L(s) = 1 | + (1.71 + 0.272i)3-s + (1.97 + 3.41i)5-s + (2.85 + 0.931i)9-s + (−0.471 + 0.816i)11-s + (0.5 − 0.866i)13-s + (2.44 + 6.37i)15-s + (−2.80 − 4.85i)17-s + (−0.641 + 1.11i)19-s + (2.33 + 4.03i)23-s + (−5.27 + 9.13i)25-s + (4.62 + 2.36i)27-s + (3.83 + 6.63i)29-s + 7.82·31-s + (−1.02 + 1.26i)33-s + (4.91 − 8.51i)37-s + ⋯ |
L(s) = 1 | + (0.987 + 0.157i)3-s + (0.881 + 1.52i)5-s + (0.950 + 0.310i)9-s + (−0.142 + 0.246i)11-s + (0.138 − 0.240i)13-s + (0.630 + 1.64i)15-s + (−0.679 − 1.17i)17-s + (−0.147 + 0.254i)19-s + (0.485 + 0.841i)23-s + (−1.05 + 1.82i)25-s + (0.890 + 0.455i)27-s + (0.711 + 1.23i)29-s + 1.40·31-s + (−0.179 + 0.220i)33-s + (0.807 − 1.39i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.264 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.938525818\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.938525818\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.71 - 0.272i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.97 - 3.41i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.471 - 0.816i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.80 + 4.85i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.641 - 1.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.33 - 4.03i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.83 - 6.63i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.82T + 31T^{2} \) |
| 37 | \( 1 + (-4.91 + 8.51i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.471 - 0.816i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.63 + 8.02i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.28T + 47T^{2} \) |
| 53 | \( 1 + (-4.61 - 7.98i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 9.54T + 59T^{2} \) |
| 61 | \( 1 + 10.5T + 61T^{2} \) |
| 67 | \( 1 + 1.71T + 67T^{2} \) |
| 71 | \( 1 - 3.54T + 71T^{2} \) |
| 73 | \( 1 + (1.35 + 2.35i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 16.3T + 79T^{2} \) |
| 83 | \( 1 + (-0.198 - 0.343i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.75 - 4.77i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.77 - 11.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.457566673809053553107602489543, −8.871188593956576978054017770527, −7.73357380635481408480868693956, −7.10924787357349049603202451463, −6.50706249349935733645185738458, −5.44179997077690250333329468725, −4.38145738576071631338028231959, −3.12207293149105791265284268240, −2.75974393106094992001693458586, −1.70599449384616867470865433562,
1.02916829310921066234082343416, 1.95586876646729116764619923163, 2.95735808390867844618049009144, 4.46161586427140684065171399466, 4.64362560509579329397094439077, 6.10170323693565694505947386830, 6.53944383958620719017745254596, 8.030609859388674172523467551123, 8.408406966404118175166934286067, 8.950511026349469123664611560836