 0.835400 1.44696i −0.0583042 0.998299i \(-0.518569\pi\)
0.893704 0.448656i \(-0.148097\pi\)
\(692\) 0 0
\(693\) 2.68878 0.877867i 0.102138 0.0333474i
\(694\) 0 0
\(695\) −3.64295 + 6.30977i −0.138185 + 0.239343i
\(696\) 0 0
\(697\) −2.64132 4.57489i −0.100047 0.173286i
\(698\) 0 0
\(699\) 3.43530 + 4.23607i 0.129935 + 0.160223i
\(700\) 0 0
\(701\) 7.69578 0.290666 0.145333 0.989383i \(-0.453575\pi\)
0.145333 + 0.989383i \(0.453575\pi\)
\(702\) 0 0
\(703\) −12.6063 −0.475455
\(704\) 0 0
\(705\) −22.7233 28.0201i −0.855807 1.05530i
\(706\) 0 0
\(707\) 1.30150 + 2.25427i 0.0489481 + 0.0847807i
\(708\) 0 0
\(709\) −0.111090 + 0.192414i −0.00417209 + 0.00722626i −0.868104 0.496383i \(-0.834661\pi\)
0.863932 + 0.503609i \(0.167995\pi\)
\(710\) 0 0
\(711\) 36.5521 + 32.8177i 1.37081 + 1.23076i
\(712\) 0 0
\(713\) 18.2411 31.5944i 0.683133 1.18322i
\(714\) 0 0
\(715\) −1.85868 3.21934i −0.0695109 0.120396i
\(716\) 0 0
\(717\) 7.63323 19.9276i 0.285068 0.744210i
\(718\) 0 0
\(719\) −2.64403 −0.0986056 −0.0493028 0.998784i \(-0.515700\pi\)
−0.0493028 + 0.998784i \(0.515700\pi\)
\(720\) 0 0
\(721\) 15.9806 0.595148
\(722\) 0 0
\(723\) 24.8811 3.95892i 0.925339 0.147234i
\(724\) 0 0
\(725\) 40.3915 + 69.9602i 1.50010 + 2.59826i
\(726\) 0 0
\(727\) −12.7427 + 22.0710i −0.472600 + 0.818568i −0.999508 0.0313547i \(-0.990018\pi\)
0.526908 + 0.849922i \(0.323351\pi\)
\(728\) 0 0
\(729\) 15.7769 21.9110i 0.584329 0.811517i
\(730\) 0 0
\(731\) −25.9509 + 44.9483i −0.959829 + 1.66247i
\(732\) 0 0
\(733\) −0.934740 1.61902i −0.0345254 0.0597997i 0.848246 0.529602i \(-0.177659\pi\)
−0.882772 + 0.469802i \(0.844325\pi\)
\(734\) 0 0
\(735\) −6.74433 + 1.07311i −0.248768 + 0.0395823i
\(736\) 0 0
\(737\) −1.61917 −0.0596429
\(738\) 0 0
\(739\) 51.1639 1.88209 0.941047 0.338276i \(-0.109844\pi\)
0.941047 + 0.338276i \(0.109844\pi\)
\(740\) 0 0
\(741\) 0.794668 2.07459i 0.0291929 0.0762120i
\(742\) 0 0
\(743\) 19.3668 + 33.5442i 0.710498 + 1.23062i 0.964671 + 0.263459i \(0.0848635\pi\)
−0.254173 + 0.967159i \(0.581803\pi\)
\(744\) 0 0
\(745\) 23.9503 41.4832i 0.877473 1.51983i
\(746\) 0 0
\(747\) 0.886196 + 0.795655i 0.0324242 + 0.0291115i
\(748\) 0 0
\(749\) 5.44282 9.42724i 0.198876 0.344464i
\(750\) 0 0
\(751\) −3.09549 5.36154i −0.112956 0.195645i 0.804005 0.594623i \(-0.202699\pi\)
−0.916961 + 0.398977i \(0.869365\pi\)
\(752\) 0 0
\(753\) 2.49028 + 3.07078i 0.0907510 + 0.111905i
\(754\) 0 0
\(755\) 35.4088 1.28866
\(756\) 0 0
\(757\) −13.7174 −0.498566 −0.249283 0.968431i \(-0.580195\pi\)
−0.249283 + 0.968431i \(0.580195\pi\)
\(758\) 0 0
\(759\) 4.79342 + 5.91079i 0.173990 + 0.214548i
\(760\) 0 0
\(761\) −19.6602 34.0524i −0.712681 1.23440i −0.963847 0.266456i \(-0.914147\pi\)
0.251166 0.967944i \(-0.419186\pi\)
\(762\) 0 0
\(763\) 1.64132 2.84284i 0.0594196 0.102918i
\(764\) 0 0
\(765\) −63.0021 + 20.5697i −2.27784 + 0.743699i
\(766\) 0 0
\(767\) −4.77292 + 8.26693i −0.172340 + 0.298502i
\(768\) 0 0
\(769\) −11.3646 19.6840i −0.409817 0.709824i 0.585052 0.810996i \(-0.301074\pi\)
−0.994869 + 0.101172i \(0.967741\pi\)
\(770\) 0 0
\(771\) −0.491920 + 1.28422i −0.0177161 + 0.0462502i
\(772\) 0 0
\(773\) −28.7324 −1.03343 −0.516717 0.856156i \(-0.672846\pi\)
−0.516717 + 0.856156i \(0.672846\pi\)
\(774\) 0 0
\(775\) 82.5576 2.96556
\(776\) 0 0
\(777\) −16.8119 + 2.67500i −0.603124 + 0.0959651i
\(778\) 0 0
\(779\) −0.604645 1.04728i −0.0216636 0.0375225i
\(780\) 0 0
\(781\) −1.67154 + 2.89519i −0.0598124 + 0.103598i
\(782\) 0 0
\(783\) 1.99837 39.7533i 0.0714157 1.42067i
\(784\) 0 0
\(785\) −23.2804 + 40.3229i −0.830915 + 1.43919i
\(786\) 0 0
\(787\) 27.0059 + 46.7756i 0.962656 + 1.66737i 0.715785 + 0.698321i \(0.246069\pi\)
0.246871 + 0.969048i \(0.420598\pi\)
\(788\) 0 0
\(789\) 17.9412 2.85468i 0.638723 0.101629i
\(790\) 0 0
\(791\) −6.45090 −0.229368
\(792\) 0 0
\(793\) 10.5458 0.374493
\(794\) 0 0
\(795\) −22.5361 + 58.8336i −0.799274 + 2.08661i
\(796\) 0 0
\(797\) 0.103565 + 0.179381i 0.00366848 + 0.00635399i 0.867854 0.496820i \(-0.165499\pi\)
−0.864185 + 0.503174i \(0.832166\pi\)
\(798\) 0 0
\(799\) 14.7993 25.6332i 0.523562 0.906836i
\(800\) 0 0
\(801\) −3.41260 + 16.1680i −0.120578 + 0.571269i
\(802\) 0 0
\(803\) −1.28100 + 2.21875i −0.0452053 + 0.0782980i
\(804\) 0 0
\(805\) −9.18715 15.9126i −0.323804 0.560846i
\(806\) 0 0
\(807\) −11.2804 13.9099i −0.397090 0.489653i
\(808\) 0 0
\(809\) −36.0539 −1.26759 −0.633794 0.773502i \(-0.718503\pi\)
−0.633794 + 0.773502i \(0.718503\pi\)
\(810\) 0 0
\(811\) −2.01943 −0.0709118 −0.0354559 0.999371i \(-0.511288\pi\)
−0.0354559 + 0.999371i \(0.511288\pi\)
\(812\) 0 0
\(813\) 33.6330 + 41.4729i 1.17956 + 1.45452i
\(814\) 0 0
\(815\) −24.2141 41.9401i −0.848183 1.46910i
\(816\) 0 0
\(817\) −5.94063 + 10.2895i −0.207836 + 0.359983i
\(818\) 0 0
\(819\) 0.619562 2.93533i 0.0216492 0.102569i
\(820\) 0 0
\(821\) 15.1871 26.3049i 0.530035 0.918048i −0.469351 0.883012i \(-0.655512\pi\)
0.999386 0.0350359i \(-0.0111546\pi\)
\(822\) 0 0
\(823\) 6.56526 + 11.3714i 0.228851 + 0.396381i 0.957468 0.288540i \(-0.0931699\pi\)
−0.728617 + 0.684921i \(0.759837\pi\)
\(824\) 0 0
\(825\) −6.16019 + 16.0820i −0.214470 + 0.559904i
\(826\) 0 0
\(827\) −11.3236 −0.393762 −0.196881 0.980427i \(-0.563081\pi\)
−0.196881 + 0.980427i \(0.563081\pi\)
\(828\) 0 0
\(829\) −11.0604 −0.384145 −0.192073 0.981381i \(-0.561521\pi\)
−0.192073 + 0.981381i \(0.561521\pi\)
\(830\) 0 0
\(831\) 24.3644 3.87671i 0.845193 0.134482i
\(832\) 0 0
\(833\) −2.80150 4.85235i −0.0970664 0.168124i
\(834\) 0 0
\(835\) −45.1170 + 78.1449i −1.56134 + 2.70432i
\(836\) 0 0
\(837\) −34.1625 22.0819i −1.18083 0.763263i
\(838\) 0 0
\(839\) −5.27128 + 9.13013i −0.181985 + 0.315207i −0.942556 0.334047i \(-0.891586\pi\)
0.760572 + 0.649254i \(0.224919\pi\)
\(840\) 0 0
\(841\) −14.8393 25.7023i −0.511698 0.886288i
\(842\) 0 0
\(843\) −15.2638 + 2.42867i −0.525712 + 0.0836478i
\(844\) 0 0
\(845\) 47.3138 1.62765
\(846\) 0 0
\(847\) −10.1111 −0.347421
\(848\) 0 0
\(849\) 14.4130 37.6271i 0.494652 1.29136i
\(850\) 0 0
\(851\) −22.9012 39.6661i −0.785045 1.35974i
\(852\) 0 0
\(853\) 13.6413 23.6275i 0.467070 0.808989i −0.532223 0.846604i \(-0.678643\pi\)
0.999292 + 0.0376160i \(0.0119764\pi\)
\(854\) 0 0
\(855\) −14.4223 + 4.70878i −0.493233 + 0.161037i
\(856\) 0 0
\(857\) 1.21574 2.10571i 0.0415287 0.0719299i −0.844514 0.535534i \(-0.820111\pi\)
0.886043 + 0.463604i \(0.153444\pi\)
\(858\) 0 0
\(859\) 15.8743 + 27.4951i 0.541624 + 0.938120i 0.998811 + 0.0487495i \(0.0155236\pi\)
−0.457187 + 0.889370i \(0.651143\pi\)
\(860\) 0 0
\(861\) −1.02859 1.26836i −0.0350543 0.0432255i
\(862\) 0 0
\(863\) −27.8252 −0.947181 −0.473590 0.880745i \(-0.657042\pi\)
−0.473590 + 0.880745i \(0.657042\pi\)
\(864\) 0 0
\(865\) −75.9513 −2.58242
\(866\) 0 0
\(867\) −15.7031 19.3636i −0.533307 0.657622i
\(868\) 0 0
\(869\) 7.71900 + 13.3697i 0.261849 + 0.453536i
\(870\) 0 0
\(871\) −0.858685 + 1.48729i −0.0290954 + 0.0503948i
\(872\) 0 0
\(873\) 30.2382 + 27.1488i 1.02341 + 0.918848i
\(874\) 0 0
\(875\) 10.9331 18.9367i 0.369606 0.640177i
\(876\) 0 0
\(877\) 2.29342 + 3.97233i 0.0774434 + 0.134136i 0.902146 0.431430i \(-0.141991\pi\)
−0.824703 + 0.565566i \(0.808658\pi\)
\(878\) 0 0
\(879\) −14.7966 + 38.6285i −0.499077 + 1.30291i
\(880\) 0 0
\(881\) 57.4465 1.93542 0.967711 0.252062i \(-0.0811085\pi\)
0.967711 + 0.252062i \(0.0811085\pi\)
\(882\) 0 0
\(883\) 36.3937 1.22475 0.612373 0.790569i \(-0.290215\pi\)
0.612373 + 0.790569i \(0.290215\pi\)
\(884\) 0 0
\(885\) 64.3802 10.2437i 2.16412 0.344340i
\(886\) 0 0
\(887\) 21.7238 + 37.6268i 0.729414 + 1.26338i 0.957131 + 0.289655i \(0.0935407\pi\)
−0.227717 + 0.973727i \(0.573126\pi\)
\(888\) 0 0
\(889\) 0.414230 0.717468i 0.0138928 0.0240631i
\(890\) 0 0
\(891\) 6.85060 5.00708i 0.229504 0.167744i
\(892\) 0 0
\(893\) 3.38783 5.86789i 0.113369 0.196362i
\(894\) 0 0
\(895\) −9.52532 16.4983i −0.318396 0.551479i
\(896\) 0 0
\(897\) 7.97141 1.26836i 0.266158 0.0423492i
\(898\) 0 0
\(899\) −59.9675 −2.00003
\(900\) 0 0
\(901\) −51.6903 −1.72205
\(902\) 0 0
\(903\) −5.73912 + 14.9828i −0.190986 + 0.498595i
\(904\) 0 0
\(905\) 6.43310 + 11.1425i 0.213844 + 0.370388i
\(906\) 0 0
\(907\) −11.1569 + 19.3244i −0.370459 + 0.641655i −0.989636 0.143597i \(-0.954133\pi\)
0.619177 + 0.785252i \(0.287466\pi\)
\(908\) 0 0
\(909\) 5.81066 + 5.21700i 0.192728 + 0.173037i
\(910\) 0 0
\(911\) 7.67799 13.2987i 0.254383 0.440604i −0.710345 0.703854i \(-0.751461\pi\)
0.964728 + 0.263250i \(0.0847943\pi\)
\(912\) 0 0
\(913\) 0.187145 + 0.324145i 0.00619360 + 0.0107276i
\(914\) 0 0
\(915\) −45.3629 55.9372i −1.49965 1.84923i
\(916\) 0 0
\(917\) 5.43147 0.179363
\(918\) 0 0
\(919\) −36.8285 −1.21486 −0.607429 0.794374i \(-0.707799\pi\)
−0.607429 + 0.794374i \(0.707799\pi\)
\(920\) 0 0
\(921\) 8.04514 + 9.92049i 0.265096 + 0.326891i
\(922\) 0 0
\(923\) 1.77292 + 3.07078i 0.0583562 + 0.101076i
\(924\) 0 0
\(925\) 51.8246 89.7629i 1.70398 2.95139i
\(926\) 0 0
\(927\) 45.5742 14.8796i 1.49685 0.488711i
\(928\) 0 0
\(929\) 20.8646 36.1385i 0.684545 1.18567i −0.289035 0.957318i \(-0.593334\pi\)
0.973580 0.228347i \(-0.0733322\pi\)
\(930\) 0 0
\(931\) −0.641315 1.11079i −0.0210183 0.0364047i
\(932\) 0 0
\(933\) −5.68233 + 14.8345i −0.186031 + 0.485660i
\(934\) 0 0
\(935\) −20.8285 −0.681163
\(936\) 0 0
\(937\) −25.3743 −0.828942 −0.414471 0.910063i \(-0.636033\pi\)
−0.414471 + 0.910063i \(0.636033\pi\)
\(938\) 0 0
\(939\) 27.5586 4.38493i 0.899340 0.143097i
\(940\) 0 0
\(941\) −23.5712 40.8264i −0.768398 1.33090i −0.938431 0.345465i \(-0.887721\pi\)
0.170034 0.985438i \(-0.445612\pi\)
\(942\) 0 0
\(943\) 2.19686 3.80507i 0.0715396 0.123910i
\(944\) 0 0
\(945\) −18.2346 + 9.34004i −0.593172 + 0.303832i
\(946\) 0 0
\(947\) 17.2535 29.8839i 0.560663 0.971097i −0.436776 0.899570i \(-0.643880\pi\)
0.997439 0.0715263i \(-0.0227870\pi\)
\(948\) 0 0
\(949\) 1.35868 + 2.35331i 0.0441048 + 0.0763917i
\(950\) 0 0
\(951\) −7.29235 + 1.16031i −0.236470 + 0.0376256i
\(952\) 0 0
\(953\) −44.1833 −1.43124 −0.715619 0.698491i \(-0.753855\pi\)
−0.715619 + 0.698491i \(0.753855\pi\)
\(954\) 0 0
\(955\) −57.9513 −1.87526
\(956\) 0 0
\(957\) 4.47459 11.6815i 0.144643 0.377610i
\(958\) 0 0
\(959\) 10.5744 + 18.3154i 0.341466 + 0.591436i
\(960\) 0 0
\(961\) −15.1424 + 26.2274i −0.488464 + 0.846045i
\(962\) 0 0
\(963\) 6.74433 31.9529i 0.217333 1.02967i
\(964\) 0 0
\(965\) 19.9331 34.5252i 0.641669 1.11140i
\(966\) 0 0
\(967\) −21.2330 36.7766i −0.682806 1.18266i −0.974121 0.226028i \(-0.927426\pi\)
0.291314 0.956627i \(-0.405907\pi\)
\(968\) 0 0
\(969\) −7.84037 9.66798i −0.251869 0.310580i
\(970\) 0 0
\(971\) 6.05391 0.194279 0.0971396 0.995271i \(-0.469031\pi\)
0.0971396 + 0.995271i \(0.469031\pi\)
\(972\) 0 0
\(973\) −1.84789 −0.0592406
\(974\) 0 0
\(975\) 11.5052 + 14.1871i 0.368461 + 0.454351i
\(976\) 0 0
\(977\) 22.0264 + 38.1508i 0.704687 + 1.22055i 0.966804 + 0.255518i \(0.0822459\pi\)
−0.262117 + 0.965036i \(0.584421\pi\)
\(978\) 0 0
\(979\) −2.59656 + 4.49738i −0.0829866 + 0.143737i
\(980\) 0 0
\(981\) 2.03379 9.63559i 0.0649340 0.307641i
\(982\) 0 0
\(983\) 2.23517 3.87142i 0.0712907 0.123479i −0.828177 0.560467i \(-0.810622\pi\)
0.899467 + 0.436988i \(0.143955\pi\)
\(984\) 0 0
\(985\) 32.7993 + 56.8101i 1.04507 + 1.81012i
\(986\) 0 0
\(987\) 3.27292 8.54439i 0.104178 0.271971i
\(988\) 0 0
\(989\) −43.1683 −1.37267
\(990\) 0 0
\(991\) −31.5048 −1.00078 −0.500392 0.865799i \(-0.666811\pi\)
−0.500392 + 0.865799i \(0.666811\pi\)
\(992\) 0 0
\(993\) −21.0098 + 3.34295i −0.666727 + 0.106085i
\(994\) 0 0
\(995\) 25.8473 + 44.7689i 0.819416 + 1.41927i
\(996\) 0 0
\(997\) −13.0000 + 22.5167i −0.411714 + 0.713110i −0.995077 0.0991016i \(-0.968403\pi\)
0.583363 + 0.812211i \(0.301736\pi\)
\(998\) 0 0
\(999\) −45.4543 + 23.2824i −1.43811 + 0.736622i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.j.b.169.1 yes 6
3.2 odd 2 756.2.j.a.505.1 6
4.3 odd 2 1008.2.r.g.673.3 6
7.2 even 3 1764.2.i.f.1537.3 6
7.3 odd 6 1764.2.l.g.961.2 6
7.4 even 3 1764.2.l.d.961.2 6
7.5 odd 6 1764.2.i.e.1537.1 6
7.6 odd 2 1764.2.j.d.1177.3 6
9.2 odd 6 2268.2.a.j.1.3 3
9.4 even 3 inner 252.2.j.b.85.1 6
9.5 odd 6 756.2.j.a.253.1 6
9.7 even 3 2268.2.a.g.1.1 3
12.11 even 2 3024.2.r.i.2017.1 6
21.2 odd 6 5292.2.i.d.2125.1 6
21.5 even 6 5292.2.i.g.2125.3 6
21.11 odd 6 5292.2.l.g.3313.3 6
21.17 even 6 5292.2.l.d.3313.1 6
21.20 even 2 5292.2.j.e.3529.3 6
36.7 odd 6 9072.2.a.bt.1.1 3
36.11 even 6 9072.2.a.bz.1.3 3
36.23 even 6 3024.2.r.i.1009.1 6
36.31 odd 6 1008.2.r.g.337.3 6
63.4 even 3 1764.2.i.f.373.3 6
63.5 even 6 5292.2.l.d.361.1 6
63.13 odd 6 1764.2.j.d.589.3 6
63.23 odd 6 5292.2.l.g.361.3 6
63.31 odd 6 1764.2.i.e.373.1 6
63.32 odd 6 5292.2.i.d.1549.1 6
63.40 odd 6 1764.2.l.g.949.2 6
63.41 even 6 5292.2.j.e.1765.3 6
63.58 even 3 1764.2.l.d.949.2 6
63.59 even 6 5292.2.i.g.1549.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.1 6 9.4 even 3 inner
252.2.j.b.169.1 yes 6 1.1 even 1 trivial
756.2.j.a.253.1 6 9.5 odd 6
756.2.j.a.505.1 6 3.2 odd 2
1008.2.r.g.337.3 6 36.31 odd 6
1008.2.r.g.673.3 6 4.3 odd 2
1764.2.i.e.373.1 6 63.31 odd 6
1764.2.i.e.1537.1 6 7.5 odd 6
1764.2.i.f.373.3 6 63.4 even 3
1764.2.i.f.1537.3 6 7.2 even 3
1764.2.j.d.589.3 6 63.13 odd 6
1764.2.j.d.1177.3 6 7.6 odd 2
1764.2.l.d.949.2 6 63.58 even 3
1764.2.l.d.961.2 6 7.4 even 3
1764.2.l.g.949.2 6 63.40 odd 6
1764.2.l.g.961.2 6 7.3 odd 6
2268.2.a.g.1.1 3 9.7 even 3
2268.2.a.j.1.3 3 9.2 odd 6
3024.2.r.i.1009.1 6 36.23 even 6
3024.2.r.i.2017.1 6 12.11 even 2
5292.2.i.d.1549.1 6 63.32 odd 6
5292.2.i.d.2125.1 6 21.2 odd 6
5292.2.i.g.1549.3 6 63.59 even 6
5292.2.i.g.2125.3 6 21.5 even 6
5292.2.j.e.1765.3 6 63.41 even 6
5292.2.j.e.3529.3 6 21.20 even 2
5292.2.l.d.361.1 6 63.5 even 6
5292.2.l.d.3313.1 6 21.17 even 6
5292.2.l.g.361.3 6 63.23 odd 6
5292.2.l.g.3313.3 6 21.11 odd 6
9072.2.a.bt.1.1 3 36.7 odd 6
9072.2.a.bz.1.3 3 36.11 even 6