Properties

Label 176.4.m.e.81.2
Level $176$
Weight $4$
Character 176.81
Analytic conductor $10.384$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.2
Root \(-1.72876 - 5.32058i\) of defining polynomial
Character \(\chi\) \(=\) 176.81
Dual form 176.4.m.e.113.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.320520 + 0.986460i) q^{3} +(-7.72334 + 5.61133i) q^{5} +(-5.56367 - 17.1232i) q^{7} +(20.9731 + 15.2378i) q^{9} +(-10.0276 - 35.0777i) q^{11} +(-13.3294 - 9.68440i) q^{13} +(-3.05987 - 9.41731i) q^{15} +(64.6073 - 46.9400i) q^{17} +(44.2970 - 136.332i) q^{19} +18.6746 q^{21} +45.6230 q^{23} +(-10.4642 + 32.2056i) q^{25} +(-44.4104 + 32.2661i) q^{27} +(-45.4975 - 140.027i) q^{29} +(-12.6239 - 9.17179i) q^{31} +(37.8168 + 1.35125i) q^{33} +(139.054 + 101.029i) q^{35} +(-89.0157 - 273.962i) q^{37} +(13.8256 - 10.0449i) q^{39} +(92.6741 - 285.221i) q^{41} -125.686 q^{43} -247.487 q^{45} +(9.79610 - 30.1493i) q^{47} +(15.2430 - 11.0747i) q^{49} +(25.5964 + 78.7778i) q^{51} +(421.520 + 306.252i) q^{53} +(274.280 + 214.649i) q^{55} +(120.288 + 87.3943i) q^{57} +(70.9340 + 218.312i) q^{59} +(-600.426 + 436.235i) q^{61} +(144.233 - 443.905i) q^{63} +157.290 q^{65} -505.264 q^{67} +(-14.6231 + 45.0053i) q^{69} +(-689.250 + 500.769i) q^{71} +(74.0022 + 227.755i) q^{73} +(-28.4155 - 20.6451i) q^{75} +(-544.853 + 366.866i) q^{77} +(-592.086 - 430.175i) q^{79} +(198.702 + 611.543i) q^{81} +(476.872 - 346.468i) q^{83} +(-235.588 + 725.067i) q^{85} +152.714 q^{87} +663.369 q^{89} +(-91.6674 + 282.123i) q^{91} +(13.0938 - 9.51322i) q^{93} +(422.884 + 1301.50i) q^{95} +(1103.42 + 801.685i) q^{97} +(324.198 - 888.488i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} - q^{5} + 13 q^{7} + 7 q^{9} - 83 q^{11} + 69 q^{13} - 93 q^{15} - 217 q^{17} - 126 q^{19} + 34 q^{21} + 92 q^{23} + 307 q^{25} - 158 q^{27} - 553 q^{29} - 205 q^{31} - 198 q^{33} - 7 q^{35}+ \cdots + 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.320520 + 0.986460i −0.0616842 + 0.189844i −0.977150 0.212552i \(-0.931823\pi\)
0.915466 + 0.402396i \(0.131823\pi\)
\(4\) 0 0
\(5\) −7.72334 + 5.61133i −0.690796 + 0.501893i −0.876922 0.480633i \(-0.840407\pi\)
0.186125 + 0.982526i \(0.440407\pi\)
\(6\) 0 0
\(7\) −5.56367 17.1232i −0.300410 0.924566i −0.981350 0.192228i \(-0.938429\pi\)
0.680941 0.732339i \(-0.261571\pi\)
\(8\) 0 0
\(9\) 20.9731 + 15.2378i 0.776781 + 0.564364i
\(10\) 0 0
\(11\) −10.0276 35.0777i −0.274859 0.961485i
\(12\) 0 0
\(13\) −13.3294 9.68440i −0.284378 0.206613i 0.436447 0.899730i \(-0.356237\pi\)
−0.720825 + 0.693117i \(0.756237\pi\)
\(14\) 0 0
\(15\) −3.05987 9.41731i −0.0526703 0.162103i
\(16\) 0 0
\(17\) 64.6073 46.9400i 0.921740 0.669683i −0.0222165 0.999753i \(-0.507072\pi\)
0.943956 + 0.330070i \(0.107072\pi\)
\(18\) 0 0
\(19\) 44.2970 136.332i 0.534864 1.64614i −0.209079 0.977899i \(-0.567046\pi\)
0.743943 0.668244i \(-0.232954\pi\)
\(20\) 0 0
\(21\) 18.6746 0.194054
\(22\) 0 0
\(23\) 45.6230 0.413611 0.206806 0.978382i \(-0.433693\pi\)
0.206806 + 0.978382i \(0.433693\pi\)
\(24\) 0 0
\(25\) −10.4642 + 32.2056i −0.0837139 + 0.257645i
\(26\) 0 0
\(27\) −44.4104 + 32.2661i −0.316548 + 0.229985i
\(28\) 0 0
\(29\) −45.4975 140.027i −0.291334 0.896633i −0.984428 0.175786i \(-0.943753\pi\)
0.693095 0.720846i \(-0.256247\pi\)
\(30\) 0 0
\(31\) −12.6239 9.17179i −0.0731393 0.0531388i 0.550615 0.834759i \(-0.314393\pi\)
−0.623754 + 0.781621i \(0.714393\pi\)
\(32\) 0 0
\(33\) 37.8168 + 1.35125i 0.199487 + 0.00712795i
\(34\) 0 0
\(35\) 139.054 + 101.029i 0.671555 + 0.487913i
\(36\) 0 0
\(37\) −89.0157 273.962i −0.395516 1.21727i −0.928559 0.371185i \(-0.878952\pi\)
0.533043 0.846088i \(-0.321048\pi\)
\(38\) 0 0
\(39\) 13.8256 10.0449i 0.0567659 0.0412429i
\(40\) 0 0
\(41\) 92.6741 285.221i 0.353006 1.08644i −0.604150 0.796870i \(-0.706487\pi\)
0.957157 0.289571i \(-0.0935127\pi\)
\(42\) 0 0
\(43\) −125.686 −0.445744 −0.222872 0.974848i \(-0.571543\pi\)
−0.222872 + 0.974848i \(0.571543\pi\)
\(44\) 0 0
\(45\) −247.487 −0.819848
\(46\) 0 0
\(47\) 9.79610 30.1493i 0.0304023 0.0935686i −0.934704 0.355427i \(-0.884335\pi\)
0.965106 + 0.261859i \(0.0843354\pi\)
\(48\) 0 0
\(49\) 15.2430 11.0747i 0.0444403 0.0322878i
\(50\) 0 0
\(51\) 25.5964 + 78.7778i 0.0702788 + 0.216296i
\(52\) 0 0
\(53\) 421.520 + 306.252i 1.09246 + 0.793717i 0.979813 0.199919i \(-0.0640678\pi\)
0.112645 + 0.993635i \(0.464068\pi\)
\(54\) 0 0
\(55\) 274.280 + 214.649i 0.672434 + 0.526240i
\(56\) 0 0
\(57\) 120.288 + 87.3943i 0.279518 + 0.203082i
\(58\) 0 0
\(59\) 70.9340 + 218.312i 0.156522 + 0.481726i 0.998312 0.0580796i \(-0.0184977\pi\)
−0.841790 + 0.539806i \(0.818498\pi\)
\(60\) 0 0
\(61\) −600.426 + 436.235i −1.26027 + 0.915642i −0.998771 0.0495607i \(-0.984218\pi\)
−0.261502 + 0.965203i \(0.584218\pi\)
\(62\) 0 0
\(63\) 144.233 443.905i 0.288440 0.887726i
\(64\) 0 0
\(65\) 157.290 0.300145
\(66\) 0 0
\(67\) −505.264 −0.921310 −0.460655 0.887579i \(-0.652385\pi\)
−0.460655 + 0.887579i \(0.652385\pi\)
\(68\) 0 0
\(69\) −14.6231 + 45.0053i −0.0255133 + 0.0785218i
\(70\) 0 0
\(71\) −689.250 + 500.769i −1.15210 + 0.837048i −0.988758 0.149522i \(-0.952226\pi\)
−0.163339 + 0.986570i \(0.552226\pi\)
\(72\) 0 0
\(73\) 74.0022 + 227.755i 0.118648 + 0.365161i 0.992690 0.120689i \(-0.0385103\pi\)
−0.874042 + 0.485850i \(0.838510\pi\)
\(74\) 0 0
\(75\) −28.4155 20.6451i −0.0437486 0.0317852i
\(76\) 0 0
\(77\) −544.853 + 366.866i −0.806386 + 0.542965i
\(78\) 0 0
\(79\) −592.086 430.175i −0.843226 0.612640i 0.0800440 0.996791i \(-0.474494\pi\)
−0.923270 + 0.384152i \(0.874494\pi\)
\(80\) 0 0
\(81\) 198.702 + 611.543i 0.272569 + 0.838880i
\(82\) 0 0
\(83\) 476.872 346.468i 0.630645 0.458190i −0.225979 0.974132i \(-0.572558\pi\)
0.856624 + 0.515942i \(0.172558\pi\)
\(84\) 0 0
\(85\) −235.588 + 725.067i −0.300625 + 0.925230i
\(86\) 0 0
\(87\) 152.714 0.188191
\(88\) 0 0
\(89\) 663.369 0.790078 0.395039 0.918664i \(-0.370731\pi\)
0.395039 + 0.918664i \(0.370731\pi\)
\(90\) 0 0
\(91\) −91.6674 + 282.123i −0.105597 + 0.324995i
\(92\) 0 0
\(93\) 13.0938 9.51322i 0.0145996 0.0106073i
\(94\) 0 0
\(95\) 422.884 + 1301.50i 0.456705 + 1.40559i
\(96\) 0 0
\(97\) 1103.42 + 801.685i 1.15501 + 0.839162i 0.989139 0.146986i \(-0.0469571\pi\)
0.165869 + 0.986148i \(0.446957\pi\)
\(98\) 0 0
\(99\) 324.198 888.488i 0.329122 0.901984i
\(100\) 0 0
\(101\) −1217.63 884.660i −1.19959 0.871554i −0.205347 0.978689i \(-0.565832\pi\)
−0.994244 + 0.107135i \(0.965832\pi\)
\(102\) 0 0
\(103\) 182.051 + 560.295i 0.174155 + 0.535995i 0.999594 0.0284970i \(-0.00907211\pi\)
−0.825439 + 0.564492i \(0.809072\pi\)
\(104\) 0 0
\(105\) −144.230 + 104.790i −0.134052 + 0.0973944i
\(106\) 0 0
\(107\) −173.894 + 535.191i −0.157112 + 0.483540i −0.998369 0.0570951i \(-0.981816\pi\)
0.841257 + 0.540636i \(0.181816\pi\)
\(108\) 0 0
\(109\) 163.962 0.144079 0.0720397 0.997402i \(-0.477049\pi\)
0.0720397 + 0.997402i \(0.477049\pi\)
\(110\) 0 0
\(111\) 298.784 0.255489
\(112\) 0 0
\(113\) 645.919 1987.93i 0.537725 1.65495i −0.199960 0.979804i \(-0.564081\pi\)
0.737686 0.675144i \(-0.235919\pi\)
\(114\) 0 0
\(115\) −352.362 + 256.006i −0.285721 + 0.207589i
\(116\) 0 0
\(117\) −131.990 406.223i −0.104295 0.320986i
\(118\) 0 0
\(119\) −1163.22 845.126i −0.896066 0.651030i
\(120\) 0 0
\(121\) −1129.89 + 703.494i −0.848905 + 0.528545i
\(122\) 0 0
\(123\) 251.656 + 182.838i 0.184480 + 0.134032i
\(124\) 0 0
\(125\) −468.654 1442.37i −0.335342 1.03208i
\(126\) 0 0
\(127\) 1002.10 728.071i 0.700176 0.508708i −0.179814 0.983701i \(-0.557549\pi\)
0.879990 + 0.474993i \(0.157549\pi\)
\(128\) 0 0
\(129\) 40.2850 123.985i 0.0274954 0.0846220i
\(130\) 0 0
\(131\) −377.597 −0.251838 −0.125919 0.992041i \(-0.540188\pi\)
−0.125919 + 0.992041i \(0.540188\pi\)
\(132\) 0 0
\(133\) −2580.89 −1.68265
\(134\) 0 0
\(135\) 161.941 498.403i 0.103242 0.317746i
\(136\) 0 0
\(137\) 1663.37 1208.51i 1.03731 0.753649i 0.0675501 0.997716i \(-0.478482\pi\)
0.969758 + 0.244067i \(0.0784818\pi\)
\(138\) 0 0
\(139\) 941.224 + 2896.79i 0.574342 + 1.76764i 0.638408 + 0.769698i \(0.279593\pi\)
−0.0640657 + 0.997946i \(0.520407\pi\)
\(140\) 0 0
\(141\) 26.6012 + 19.3269i 0.0158881 + 0.0115434i
\(142\) 0 0
\(143\) −206.044 + 564.678i −0.120491 + 0.330215i
\(144\) 0 0
\(145\) 1137.13 + 826.174i 0.651266 + 0.473172i
\(146\) 0 0
\(147\) 6.03906 + 18.5863i 0.00338839 + 0.0104284i
\(148\) 0 0
\(149\) 668.671 485.818i 0.367649 0.267112i −0.388587 0.921412i \(-0.627037\pi\)
0.756235 + 0.654300i \(0.227037\pi\)
\(150\) 0 0
\(151\) 997.185 3069.02i 0.537416 1.65400i −0.200955 0.979601i \(-0.564404\pi\)
0.738370 0.674395i \(-0.235596\pi\)
\(152\) 0 0
\(153\) 2070.28 1.09394
\(154\) 0 0
\(155\) 148.965 0.0771943
\(156\) 0 0
\(157\) 341.555 1051.20i 0.173624 0.534361i −0.825944 0.563753i \(-0.809357\pi\)
0.999568 + 0.0293919i \(0.00935708\pi\)
\(158\) 0 0
\(159\) −437.211 + 317.653i −0.218070 + 0.158437i
\(160\) 0 0
\(161\) −253.831 781.213i −0.124253 0.382411i
\(162\) 0 0
\(163\) −2542.44 1847.19i −1.22171 0.887626i −0.225471 0.974250i \(-0.572392\pi\)
−0.996241 + 0.0866242i \(0.972392\pi\)
\(164\) 0 0
\(165\) −299.654 + 201.767i −0.141382 + 0.0951971i
\(166\) 0 0
\(167\) 109.528 + 79.5766i 0.0507516 + 0.0368732i 0.612872 0.790182i \(-0.290014\pi\)
−0.562120 + 0.827056i \(0.690014\pi\)
\(168\) 0 0
\(169\) −595.024 1831.30i −0.270835 0.833544i
\(170\) 0 0
\(171\) 3006.45 2184.31i 1.34450 0.976834i
\(172\) 0 0
\(173\) −400.668 + 1233.13i −0.176082 + 0.541925i −0.999681 0.0252471i \(-0.991963\pi\)
0.823599 + 0.567173i \(0.191963\pi\)
\(174\) 0 0
\(175\) 609.683 0.263358
\(176\) 0 0
\(177\) −238.092 −0.101108
\(178\) 0 0
\(179\) 1269.93 3908.43i 0.530273 1.63201i −0.223375 0.974733i \(-0.571707\pi\)
0.753647 0.657279i \(-0.228293\pi\)
\(180\) 0 0
\(181\) −1284.22 + 933.040i −0.527377 + 0.383162i −0.819376 0.573257i \(-0.805680\pi\)
0.291998 + 0.956419i \(0.405680\pi\)
\(182\) 0 0
\(183\) −237.880 732.118i −0.0960906 0.295736i
\(184\) 0 0
\(185\) 2224.79 + 1616.41i 0.884162 + 0.642381i
\(186\) 0 0
\(187\) −2294.41 1795.58i −0.897239 0.702170i
\(188\) 0 0
\(189\) 799.583 + 580.931i 0.307731 + 0.223579i
\(190\) 0 0
\(191\) 669.405 + 2060.22i 0.253594 + 0.780482i 0.994103 + 0.108436i \(0.0345842\pi\)
−0.740510 + 0.672046i \(0.765416\pi\)
\(192\) 0 0
\(193\) −1677.50 + 1218.77i −0.625643 + 0.454556i −0.854888 0.518813i \(-0.826374\pi\)
0.229245 + 0.973369i \(0.426374\pi\)
\(194\) 0 0
\(195\) −50.4147 + 155.160i −0.0185142 + 0.0569808i
\(196\) 0 0
\(197\) 4578.51 1.65587 0.827933 0.560828i \(-0.189517\pi\)
0.827933 + 0.560828i \(0.189517\pi\)
\(198\) 0 0
\(199\) −3519.24 −1.25363 −0.626815 0.779168i \(-0.715642\pi\)
−0.626815 + 0.779168i \(0.715642\pi\)
\(200\) 0 0
\(201\) 161.947 498.422i 0.0568302 0.174905i
\(202\) 0 0
\(203\) −2144.58 + 1558.13i −0.741477 + 0.538714i
\(204\) 0 0
\(205\) 884.720 + 2722.89i 0.301422 + 0.927681i
\(206\) 0 0
\(207\) 956.856 + 695.197i 0.321286 + 0.233428i
\(208\) 0 0
\(209\) −5226.41 186.747i −1.72975 0.0618065i
\(210\) 0 0
\(211\) 1999.73 + 1452.89i 0.652450 + 0.474033i 0.864105 0.503312i \(-0.167885\pi\)
−0.211655 + 0.977345i \(0.567885\pi\)
\(212\) 0 0
\(213\) −273.070 840.424i −0.0878426 0.270352i
\(214\) 0 0
\(215\) 970.719 705.268i 0.307918 0.223716i
\(216\) 0 0
\(217\) −86.8154 + 267.190i −0.0271586 + 0.0835855i
\(218\) 0 0
\(219\) −248.391 −0.0766424
\(220\) 0 0
\(221\) −1315.76 −0.400488
\(222\) 0 0
\(223\) −1522.98 + 4687.24i −0.457336 + 1.40754i 0.411034 + 0.911620i \(0.365168\pi\)
−0.868370 + 0.495917i \(0.834832\pi\)
\(224\) 0 0
\(225\) −710.211 + 515.999i −0.210433 + 0.152888i
\(226\) 0 0
\(227\) 845.888 + 2603.38i 0.247329 + 0.761199i 0.995245 + 0.0974058i \(0.0310545\pi\)
−0.747916 + 0.663793i \(0.768946\pi\)
\(228\) 0 0
\(229\) 1405.81 + 1021.38i 0.405671 + 0.294737i 0.771847 0.635809i \(-0.219333\pi\)
−0.366176 + 0.930546i \(0.619333\pi\)
\(230\) 0 0
\(231\) −187.263 655.063i −0.0533375 0.186580i
\(232\) 0 0
\(233\) −827.230 601.018i −0.232591 0.168987i 0.465385 0.885108i \(-0.345916\pi\)
−0.697976 + 0.716121i \(0.745916\pi\)
\(234\) 0 0
\(235\) 93.5191 + 287.822i 0.0259596 + 0.0798956i
\(236\) 0 0
\(237\) 614.126 446.189i 0.168320 0.122292i
\(238\) 0 0
\(239\) 630.391 1940.14i 0.170613 0.525094i −0.828793 0.559556i \(-0.810972\pi\)
0.999406 + 0.0344619i \(0.0109717\pi\)
\(240\) 0 0
\(241\) −1773.76 −0.474098 −0.237049 0.971498i \(-0.576180\pi\)
−0.237049 + 0.971498i \(0.576180\pi\)
\(242\) 0 0
\(243\) −2149.10 −0.567344
\(244\) 0 0
\(245\) −55.5832 + 171.068i −0.0144942 + 0.0446086i
\(246\) 0 0
\(247\) −1910.75 + 1388.24i −0.492218 + 0.357617i
\(248\) 0 0
\(249\) 188.930 + 581.465i 0.0480840 + 0.147987i
\(250\) 0 0
\(251\) 4131.15 + 3001.46i 1.03887 + 0.754782i 0.970064 0.242848i \(-0.0780817\pi\)
0.0688040 + 0.997630i \(0.478082\pi\)
\(252\) 0 0
\(253\) −457.492 1600.35i −0.113685 0.397681i
\(254\) 0 0
\(255\) −639.738 464.797i −0.157106 0.114144i
\(256\) 0 0
\(257\) 943.272 + 2903.09i 0.228948 + 0.704630i 0.997867 + 0.0652835i \(0.0207952\pi\)
−0.768919 + 0.639347i \(0.779205\pi\)
\(258\) 0 0
\(259\) −4195.86 + 3048.47i −1.00663 + 0.731361i
\(260\) 0 0
\(261\) 1179.48 3630.08i 0.279725 0.860906i
\(262\) 0 0
\(263\) 6263.62 1.46856 0.734280 0.678847i \(-0.237520\pi\)
0.734280 + 0.678847i \(0.237520\pi\)
\(264\) 0 0
\(265\) −4974.03 −1.15303
\(266\) 0 0
\(267\) −212.623 + 654.387i −0.0487353 + 0.149992i
\(268\) 0 0
\(269\) 1464.47 1064.00i 0.331934 0.241164i −0.409317 0.912392i \(-0.634233\pi\)
0.741251 + 0.671228i \(0.234233\pi\)
\(270\) 0 0
\(271\) 2376.15 + 7313.04i 0.532623 + 1.63925i 0.748730 + 0.662876i \(0.230664\pi\)
−0.216106 + 0.976370i \(0.569336\pi\)
\(272\) 0 0
\(273\) −248.922 180.852i −0.0551848 0.0400941i
\(274\) 0 0
\(275\) 1234.63 + 44.1151i 0.270731 + 0.00967361i
\(276\) 0 0
\(277\) −176.099 127.943i −0.0381977 0.0277522i 0.568523 0.822668i \(-0.307515\pi\)
−0.606720 + 0.794915i \(0.707515\pi\)
\(278\) 0 0
\(279\) −125.004 384.722i −0.0268236 0.0825544i
\(280\) 0 0
\(281\) −549.547 + 399.269i −0.116666 + 0.0847631i −0.644588 0.764530i \(-0.722971\pi\)
0.527922 + 0.849293i \(0.322971\pi\)
\(282\) 0 0
\(283\) 91.7568 282.398i 0.0192734 0.0593175i −0.940957 0.338525i \(-0.890072\pi\)
0.960231 + 0.279208i \(0.0900719\pi\)
\(284\) 0 0
\(285\) −1419.42 −0.295015
\(286\) 0 0
\(287\) −5399.51 −1.11053
\(288\) 0 0
\(289\) 452.546 1392.79i 0.0921119 0.283491i
\(290\) 0 0
\(291\) −1144.50 + 831.528i −0.230556 + 0.167509i
\(292\) 0 0
\(293\) 1819.59 + 5600.13i 0.362805 + 1.11660i 0.951344 + 0.308130i \(0.0997032\pi\)
−0.588539 + 0.808469i \(0.700297\pi\)
\(294\) 0 0
\(295\) −1772.87 1288.07i −0.349900 0.254217i
\(296\) 0 0
\(297\) 1577.15 + 1234.26i 0.308133 + 0.241142i
\(298\) 0 0
\(299\) −608.129 441.832i −0.117622 0.0854575i
\(300\) 0 0
\(301\) 699.277 + 2152.15i 0.133906 + 0.412120i
\(302\) 0 0
\(303\) 1262.96 917.592i 0.239455 0.173975i
\(304\) 0 0
\(305\) 2189.43 6738.38i 0.411038 1.26504i
\(306\) 0 0
\(307\) 1249.08 0.232211 0.116105 0.993237i \(-0.462959\pi\)
0.116105 + 0.993237i \(0.462959\pi\)
\(308\) 0 0
\(309\) −611.059 −0.112498
\(310\) 0 0
\(311\) 3006.39 9252.70i 0.548156 1.68705i −0.165210 0.986258i \(-0.552830\pi\)
0.713366 0.700792i \(-0.247170\pi\)
\(312\) 0 0
\(313\) −6806.73 + 4945.38i −1.22920 + 0.893064i −0.996830 0.0795635i \(-0.974647\pi\)
−0.232368 + 0.972628i \(0.574647\pi\)
\(314\) 0 0
\(315\) 1376.93 + 4237.77i 0.246290 + 0.758004i
\(316\) 0 0
\(317\) 5795.63 + 4210.77i 1.02686 + 0.746058i 0.967678 0.252189i \(-0.0811505\pi\)
0.0591829 + 0.998247i \(0.481150\pi\)
\(318\) 0 0
\(319\) −4455.59 + 3000.09i −0.782023 + 0.526560i
\(320\) 0 0
\(321\) −472.208 343.079i −0.0821061 0.0596536i
\(322\) 0 0
\(323\) −3537.51 10887.3i −0.609388 1.87550i
\(324\) 0 0
\(325\) 451.374 327.942i 0.0770392 0.0559722i
\(326\) 0 0
\(327\) −52.5530 + 161.741i −0.00888742 + 0.0273527i
\(328\) 0 0
\(329\) −570.755 −0.0956435
\(330\) 0 0
\(331\) 3759.76 0.624336 0.312168 0.950027i \(-0.398945\pi\)
0.312168 + 0.950027i \(0.398945\pi\)
\(332\) 0 0
\(333\) 2307.66 7102.24i 0.379756 1.16877i
\(334\) 0 0
\(335\) 3902.32 2835.20i 0.636438 0.462399i
\(336\) 0 0
\(337\) 3120.27 + 9603.20i 0.504368 + 1.55228i 0.801831 + 0.597551i \(0.203859\pi\)
−0.297464 + 0.954733i \(0.596141\pi\)
\(338\) 0 0
\(339\) 1753.99 + 1274.35i 0.281013 + 0.204168i
\(340\) 0 0
\(341\) −195.138 + 534.789i −0.0309891 + 0.0849280i
\(342\) 0 0
\(343\) −5270.53 3829.27i −0.829686 0.602802i
\(344\) 0 0
\(345\) −139.601 429.646i −0.0217851 0.0670475i
\(346\) 0 0
\(347\) −5232.66 + 3801.75i −0.809521 + 0.588151i −0.913692 0.406408i \(-0.866781\pi\)
0.104171 + 0.994559i \(0.466781\pi\)
\(348\) 0 0
\(349\) 798.726 2458.23i 0.122507 0.377037i −0.870932 0.491404i \(-0.836484\pi\)
0.993439 + 0.114367i \(0.0364839\pi\)
\(350\) 0 0
\(351\) 904.443 0.137537
\(352\) 0 0
\(353\) −2143.59 −0.323207 −0.161603 0.986856i \(-0.551666\pi\)
−0.161603 + 0.986856i \(0.551666\pi\)
\(354\) 0 0
\(355\) 2513.33 7735.22i 0.375756 1.15646i
\(356\) 0 0
\(357\) 1206.52 876.586i 0.178867 0.129955i
\(358\) 0 0
\(359\) −3155.05 9710.26i −0.463837 1.42754i −0.860439 0.509553i \(-0.829811\pi\)
0.396603 0.917990i \(-0.370189\pi\)
\(360\) 0 0
\(361\) −11075.1 8046.56i −1.61469 1.17314i
\(362\) 0 0
\(363\) −331.815 1340.08i −0.0479773 0.193763i
\(364\) 0 0
\(365\) −1849.56 1343.78i −0.265233 0.192703i
\(366\) 0 0
\(367\) 1254.50 + 3860.94i 0.178431 + 0.549154i 0.999774 0.0212811i \(-0.00677449\pi\)
−0.821342 + 0.570435i \(0.806774\pi\)
\(368\) 0 0
\(369\) 6289.82 4569.82i 0.887358 0.644703i
\(370\) 0 0
\(371\) 2898.82 8921.66i 0.405659 1.24849i
\(372\) 0 0
\(373\) 12702.8 1.76334 0.881671 0.471864i \(-0.156419\pi\)
0.881671 + 0.471864i \(0.156419\pi\)
\(374\) 0 0
\(375\) 1573.05 0.216619
\(376\) 0 0
\(377\) −749.620 + 2307.09i −0.102407 + 0.315176i
\(378\) 0 0
\(379\) −3235.73 + 2350.89i −0.438544 + 0.318621i −0.785056 0.619425i \(-0.787366\pi\)
0.346512 + 0.938045i \(0.387366\pi\)
\(380\) 0 0
\(381\) 397.018 + 1221.90i 0.0533855 + 0.164304i
\(382\) 0 0
\(383\) 8325.71 + 6048.98i 1.11077 + 0.807020i 0.982784 0.184757i \(-0.0591497\pi\)
0.127983 + 0.991776i \(0.459150\pi\)
\(384\) 0 0
\(385\) 2149.47 5890.78i 0.284538 0.779797i
\(386\) 0 0
\(387\) −2636.03 1915.19i −0.346246 0.251562i
\(388\) 0 0
\(389\) −340.972 1049.40i −0.0444420 0.136778i 0.926373 0.376606i \(-0.122909\pi\)
−0.970815 + 0.239828i \(0.922909\pi\)
\(390\) 0 0
\(391\) 2947.58 2141.54i 0.381242 0.276989i
\(392\) 0 0
\(393\) 121.028 372.485i 0.0155344 0.0478101i
\(394\) 0 0
\(395\) 6986.74 0.889977
\(396\) 0 0
\(397\) 10352.5 1.30876 0.654379 0.756166i \(-0.272930\pi\)
0.654379 + 0.756166i \(0.272930\pi\)
\(398\) 0 0
\(399\) 827.229 2545.95i 0.103793 0.319441i
\(400\) 0 0
\(401\) −9301.20 + 6757.72i −1.15830 + 0.841557i −0.989563 0.144104i \(-0.953970\pi\)
−0.168741 + 0.985660i \(0.553970\pi\)
\(402\) 0 0
\(403\) 79.4460 + 244.510i 0.00982006 + 0.0302230i
\(404\) 0 0
\(405\) −4966.22 3608.17i −0.609317 0.442695i
\(406\) 0 0
\(407\) −8717.35 + 5869.66i −1.06168 + 0.714861i
\(408\) 0 0
\(409\) −6589.14 4787.29i −0.796607 0.578769i 0.113310 0.993560i \(-0.463855\pi\)
−0.909917 + 0.414791i \(0.863855\pi\)
\(410\) 0 0
\(411\) 659.002 + 2028.20i 0.0790904 + 0.243415i
\(412\) 0 0
\(413\) 3343.55 2429.23i 0.398367 0.289430i
\(414\) 0 0
\(415\) −1738.90 + 5351.78i −0.205685 + 0.633032i
\(416\) 0 0
\(417\) −3159.25 −0.371005
\(418\) 0 0
\(419\) −3940.43 −0.459433 −0.229717 0.973258i \(-0.573780\pi\)
−0.229717 + 0.973258i \(0.573780\pi\)
\(420\) 0 0
\(421\) 18.6265 57.3264i 0.00215629 0.00663638i −0.949973 0.312333i \(-0.898889\pi\)
0.952129 + 0.305697i \(0.0988894\pi\)
\(422\) 0 0
\(423\) 664.864 483.052i 0.0764227 0.0555244i
\(424\) 0 0
\(425\) 835.664 + 2571.91i 0.0953780 + 0.293543i
\(426\) 0 0
\(427\) 10810.3 + 7854.15i 1.22517 + 0.890138i
\(428\) 0 0
\(429\) −490.991 384.245i −0.0552570 0.0432436i
\(430\) 0 0
\(431\) 4228.27 + 3072.02i 0.472549 + 0.343327i 0.798434 0.602082i \(-0.205662\pi\)
−0.325885 + 0.945410i \(0.605662\pi\)
\(432\) 0 0
\(433\) −4432.57 13642.0i −0.491953 1.51407i −0.821652 0.569989i \(-0.806947\pi\)
0.329700 0.944086i \(-0.393053\pi\)
\(434\) 0 0
\(435\) −1179.46 + 856.928i −0.130002 + 0.0944519i
\(436\) 0 0
\(437\) 2020.96 6219.88i 0.221226 0.680863i
\(438\) 0 0
\(439\) −3548.07 −0.385741 −0.192871 0.981224i \(-0.561780\pi\)
−0.192871 + 0.981224i \(0.561780\pi\)
\(440\) 0 0
\(441\) 488.448 0.0527425
\(442\) 0 0
\(443\) −2520.57 + 7757.52i −0.270330 + 0.831989i 0.720088 + 0.693883i \(0.244101\pi\)
−0.990417 + 0.138106i \(0.955899\pi\)
\(444\) 0 0
\(445\) −5123.42 + 3722.38i −0.545783 + 0.396535i
\(446\) 0 0
\(447\) 264.917 + 815.332i 0.0280317 + 0.0862726i
\(448\) 0 0
\(449\) 2333.58 + 1695.44i 0.245275 + 0.178203i 0.703630 0.710566i \(-0.251561\pi\)
−0.458355 + 0.888769i \(0.651561\pi\)
\(450\) 0 0
\(451\) −10934.2 390.695i −1.14162 0.0407918i
\(452\) 0 0
\(453\) 2707.85 + 1967.37i 0.280852 + 0.204051i
\(454\) 0 0
\(455\) −875.110 2693.31i −0.0901665 0.277504i
\(456\) 0 0
\(457\) 8747.29 6355.28i 0.895363 0.650519i −0.0419077 0.999121i \(-0.513344\pi\)
0.937271 + 0.348602i \(0.113344\pi\)
\(458\) 0 0
\(459\) −1354.67 + 4169.25i −0.137757 + 0.423973i
\(460\) 0 0
\(461\) −14868.7 −1.50218 −0.751091 0.660198i \(-0.770472\pi\)
−0.751091 + 0.660198i \(0.770472\pi\)
\(462\) 0 0
\(463\) 471.604 0.0473376 0.0236688 0.999720i \(-0.492465\pi\)
0.0236688 + 0.999720i \(0.492465\pi\)
\(464\) 0 0
\(465\) −47.7462 + 146.948i −0.00476167 + 0.0146549i
\(466\) 0 0
\(467\) 7448.45 5411.61i 0.738058 0.536231i −0.154044 0.988064i \(-0.549230\pi\)
0.892102 + 0.451833i \(0.149230\pi\)
\(468\) 0 0
\(469\) 2811.12 + 8651.73i 0.276771 + 0.851812i
\(470\) 0 0
\(471\) 927.489 + 673.860i 0.0907355 + 0.0659232i
\(472\) 0 0
\(473\) 1260.34 + 4408.79i 0.122517 + 0.428576i
\(474\) 0 0
\(475\) 3927.12 + 2853.22i 0.379344 + 0.275610i
\(476\) 0 0
\(477\) 4173.95 + 12846.1i 0.400655 + 1.23309i
\(478\) 0 0
\(479\) 1064.22 773.203i 0.101515 0.0737548i −0.535870 0.844301i \(-0.680016\pi\)
0.637385 + 0.770546i \(0.280016\pi\)
\(480\) 0 0
\(481\) −1466.63 + 4513.82i −0.139028 + 0.427885i
\(482\) 0 0
\(483\) 851.993 0.0802630
\(484\) 0 0
\(485\) −13020.6 −1.21904
\(486\) 0 0
\(487\) 2197.89 6764.40i 0.204509 0.629414i −0.795224 0.606315i \(-0.792647\pi\)
0.999733 0.0230983i \(-0.00735306\pi\)
\(488\) 0 0
\(489\) 2637.08 1915.95i 0.243871 0.177183i
\(490\) 0 0
\(491\) 521.486 + 1604.97i 0.0479314 + 0.147518i 0.972158 0.234327i \(-0.0752888\pi\)
−0.924226 + 0.381845i \(0.875289\pi\)
\(492\) 0 0
\(493\) −9512.33 6911.11i −0.868994 0.631361i
\(494\) 0 0
\(495\) 2481.71 + 8681.28i 0.225343 + 0.788271i
\(496\) 0 0
\(497\) 12409.5 + 9016.05i 1.12001 + 0.813733i
\(498\) 0 0
\(499\) −4041.45 12438.3i −0.362566 1.11586i −0.951491 0.307675i \(-0.900449\pi\)
0.588926 0.808187i \(-0.299551\pi\)
\(500\) 0 0
\(501\) −113.605 + 82.5389i −0.0101307 + 0.00736041i
\(502\) 0 0
\(503\) −3909.83 + 12033.2i −0.346581 + 1.06667i 0.614150 + 0.789189i \(0.289499\pi\)
−0.960732 + 0.277479i \(0.910501\pi\)
\(504\) 0 0
\(505\) 14368.3 1.26610
\(506\) 0 0
\(507\) 1997.22 0.174950
\(508\) 0 0
\(509\) −338.874 + 1042.95i −0.0295095 + 0.0908209i −0.964727 0.263254i \(-0.915204\pi\)
0.935217 + 0.354075i \(0.115204\pi\)
\(510\) 0 0
\(511\) 3488.18 2534.31i 0.301973 0.219396i
\(512\) 0 0
\(513\) 2431.65 + 7483.85i 0.209279 + 0.644093i
\(514\) 0 0
\(515\) −4550.04 3305.80i −0.389318 0.282856i
\(516\) 0 0
\(517\) −1155.80 41.2984i −0.0983211 0.00351315i
\(518\) 0 0
\(519\) −1088.01 790.486i −0.0920200 0.0668564i
\(520\) 0 0
\(521\) 5106.48 + 15716.1i 0.429403 + 1.32157i 0.898715 + 0.438533i \(0.144502\pi\)
−0.469312 + 0.883032i \(0.655498\pi\)
\(522\) 0 0
\(523\) −15590.7 + 11327.3i −1.30350 + 0.947052i −0.999983 0.00577306i \(-0.998162\pi\)
−0.303521 + 0.952825i \(0.598162\pi\)
\(524\) 0 0
\(525\) −195.416 + 601.427i −0.0162450 + 0.0499970i
\(526\) 0 0
\(527\) −1246.12 −0.103002
\(528\) 0 0
\(529\) −10085.5 −0.828926
\(530\) 0 0
\(531\) −1838.90 + 5659.56i −0.150286 + 0.462531i
\(532\) 0 0
\(533\) −3997.49 + 2904.35i −0.324860 + 0.236025i
\(534\) 0 0
\(535\) −1660.09 5109.24i −0.134153 0.412881i
\(536\) 0 0
\(537\) 3448.48 + 2505.46i 0.277119 + 0.201339i
\(538\) 0 0
\(539\) −541.327 423.638i −0.0432590 0.0338541i
\(540\) 0 0
\(541\) 7103.29 + 5160.84i 0.564500 + 0.410133i 0.833103 0.553118i \(-0.186562\pi\)
−0.268603 + 0.963251i \(0.586562\pi\)
\(542\) 0 0
\(543\) −508.789 1565.89i −0.0402103 0.123755i
\(544\) 0 0
\(545\) −1266.33 + 920.043i −0.0995296 + 0.0723125i
\(546\) 0 0
\(547\) 637.955 1963.42i 0.0498665 0.153473i −0.923022 0.384746i \(-0.874289\pi\)
0.972889 + 0.231273i \(0.0742890\pi\)
\(548\) 0 0
\(549\) −19240.1 −1.49571
\(550\) 0 0
\(551\) −21105.6 −1.63181
\(552\) 0 0
\(553\) −4071.82 + 12531.8i −0.313112 + 0.963661i
\(554\) 0 0
\(555\) −2307.61 + 1676.58i −0.176491 + 0.128228i
\(556\) 0 0
\(557\) −2401.56 7391.25i −0.182688 0.562257i 0.817212 0.576337i \(-0.195518\pi\)
−0.999901 + 0.0140793i \(0.995518\pi\)
\(558\) 0 0
\(559\) 1675.33 + 1217.20i 0.126760 + 0.0920965i
\(560\) 0 0
\(561\) 2506.67 1687.82i 0.188648 0.127023i
\(562\) 0 0
\(563\) −4495.98 3266.52i −0.336560 0.244525i 0.406649 0.913584i \(-0.366697\pi\)
−0.743209 + 0.669059i \(0.766697\pi\)
\(564\) 0 0
\(565\) 6166.31 + 18978.0i 0.459148 + 1.41311i
\(566\) 0 0
\(567\) 9366.07 6804.85i 0.693718 0.504015i
\(568\) 0 0
\(569\) 41.3080 127.133i 0.00304345 0.00936677i −0.949523 0.313697i \(-0.898433\pi\)
0.952567 + 0.304330i \(0.0984325\pi\)
\(570\) 0 0
\(571\) 16220.9 1.18884 0.594418 0.804156i \(-0.297382\pi\)
0.594418 + 0.804156i \(0.297382\pi\)
\(572\) 0 0
\(573\) −2246.88 −0.163813
\(574\) 0 0
\(575\) −477.410 + 1469.32i −0.0346250 + 0.106565i
\(576\) 0 0
\(577\) 6236.86 4531.34i 0.449989 0.326936i −0.339602 0.940569i \(-0.610292\pi\)
0.789592 + 0.613633i \(0.210292\pi\)
\(578\) 0 0
\(579\) −664.600 2045.43i −0.0477026 0.146814i
\(580\) 0 0
\(581\) −8585.80 6237.95i −0.613079 0.445428i
\(582\) 0 0
\(583\) 6515.78 17857.0i 0.462875 1.26854i
\(584\) 0 0
\(585\) 3298.86 + 2396.76i 0.233147 + 0.169391i
\(586\) 0 0
\(587\) 2077.18 + 6392.91i 0.146055 + 0.449512i 0.997145 0.0755079i \(-0.0240578\pi\)
−0.851090 + 0.525020i \(0.824058\pi\)
\(588\) 0 0
\(589\) −1809.61 + 1314.76i −0.126594 + 0.0919756i
\(590\) 0 0
\(591\) −1467.51 + 4516.52i −0.102141 + 0.314357i
\(592\) 0 0
\(593\) 6418.85 0.444503 0.222252 0.974989i \(-0.428659\pi\)
0.222252 + 0.974989i \(0.428659\pi\)
\(594\) 0 0
\(595\) 13726.2 0.945747
\(596\) 0 0
\(597\) 1127.99 3471.59i 0.0773292 0.237995i
\(598\) 0 0
\(599\) −6957.04 + 5054.59i −0.474553 + 0.344783i −0.799213 0.601048i \(-0.794750\pi\)
0.324660 + 0.945831i \(0.394750\pi\)
\(600\) 0 0
\(601\) −6410.06 19728.1i −0.435061 1.33898i −0.893024 0.450009i \(-0.851421\pi\)
0.457963 0.888971i \(-0.348579\pi\)
\(602\) 0 0
\(603\) −10596.9 7699.13i −0.715656 0.519955i
\(604\) 0 0
\(605\) 4779.00 11773.5i 0.321147 0.791177i
\(606\) 0 0
\(607\) 12997.0 + 9442.86i 0.869079 + 0.631423i 0.930340 0.366699i \(-0.119512\pi\)
−0.0612604 + 0.998122i \(0.519512\pi\)
\(608\) 0 0
\(609\) −849.649 2614.95i −0.0565345 0.173995i
\(610\) 0 0
\(611\) −422.554 + 307.003i −0.0279782 + 0.0203274i
\(612\) 0 0
\(613\) 1959.29 6030.07i 0.129095 0.397312i −0.865530 0.500857i \(-0.833018\pi\)
0.994625 + 0.103544i \(0.0330184\pi\)
\(614\) 0 0
\(615\) −2969.59 −0.194708
\(616\) 0 0
\(617\) 19097.9 1.24611 0.623057 0.782177i \(-0.285891\pi\)
0.623057 + 0.782177i \(0.285891\pi\)
\(618\) 0 0
\(619\) −175.300 + 539.518i −0.0113827 + 0.0350324i −0.956587 0.291448i \(-0.905863\pi\)
0.945204 + 0.326481i \(0.105863\pi\)
\(620\) 0 0
\(621\) −2026.14 + 1472.08i −0.130928 + 0.0951246i
\(622\) 0 0
\(623\) −3690.76 11359.0i −0.237347 0.730479i
\(624\) 0 0
\(625\) 8288.73 + 6022.11i 0.530478 + 0.385415i
\(626\) 0 0
\(627\) 1859.39 5095.79i 0.118432 0.324571i
\(628\) 0 0
\(629\) −18610.8 13521.6i −1.17975 0.857139i
\(630\) 0 0
\(631\) 6912.81 + 21275.4i 0.436125 + 1.34225i 0.891930 + 0.452174i \(0.149351\pi\)
−0.455805 + 0.890080i \(0.650649\pi\)
\(632\) 0 0
\(633\) −2074.17 + 1506.97i −0.130238 + 0.0946237i
\(634\) 0 0
\(635\) −3654.14 + 11246.3i −0.228362 + 0.702827i
\(636\) 0 0
\(637\) −310.433 −0.0193089
\(638\) 0 0
\(639\) −22086.3 −1.36733
\(640\) 0 0
\(641\) 6830.28 21021.5i 0.420874 1.29532i −0.486017 0.873949i \(-0.661551\pi\)
0.906890 0.421367i \(-0.138449\pi\)
\(642\) 0 0
\(643\) 21723.5 15783.0i 1.33233 0.967996i 0.332643 0.943053i \(-0.392059\pi\)
0.999689 0.0249433i \(-0.00794053\pi\)
\(644\) 0 0
\(645\) 384.584 + 1183.63i 0.0234775 + 0.0722563i
\(646\) 0 0
\(647\) 24290.6 + 17648.2i 1.47598 + 1.07237i 0.978823 + 0.204708i \(0.0656245\pi\)
0.497162 + 0.867658i \(0.334375\pi\)
\(648\) 0 0
\(649\) 6946.60 4677.36i 0.420151 0.282901i
\(650\) 0 0
\(651\) −235.746 171.280i −0.0141930 0.0103118i
\(652\) 0 0
\(653\) −6407.37 19719.8i −0.383981 1.18177i −0.937217 0.348747i \(-0.886607\pi\)
0.553236 0.833025i \(-0.313393\pi\)
\(654\) 0 0
\(655\) 2916.31 2118.82i 0.173969 0.126396i
\(656\) 0 0
\(657\) −1918.45 + 5904.37i −0.113920 + 0.350611i
\(658\) 0 0
\(659\) −2565.72 −0.151664 −0.0758319 0.997121i \(-0.524161\pi\)
−0.0758319 + 0.997121i \(0.524161\pi\)
\(660\) 0 0
\(661\) 4419.10 0.260035 0.130017 0.991512i \(-0.458497\pi\)
0.130017 + 0.991512i \(0.458497\pi\)
\(662\) 0 0
\(663\) 421.729 1297.95i 0.0247038 0.0760304i
\(664\) 0 0
\(665\) 19933.1 14482.3i 1.16237 0.844508i
\(666\) 0 0
\(667\) −2075.73 6388.45i −0.120499 0.370858i
\(668\) 0 0
\(669\) −4135.63 3004.71i −0.239002 0.173645i
\(670\) 0 0
\(671\) 21323.0 + 16687.2i 1.22677 + 0.960061i
\(672\) 0 0
\(673\) −9292.42 6751.34i −0.532238 0.386694i 0.288956 0.957342i \(-0.406692\pi\)
−0.821194 + 0.570649i \(0.806692\pi\)
\(674\) 0 0
\(675\) −574.427 1767.90i −0.0327551 0.100810i
\(676\) 0 0
\(677\) −4870.99 + 3538.98i −0.276525 + 0.200907i −0.717400 0.696661i \(-0.754668\pi\)
0.440875 + 0.897568i \(0.354668\pi\)
\(678\) 0 0
\(679\) 7588.33 23354.5i 0.428885 1.31997i
\(680\) 0 0
\(681\) −2839.25 −0.159766
\(682\) 0 0
\(683\) 20854.2 1.16832 0.584162 0.811637i \(-0.301423\pi\)
0.584162 + 0.811637i \(0.301423\pi\)
\(684\) 0 0
\(685\) −6065.42 + 18667.4i −0.338318 + 1.04124i
\(686\) 0 0
\(687\) −1458.14 + 1059.40i −0.0809776 + 0.0588337i
\(688\) 0 0
\(689\) −2652.75 8164.33i −0.146679 0.451432i
\(690\) 0 0
\(691\) −26542.7 19284.4i −1.46126 1.06167i −0.983032 0.183436i \(-0.941278\pi\)
−0.478231 0.878234i \(-0.658722\pi\)
\(692\) 0 0
\(693\) −17017.5 608.059i −0.932815 0.0333308i
\(694\) 0 0
\(695\) −23524.2 17091.4i −1.28392 0.932824i
\(696\) 0 0
\(697\) −7400.86 22777.5i −0.402192 1.23782i
\(698\) 0 0
\(699\) 858.024 623.391i 0.0464284 0.0337322i
\(700\) 0 0
\(701\) −5177.08 + 15933.4i −0.278938 + 0.858484i 0.709212 + 0.704995i \(0.249051\pi\)
−0.988150 + 0.153489i \(0.950949\pi\)
\(702\) 0 0
\(703\) −41292.9 −2.21535
\(704\) 0 0
\(705\) −313.900 −0.0167690
\(706\) 0 0
\(707\) −8373.73 + 25771.7i −0.445441 + 1.37093i
\(708\) 0 0
\(709\) 15984.8 11613.6i 0.846716 0.615175i −0.0775226 0.996991i \(-0.524701\pi\)
0.924239 + 0.381815i \(0.124701\pi\)
\(710\) 0 0
\(711\) −5862.92 18044.2i −0.309250 0.951774i
\(712\) 0 0
\(713\) −575.940 418.445i −0.0302512 0.0219788i
\(714\) 0 0
\(715\) −1577.25 5517.38i −0.0824976 0.288585i
\(716\) 0 0
\(717\) 1711.82 + 1243.71i 0.0891620 + 0.0647800i
\(718\) 0 0
\(719\) −109.031 335.564i −0.00565533 0.0174053i 0.948189 0.317707i \(-0.102913\pi\)
−0.953844 + 0.300301i \(0.902913\pi\)
\(720\) 0 0
\(721\) 8581.17 6234.59i 0.443245 0.322036i
\(722\) 0 0
\(723\) 568.525 1749.74i 0.0292444 0.0900049i
\(724\) 0 0
\(725\) 4985.75 0.255401
\(726\) 0 0
\(727\) 28739.8 1.46616 0.733081 0.680141i \(-0.238082\pi\)
0.733081 + 0.680141i \(0.238082\pi\)
\(728\) 0 0
\(729\) −4676.14 + 14391.7i −0.237572 + 0.731173i
\(730\) 0 0
\(731\) −8120.26 + 5899.72i −0.410860 + 0.298507i
\(732\) 0 0
\(733\) −3810.12 11726.3i −0.191992 0.590890i −0.999999 0.00171673i \(-0.999454\pi\)
0.808007 0.589173i \(-0.200546\pi\)
\(734\) 0 0
\(735\) −150.936 109.661i −0.00757462 0.00550329i
\(736\) 0 0
\(737\) 5066.60 + 17723.5i 0.253230 + 0.885825i
\(738\) 0 0
\(739\) 13471.1 + 9787.31i 0.670557 + 0.487188i 0.870212 0.492678i \(-0.163982\pi\)
−0.199654 + 0.979866i \(0.563982\pi\)
\(740\) 0 0
\(741\) −757.009 2329.83i −0.0375296 0.115504i
\(742\) 0 0
\(743\) 16074.2 11678.6i 0.793681 0.576643i −0.115372 0.993322i \(-0.536806\pi\)
0.909054 + 0.416679i \(0.136806\pi\)
\(744\) 0 0
\(745\) −2438.29 + 7504.27i −0.119909 + 0.369041i
\(746\) 0 0
\(747\) 15280.9 0.748459
\(748\) 0 0
\(749\) 10131.7 0.494263
\(750\) 0 0
\(751\) 8639.71 26590.3i 0.419797 1.29200i −0.488092 0.872792i \(-0.662307\pi\)
0.907889 0.419211i \(-0.137693\pi\)
\(752\) 0 0
\(753\) −4284.93 + 3113.19i −0.207373 + 0.150665i
\(754\) 0 0
\(755\) 9519.70 + 29298.6i 0.458884 + 1.41230i
\(756\) 0 0
\(757\) 20285.0 + 14737.9i 0.973939 + 0.707608i 0.956346 0.292237i \(-0.0943996\pi\)
0.0175931 + 0.999845i \(0.494400\pi\)
\(758\) 0 0
\(759\) 1725.32 + 61.6481i 0.0825100 + 0.00294820i
\(760\) 0 0
\(761\) 6838.51 + 4968.47i 0.325750 + 0.236671i 0.738625 0.674116i \(-0.235475\pi\)
−0.412875 + 0.910788i \(0.635475\pi\)
\(762\) 0 0
\(763\) −912.227 2807.55i −0.0432829 0.133211i
\(764\) 0 0
\(765\) −15989.5 + 11617.0i −0.755687 + 0.549039i
\(766\) 0 0
\(767\) 1168.71 3596.93i 0.0550193 0.169332i
\(768\) 0 0
\(769\) 1122.88 0.0526556 0.0263278 0.999653i \(-0.491619\pi\)
0.0263278 + 0.999653i \(0.491619\pi\)
\(770\) 0 0
\(771\) −3166.12 −0.147893
\(772\) 0 0
\(773\) −24.7372 + 76.1332i −0.00115101 + 0.00354246i −0.951630 0.307245i \(-0.900593\pi\)
0.950479 + 0.310788i \(0.100593\pi\)
\(774\) 0 0
\(775\) 427.482 310.584i 0.0198137 0.0143955i
\(776\) 0 0
\(777\) −1662.33 5116.14i −0.0767515 0.236217i
\(778\) 0 0
\(779\) −34779.6 25268.9i −1.59963 1.16220i
\(780\) 0 0
\(781\) 24477.4 + 19155.8i 1.12147 + 0.877654i
\(782\) 0 0
\(783\) 6538.68 + 4750.63i 0.298433 + 0.216825i
\(784\) 0 0
\(785\) 3260.68 + 10035.3i 0.148253 + 0.456275i
\(786\) 0 0
\(787\) −9210.19 + 6691.59i −0.417164 + 0.303087i −0.776496 0.630123i \(-0.783005\pi\)
0.359332 + 0.933210i \(0.383005\pi\)
\(788\) 0 0
\(789\) −2007.62 + 6178.81i −0.0905868 + 0.278798i
\(790\) 0 0
\(791\) −37633.5 −1.69165
\(792\) 0 0
\(793\) 12228.0 0.547578
\(794\) 0 0
\(795\) 1594.28 4906.68i 0.0711235 0.218896i
\(796\) 0 0
\(797\) −2453.26 + 1782.40i −0.109033 + 0.0792168i −0.640965 0.767570i \(-0.721466\pi\)
0.531933 + 0.846786i \(0.321466\pi\)
\(798\) 0 0
\(799\) −782.307 2407.69i −0.0346383 0.106606i
\(800\) 0 0
\(801\) 13912.9 + 10108.3i 0.613718 + 0.445892i
\(802\) 0 0
\(803\) 7247.07 4879.68i 0.318485 0.214446i
\(804\) 0 0
\(805\) 6344.07 + 4609.24i 0.277763 + 0.201807i
\(806\) 0 0
\(807\) 580.200 + 1785.67i 0.0253085 + 0.0778917i
\(808\) 0 0
\(809\) −26835.1 + 19496.8i −1.16622 + 0.847308i −0.990551 0.137142i \(-0.956208\pi\)
−0.175668 + 0.984450i \(0.556208\pi\)
\(810\) 0 0
\(811\) 3670.38 11296.3i 0.158920 0.489107i −0.839617 0.543180i \(-0.817220\pi\)
0.998537 + 0.0540728i \(0.0172203\pi\)
\(812\) 0 0
\(813\) −7975.62 −0.344056
\(814\) 0 0
\(815\) 30001.3 1.28945
\(816\) 0 0
\(817\) −5567.53 + 17135.1i −0.238413 + 0.733758i
\(818\) 0 0
\(819\) −6221.50 + 4520.18i −0.265442 + 0.192855i
\(820\) 0 0
\(821\) −10457.9 32186.1i −0.444560 1.36821i −0.882966 0.469437i \(-0.844457\pi\)
0.438406 0.898777i \(-0.355543\pi\)
\(822\) 0 0
\(823\) −13092.9 9512.58i −0.554546 0.402901i 0.274913 0.961469i \(-0.411351\pi\)
−0.829459 + 0.558568i \(0.811351\pi\)
\(824\) 0 0
\(825\) −439.242 + 1203.77i −0.0185363 + 0.0508000i
\(826\) 0 0
\(827\) −2633.83 1913.59i −0.110747 0.0804621i 0.531034 0.847351i \(-0.321804\pi\)
−0.641780 + 0.766889i \(0.721804\pi\)
\(828\) 0 0
\(829\) −12870.8 39612.4i −0.539231 1.65958i −0.734324 0.678799i \(-0.762501\pi\)
0.195093 0.980785i \(-0.437499\pi\)
\(830\) 0 0
\(831\) 182.654 132.706i 0.00762480 0.00553974i
\(832\) 0 0
\(833\) 464.965 1431.02i 0.0193398 0.0595219i
\(834\) 0 0
\(835\) −1292.45 −0.0535654
\(836\) 0 0
\(837\) 856.570 0.0353732
\(838\) 0 0
\(839\) −12128.9 + 37329.0i −0.499091 + 1.53604i 0.311393 + 0.950281i \(0.399205\pi\)
−0.810483 + 0.585762i \(0.800795\pi\)
\(840\) 0 0
\(841\) 2193.60 1593.74i 0.0899421 0.0653468i
\(842\) 0 0
\(843\) −217.722 670.080i −0.00889532 0.0273770i
\(844\) 0 0
\(845\) 14871.6 + 10804.8i 0.605442 + 0.439879i
\(846\) 0 0
\(847\) 18332.4 + 15433.4i 0.743695 + 0.626089i
\(848\) 0 0
\(849\) 249.165 + 181.029i 0.0100722 + 0.00731789i
\(850\) 0 0
\(851\) −4061.17 12499.0i −0.163590 0.503478i
\(852\) 0 0
\(853\) −7157.60 + 5200.30i −0.287306 + 0.208740i −0.722098 0.691791i \(-0.756822\pi\)
0.434792 + 0.900531i \(0.356822\pi\)
\(854\) 0 0
\(855\) −10962.9 + 33740.4i −0.438507 + 1.34959i
\(856\) 0 0
\(857\) −42923.0 −1.71088 −0.855439 0.517903i \(-0.826713\pi\)
−0.855439 + 0.517903i \(0.826713\pi\)
\(858\) 0 0
\(859\) 36820.6 1.46252 0.731259 0.682100i \(-0.238933\pi\)
0.731259 + 0.682100i \(0.238933\pi\)
\(860\) 0 0
\(861\) 1730.65 5326.40i 0.0685023 0.210828i
\(862\) 0 0
\(863\) −32803.2 + 23832.9i −1.29390 + 0.940073i −0.999876 0.0157257i \(-0.994994\pi\)
−0.294023 + 0.955798i \(0.594994\pi\)
\(864\) 0 0
\(865\) −3825.01 11772.2i −0.150352 0.462735i
\(866\) 0 0
\(867\) 1228.88 + 892.836i 0.0481373 + 0.0349738i
\(868\) 0 0
\(869\) −9152.35 + 25082.7i −0.357275 + 0.979138i
\(870\) 0 0
\(871\) 6734.87 + 4893.17i 0.262001 + 0.190355i
\(872\) 0 0
\(873\) 10926.3 + 33627.6i 0.423595 + 1.30369i
\(874\) 0 0
\(875\) −22090.5 + 16049.7i −0.853482 + 0.620091i
\(876\) 0 0
\(877\) −13922.4 + 42848.7i −0.536061 + 1.64982i 0.205286 + 0.978702i \(0.434188\pi\)
−0.741346 + 0.671123i \(0.765812\pi\)
\(878\) 0 0
\(879\) −6107.53 −0.234359
\(880\) 0 0
\(881\) 26845.7 1.02662 0.513312 0.858202i \(-0.328418\pi\)
0.513312 + 0.858202i \(0.328418\pi\)
\(882\) 0 0
\(883\) −13997.0 + 43078.2i −0.533448 + 1.64179i 0.213529 + 0.976937i \(0.431504\pi\)
−0.746978 + 0.664849i \(0.768496\pi\)
\(884\) 0 0
\(885\) 1838.87 1336.01i 0.0698450 0.0507453i
\(886\) 0 0
\(887\) −690.979 2126.62i −0.0261565 0.0805014i 0.937126 0.348991i \(-0.113476\pi\)
−0.963283 + 0.268489i \(0.913476\pi\)
\(888\) 0 0
\(889\) −18042.3 13108.5i −0.680674 0.494538i
\(890\) 0 0
\(891\) 19459.0 13102.4i 0.731652 0.492644i
\(892\) 0 0
\(893\) −3676.38 2671.04i −0.137766 0.100093i
\(894\) 0 0
\(895\) 12123.5 + 37312.1i 0.452785 + 1.39353i
\(896\) 0 0
\(897\) 630.767 458.279i 0.0234790 0.0170585i
\(898\) 0 0
\(899\) −709.943 + 2184.98i −0.0263381 + 0.0810602i
\(900\) 0 0
\(901\) 41608.8 1.53850
\(902\) 0 0
\(903\) −2347.15 −0.0864985
\(904\) 0 0
\(905\) 4682.86 14412.4i 0.172004 0.529374i
\(906\) 0 0
\(907\) −4374.73 + 3178.42i −0.160155 + 0.116359i −0.664976 0.746865i \(-0.731558\pi\)
0.504821 + 0.863224i \(0.331558\pi\)
\(908\) 0 0
\(909\) −12057.2 37108.1i −0.439946 1.35401i
\(910\) 0 0
\(911\) −3590.08 2608.35i −0.130565 0.0948610i 0.520586 0.853809i \(-0.325714\pi\)
−0.651151 + 0.758948i \(0.725714\pi\)
\(912\) 0 0
\(913\) −16935.2 13253.3i −0.613881 0.480418i
\(914\) 0 0
\(915\) 5945.39 + 4319.58i 0.214807 + 0.156066i
\(916\) 0 0
\(917\) 2100.83 + 6465.67i 0.0756547 + 0.232841i
\(918\) 0 0
\(919\) 27843.2 20229.3i 0.999416 0.726118i 0.0374533 0.999298i \(-0.488075\pi\)
0.961963 + 0.273180i \(0.0880754\pi\)
\(920\) 0 0
\(921\) −400.355 + 1232.17i −0.0143237 + 0.0440839i
\(922\) 0 0
\(923\) 14037.0 0.500576
\(924\) 0 0
\(925\) 9754.59 0.346734
\(926\) 0 0
\(927\) −4719.51 + 14525.2i −0.167216 + 0.514638i
\(928\) 0 0
\(929\) −18848.0 + 13693.9i −0.665645 + 0.483619i −0.868565 0.495576i \(-0.834957\pi\)
0.202920 + 0.979195i \(0.434957\pi\)
\(930\) 0 0
\(931\) −834.618 2568.69i −0.0293808 0.0904247i
\(932\) 0 0
\(933\) 8163.81 + 5931.36i 0.286464 + 0.208129i
\(934\) 0 0
\(935\) 27796.1 + 993.194i 0.972224 + 0.0347389i
\(936\) 0 0
\(937\) −16473.0 11968.4i −0.574334 0.417278i 0.262343 0.964975i \(-0.415505\pi\)
−0.836677 + 0.547697i \(0.815505\pi\)
\(938\) 0 0
\(939\) −2696.72 8299.66i −0.0937212 0.288444i
\(940\) 0 0
\(941\) −4302.50 + 3125.95i −0.149051 + 0.108292i −0.659812 0.751431i \(-0.729364\pi\)
0.510760 + 0.859723i \(0.329364\pi\)
\(942\) 0 0
\(943\) 4228.07 13012.7i 0.146007 0.449365i
\(944\) 0 0
\(945\) −9435.25 −0.324792
\(946\) 0 0
\(947\) 11908.6 0.408636 0.204318 0.978905i \(-0.434502\pi\)
0.204318 + 0.978905i \(0.434502\pi\)
\(948\) 0 0
\(949\) 1219.27 3752.52i 0.0417061 0.128358i
\(950\) 0 0
\(951\) −6011.37 + 4367.52i −0.204976 + 0.148924i
\(952\) 0 0
\(953\) −5024.32 15463.3i −0.170780 0.525607i 0.828635 0.559789i \(-0.189118\pi\)
−0.999416 + 0.0341812i \(0.989118\pi\)
\(954\) 0 0
\(955\) −16730.6 12155.5i −0.566900 0.411877i
\(956\) 0 0
\(957\) −1531.36 5356.85i −0.0517261 0.180943i
\(958\) 0 0
\(959\) −29948.0 21758.5i −1.00842 0.732657i
\(960\) 0 0
\(961\) −9130.68 28101.4i −0.306491 0.943283i
\(962\) 0 0
\(963\) −11802.2 + 8574.83i −0.394935 + 0.286937i
\(964\) 0 0
\(965\) 6116.94 18826.0i 0.204053 0.628011i
\(966\) 0 0
\(967\) −11751.0 −0.390783 −0.195392 0.980725i \(-0.562598\pi\)
−0.195392 + 0.980725i \(0.562598\pi\)
\(968\) 0 0
\(969\) 11873.8 0.393644
\(970\) 0 0
\(971\) −6673.15 + 20537.8i −0.220547 + 0.678775i 0.778166 + 0.628059i \(0.216150\pi\)
−0.998713 + 0.0507160i \(0.983850\pi\)
\(972\) 0 0
\(973\) 44365.7 32233.5i 1.46177 1.06203i
\(974\) 0 0
\(975\) 178.828 + 550.375i 0.00587391 + 0.0180780i
\(976\) 0 0
\(977\) −18970.3 13782.7i −0.621201 0.451329i 0.232140 0.972682i \(-0.425427\pi\)
−0.853341 + 0.521354i \(0.825427\pi\)
\(978\) 0 0
\(979\) −6652.03 23269.5i −0.217160 0.759648i
\(980\) 0 0
\(981\) 3438.78 + 2498.42i 0.111918 + 0.0813133i
\(982\) 0 0
\(983\) 3980.21 + 12249.8i 0.129144 + 0.397465i 0.994633 0.103462i \(-0.0329922\pi\)
−0.865489 + 0.500928i \(0.832992\pi\)
\(984\) 0 0
\(985\) −35361.4 + 25691.6i −1.14387 + 0.831067i
\(986\) 0 0
\(987\) 182.938 563.027i 0.00589969 0.0181574i
\(988\) 0 0
\(989\) −5734.20 −0.184365
\(990\) 0 0
\(991\) −54990.5 −1.76270 −0.881348 0.472468i \(-0.843363\pi\)
−0.881348 + 0.472468i \(0.843363\pi\)
\(992\) 0 0
\(993\) −1205.08 + 3708.85i −0.0385116 + 0.118527i
\(994\) 0 0
\(995\) 27180.3 19747.6i 0.866004 0.629188i
\(996\) 0 0
\(997\) 8792.29 + 27059.9i 0.279293 + 0.859574i 0.988052 + 0.154123i \(0.0492553\pi\)
−0.708759 + 0.705451i \(0.750745\pi\)
\(998\) 0 0
\(999\) 12792.9 + 9294.58i 0.405155 + 0.294362i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.e.81.2 16
4.3 odd 2 88.4.i.a.81.3 yes 16
11.3 even 5 inner 176.4.m.e.113.2 16
11.5 even 5 1936.4.a.bw.1.4 8
11.6 odd 10 1936.4.a.bv.1.4 8
44.3 odd 10 88.4.i.a.25.3 16
44.27 odd 10 968.4.a.n.1.5 8
44.39 even 10 968.4.a.o.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.25.3 16 44.3 odd 10
88.4.i.a.81.3 yes 16 4.3 odd 2
176.4.m.e.81.2 16 1.1 even 1 trivial
176.4.m.e.113.2 16 11.3 even 5 inner
968.4.a.n.1.5 8 44.27 odd 10
968.4.a.o.1.5 8 44.39 even 10
1936.4.a.bv.1.4 8 11.6 odd 10
1936.4.a.bw.1.4 8 11.5 even 5