Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 176.m (of order , degree , not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 88) |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | −5.04830 | − | 3.66781i | 0 | 2.49068 | − | 7.66551i | 0 | −20.6812 | + | 15.0258i | 0 | 3.68910 | + | 11.3539i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.2 | 0 | −4.57022 | − | 3.32046i | 0 | −3.76204 | + | 11.5784i | 0 | 27.3815 | − | 19.8938i | 0 | 1.51800 | + | 4.67192i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 0 | 1.87500 | + | 1.36227i | 0 | 1.88546 | − | 5.80286i | 0 | 3.69974 | − | 2.68802i | 0 | −6.68360 | − | 20.5700i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.4 | 0 | 6.31647 | + | 4.58918i | 0 | −3.65918 | + | 11.2618i | 0 | −7.70898 | + | 5.60090i | 0 | 10.4937 | + | 32.2964i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.1 | 0 | −1.71205 | + | 5.26914i | 0 | 5.02952 | − | 3.65416i | 0 | 3.12006 | + | 9.60257i | 0 | −2.98931 | − | 2.17186i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.2 | 0 | −0.320520 | + | 0.986460i | 0 | −7.72334 | + | 5.61133i | 0 | −5.56367 | − | 17.1232i | 0 | 20.9731 | + | 15.2378i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.3 | 0 | 1.76631 | − | 5.43615i | 0 | 16.1524 | − | 11.7354i | 0 | −1.37031 | − | 4.21739i | 0 | −4.58836 | − | 3.33364i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.4 | 0 | 2.19331 | − | 6.75031i | 0 | −10.9135 | + | 7.92910i | 0 | 7.62293 | + | 23.4610i | 0 | −18.9126 | − | 13.7408i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
97.1 | 0 | −5.04830 | + | 3.66781i | 0 | 2.49068 | + | 7.66551i | 0 | −20.6812 | − | 15.0258i | 0 | 3.68910 | − | 11.3539i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
97.2 | 0 | −4.57022 | + | 3.32046i | 0 | −3.76204 | − | 11.5784i | 0 | 27.3815 | + | 19.8938i | 0 | 1.51800 | − | 4.67192i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
97.3 | 0 | 1.87500 | − | 1.36227i | 0 | 1.88546 | + | 5.80286i | 0 | 3.69974 | + | 2.68802i | 0 | −6.68360 | + | 20.5700i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
97.4 | 0 | 6.31647 | − | 4.58918i | 0 | −3.65918 | − | 11.2618i | 0 | −7.70898 | − | 5.60090i | 0 | 10.4937 | − | 32.2964i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
113.1 | 0 | −1.71205 | − | 5.26914i | 0 | 5.02952 | + | 3.65416i | 0 | 3.12006 | − | 9.60257i | 0 | −2.98931 | + | 2.17186i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
113.2 | 0 | −0.320520 | − | 0.986460i | 0 | −7.72334 | − | 5.61133i | 0 | −5.56367 | + | 17.1232i | 0 | 20.9731 | − | 15.2378i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
113.3 | 0 | 1.76631 | + | 5.43615i | 0 | 16.1524 | + | 11.7354i | 0 | −1.37031 | + | 4.21739i | 0 | −4.58836 | + | 3.33364i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
113.4 | 0 | 2.19331 | + | 6.75031i | 0 | −10.9135 | − | 7.92910i | 0 | 7.62293 | − | 23.4610i | 0 | −18.9126 | + | 13.7408i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 176.4.m.e | 16 | |
4.b | odd | 2 | 1 | 88.4.i.a | ✓ | 16 | |
11.c | even | 5 | 1 | inner | 176.4.m.e | 16 | |
11.c | even | 5 | 1 | 1936.4.a.bw | 8 | ||
11.d | odd | 10 | 1 | 1936.4.a.bv | 8 | ||
44.g | even | 10 | 1 | 968.4.a.o | 8 | ||
44.h | odd | 10 | 1 | 88.4.i.a | ✓ | 16 | |
44.h | odd | 10 | 1 | 968.4.a.n | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.4.i.a | ✓ | 16 | 4.b | odd | 2 | 1 | |
88.4.i.a | ✓ | 16 | 44.h | odd | 10 | 1 | |
176.4.m.e | 16 | 1.a | even | 1 | 1 | trivial | |
176.4.m.e | 16 | 11.c | even | 5 | 1 | inner | |
968.4.a.n | 8 | 44.h | odd | 10 | 1 | ||
968.4.a.o | 8 | 44.g | even | 10 | 1 | ||
1936.4.a.bv | 8 | 11.d | odd | 10 | 1 | ||
1936.4.a.bw | 8 | 11.c | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .