Properties

Label 176.4.m.e.49.1
Level $176$
Weight $4$
Character 176.49
Analytic conductor $10.384$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 49.1
Root \(-5.58272 + 4.05608i\) of defining polynomial
Character \(\chi\) \(=\) 176.49
Dual form 176.4.m.e.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.04830 - 3.66781i) q^{3} +(2.49068 - 7.66551i) q^{5} +(-20.6812 + 15.0258i) q^{7} +(3.68910 + 11.3539i) q^{9} +(-8.40596 - 35.5013i) q^{11} +(11.6665 + 35.9057i) q^{13} +(-40.6893 + 29.5625i) q^{15} +(-12.5673 + 38.6783i) q^{17} +(92.8556 + 67.4635i) q^{19} +159.517 q^{21} -40.3517 q^{23} +(48.5705 + 35.2886i) q^{25} +(-29.0434 + 89.3864i) q^{27} +(-77.0648 + 55.9909i) q^{29} +(67.2604 + 207.006i) q^{31} +(-87.7760 + 210.053i) q^{33} +(63.6701 + 195.957i) q^{35} +(-205.488 + 149.296i) q^{37} +(72.7993 - 224.053i) q^{39} +(-299.830 - 217.839i) q^{41} +453.237 q^{43} +96.2217 q^{45} +(-246.505 - 179.096i) q^{47} +(95.9460 - 295.292i) q^{49} +(205.308 - 149.165i) q^{51} +(81.3303 + 250.309i) q^{53} +(-293.072 - 23.9861i) q^{55} +(-221.320 - 681.153i) q^{57} +(-21.4573 + 15.5897i) q^{59} +(81.1994 - 249.906i) q^{61} +(-246.896 - 179.381i) q^{63} +304.293 q^{65} -956.232 q^{67} +(203.708 + 148.002i) q^{69} +(125.329 - 385.722i) q^{71} +(-451.297 + 327.886i) q^{73} +(-115.767 - 356.295i) q^{75} +(707.280 + 607.904i) q^{77} +(286.804 + 882.691i) q^{79} +(735.243 - 534.186i) q^{81} +(115.095 - 354.225i) q^{83} +(265.187 + 192.670i) q^{85} +594.411 q^{87} -1382.64 q^{89} +(-780.789 - 567.276i) q^{91} +(419.708 - 1291.73i) q^{93} +(748.416 - 543.756i) q^{95} +(-302.720 - 931.677i) q^{97} +(372.067 - 226.408i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} - q^{5} + 13 q^{7} + 7 q^{9} - 83 q^{11} + 69 q^{13} - 93 q^{15} - 217 q^{17} - 126 q^{19} + 34 q^{21} + 92 q^{23} + 307 q^{25} - 158 q^{27} - 553 q^{29} - 205 q^{31} - 198 q^{33} - 7 q^{35}+ \cdots + 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.04830 3.66781i −0.971547 0.705870i −0.0157431 0.999876i \(-0.505011\pi\)
−0.955804 + 0.294006i \(0.905011\pi\)
\(4\) 0 0
\(5\) 2.49068 7.66551i 0.222773 0.685624i −0.775737 0.631056i \(-0.782622\pi\)
0.998510 0.0545681i \(-0.0173782\pi\)
\(6\) 0 0
\(7\) −20.6812 + 15.0258i −1.11668 + 0.811317i −0.983703 0.179802i \(-0.942454\pi\)
−0.132979 + 0.991119i \(0.542454\pi\)
\(8\) 0 0
\(9\) 3.68910 + 11.3539i 0.136633 + 0.420514i
\(10\) 0 0
\(11\) −8.40596 35.5013i −0.230408 0.973094i
\(12\) 0 0
\(13\) 11.6665 + 35.9057i 0.248900 + 0.766035i 0.994971 + 0.100168i \(0.0319380\pi\)
−0.746071 + 0.665867i \(0.768062\pi\)
\(14\) 0 0
\(15\) −40.6893 + 29.5625i −0.700395 + 0.508867i
\(16\) 0 0
\(17\) −12.5673 + 38.6783i −0.179296 + 0.551815i −0.999804 0.0198201i \(-0.993691\pi\)
0.820508 + 0.571635i \(0.193691\pi\)
\(18\) 0 0
\(19\) 92.8556 + 67.4635i 1.12119 + 0.814589i 0.984388 0.176010i \(-0.0563190\pi\)
0.136798 + 0.990599i \(0.456319\pi\)
\(20\) 0 0
\(21\) 159.517 1.65759
\(22\) 0 0
\(23\) −40.3517 −0.365823 −0.182911 0.983129i \(-0.558552\pi\)
−0.182911 + 0.983129i \(0.558552\pi\)
\(24\) 0 0
\(25\) 48.5705 + 35.2886i 0.388564 + 0.282309i
\(26\) 0 0
\(27\) −29.0434 + 89.3864i −0.207015 + 0.637127i
\(28\) 0 0
\(29\) −77.0648 + 55.9909i −0.493468 + 0.358526i −0.806517 0.591211i \(-0.798650\pi\)
0.313048 + 0.949737i \(0.398650\pi\)
\(30\) 0 0
\(31\) 67.2604 + 207.006i 0.389688 + 1.19934i 0.933022 + 0.359819i \(0.117162\pi\)
−0.543334 + 0.839516i \(0.682838\pi\)
\(32\) 0 0
\(33\) −87.7760 + 210.053i −0.463025 + 1.10804i
\(34\) 0 0
\(35\) 63.6701 + 195.957i 0.307492 + 0.946363i
\(36\) 0 0
\(37\) −205.488 + 149.296i −0.913028 + 0.663354i −0.941779 0.336233i \(-0.890847\pi\)
0.0287508 + 0.999587i \(0.490847\pi\)
\(38\) 0 0
\(39\) 72.7993 224.053i 0.298903 0.919929i
\(40\) 0 0
\(41\) −299.830 217.839i −1.14209 0.829774i −0.154677 0.987965i \(-0.549434\pi\)
−0.987409 + 0.158191i \(0.949434\pi\)
\(42\) 0 0
\(43\) 453.237 1.60740 0.803698 0.595038i \(-0.202863\pi\)
0.803698 + 0.595038i \(0.202863\pi\)
\(44\) 0 0
\(45\) 96.2217 0.318753
\(46\) 0 0
\(47\) −246.505 179.096i −0.765030 0.555827i 0.135419 0.990788i \(-0.456762\pi\)
−0.900449 + 0.434961i \(0.856762\pi\)
\(48\) 0 0
\(49\) 95.9460 295.292i 0.279726 0.860908i
\(50\) 0 0
\(51\) 205.308 149.165i 0.563704 0.409555i
\(52\) 0 0
\(53\) 81.3303 + 250.309i 0.210785 + 0.648728i 0.999426 + 0.0338748i \(0.0107848\pi\)
−0.788642 + 0.614853i \(0.789215\pi\)
\(54\) 0 0
\(55\) −293.072 23.9861i −0.718505 0.0588052i
\(56\) 0 0
\(57\) −221.320 681.153i −0.514290 1.58282i
\(58\) 0 0
\(59\) −21.4573 + 15.5897i −0.0473476 + 0.0344000i −0.611207 0.791471i \(-0.709316\pi\)
0.563860 + 0.825871i \(0.309316\pi\)
\(60\) 0 0
\(61\) 81.1994 249.906i 0.170435 0.524544i −0.828961 0.559307i \(-0.811067\pi\)
0.999396 + 0.0347624i \(0.0110674\pi\)
\(62\) 0 0
\(63\) −246.896 179.381i −0.493746 0.358728i
\(64\) 0 0
\(65\) 304.293 0.580660
\(66\) 0 0
\(67\) −956.232 −1.74362 −0.871808 0.489847i \(-0.837053\pi\)
−0.871808 + 0.489847i \(0.837053\pi\)
\(68\) 0 0
\(69\) 203.708 + 148.002i 0.355414 + 0.258223i
\(70\) 0 0
\(71\) 125.329 385.722i 0.209490 0.644744i −0.790009 0.613095i \(-0.789924\pi\)
0.999499 0.0316489i \(-0.0100758\pi\)
\(72\) 0 0
\(73\) −451.297 + 327.886i −0.723566 + 0.525702i −0.887522 0.460766i \(-0.847575\pi\)
0.163955 + 0.986468i \(0.447575\pi\)
\(74\) 0 0
\(75\) −115.767 356.295i −0.178235 0.548552i
\(76\) 0 0
\(77\) 707.280 + 607.904i 1.04678 + 0.899702i
\(78\) 0 0
\(79\) 286.804 + 882.691i 0.408455 + 1.25709i 0.917976 + 0.396637i \(0.129823\pi\)
−0.509521 + 0.860458i \(0.670177\pi\)
\(80\) 0 0
\(81\) 735.243 534.186i 1.00856 0.732765i
\(82\) 0 0
\(83\) 115.095 354.225i 0.152208 0.468449i −0.845659 0.533723i \(-0.820792\pi\)
0.997867 + 0.0652746i \(0.0207923\pi\)
\(84\) 0 0
\(85\) 265.187 + 192.670i 0.338395 + 0.245859i
\(86\) 0 0
\(87\) 594.411 0.732500
\(88\) 0 0
\(89\) −1382.64 −1.64673 −0.823366 0.567511i \(-0.807906\pi\)
−0.823366 + 0.567511i \(0.807906\pi\)
\(90\) 0 0
\(91\) −780.789 567.276i −0.899438 0.653480i
\(92\) 0 0
\(93\) 419.708 1291.73i 0.467975 1.44028i
\(94\) 0 0
\(95\) 748.416 543.756i 0.808272 0.587244i
\(96\) 0 0
\(97\) −302.720 931.677i −0.316872 0.975232i −0.974977 0.222306i \(-0.928642\pi\)
0.658105 0.752926i \(-0.271358\pi\)
\(98\) 0 0
\(99\) 372.067 226.408i 0.377719 0.229847i
\(100\) 0 0
\(101\) 569.259 + 1752.00i 0.560825 + 1.72604i 0.680041 + 0.733174i \(0.261962\pi\)
−0.119216 + 0.992868i \(0.538038\pi\)
\(102\) 0 0
\(103\) −826.760 + 600.677i −0.790904 + 0.574625i −0.908232 0.418468i \(-0.862567\pi\)
0.117328 + 0.993093i \(0.462567\pi\)
\(104\) 0 0
\(105\) 397.305 1222.78i 0.369266 1.13649i
\(106\) 0 0
\(107\) −1052.81 764.910i −0.951203 0.691090i −0.000112216 1.00000i \(-0.500036\pi\)
−0.951091 + 0.308910i \(0.900036\pi\)
\(108\) 0 0
\(109\) −529.422 −0.465224 −0.232612 0.972570i \(-0.574727\pi\)
−0.232612 + 0.972570i \(0.574727\pi\)
\(110\) 0 0
\(111\) 1584.96 1.35529
\(112\) 0 0
\(113\) 617.494 + 448.635i 0.514061 + 0.373487i 0.814362 0.580357i \(-0.197087\pi\)
−0.300301 + 0.953845i \(0.597087\pi\)
\(114\) 0 0
\(115\) −100.503 + 309.317i −0.0814953 + 0.250817i
\(116\) 0 0
\(117\) −364.631 + 264.920i −0.288121 + 0.209332i
\(118\) 0 0
\(119\) −321.264 988.748i −0.247481 0.761667i
\(120\) 0 0
\(121\) −1189.68 + 596.845i −0.893824 + 0.448418i
\(122\) 0 0
\(123\) 714.640 + 2199.44i 0.523877 + 1.61233i
\(124\) 0 0
\(125\) 1206.56 876.619i 0.863346 0.627257i
\(126\) 0 0
\(127\) −478.822 + 1473.66i −0.334556 + 1.02966i 0.632384 + 0.774655i \(0.282076\pi\)
−0.966940 + 0.255003i \(0.917924\pi\)
\(128\) 0 0
\(129\) −2288.08 1662.39i −1.56166 1.13461i
\(130\) 0 0
\(131\) −224.401 −0.149664 −0.0748322 0.997196i \(-0.523842\pi\)
−0.0748322 + 0.997196i \(0.523842\pi\)
\(132\) 0 0
\(133\) −2934.06 −1.91290
\(134\) 0 0
\(135\) 612.855 + 445.265i 0.390712 + 0.283869i
\(136\) 0 0
\(137\) −645.535 + 1986.75i −0.402568 + 1.23898i 0.520341 + 0.853958i \(0.325805\pi\)
−0.922909 + 0.385018i \(0.874195\pi\)
\(138\) 0 0
\(139\) 1357.75 986.463i 0.828510 0.601947i −0.0906277 0.995885i \(-0.528887\pi\)
0.919137 + 0.393937i \(0.128887\pi\)
\(140\) 0 0
\(141\) 587.541 + 1808.26i 0.350921 + 1.08002i
\(142\) 0 0
\(143\) 1176.63 715.996i 0.688075 0.418704i
\(144\) 0 0
\(145\) 237.255 + 730.196i 0.135883 + 0.418204i
\(146\) 0 0
\(147\) −1567.44 + 1138.81i −0.879456 + 0.638962i
\(148\) 0 0
\(149\) 361.318 1112.02i 0.198660 0.611412i −0.801254 0.598324i \(-0.795834\pi\)
0.999914 0.0130885i \(-0.00416632\pi\)
\(150\) 0 0
\(151\) −1538.93 1118.10i −0.829381 0.602580i 0.0900033 0.995941i \(-0.471312\pi\)
−0.919384 + 0.393361i \(0.871312\pi\)
\(152\) 0 0
\(153\) −485.511 −0.256544
\(154\) 0 0
\(155\) 1754.33 0.909105
\(156\) 0 0
\(157\) 2778.77 + 2018.90i 1.41255 + 1.02628i 0.992946 + 0.118570i \(0.0378309\pi\)
0.419604 + 0.907707i \(0.362169\pi\)
\(158\) 0 0
\(159\) 507.505 1561.94i 0.253131 0.779056i
\(160\) 0 0
\(161\) 834.524 606.317i 0.408507 0.296798i
\(162\) 0 0
\(163\) 971.234 + 2989.15i 0.466705 + 1.43637i 0.856825 + 0.515607i \(0.172433\pi\)
−0.390120 + 0.920764i \(0.627567\pi\)
\(164\) 0 0
\(165\) 1391.54 + 1196.02i 0.656553 + 0.564303i
\(166\) 0 0
\(167\) 1063.30 + 3272.51i 0.492700 + 1.51637i 0.820511 + 0.571631i \(0.193689\pi\)
−0.327811 + 0.944743i \(0.606311\pi\)
\(168\) 0 0
\(169\) 624.297 453.578i 0.284159 0.206454i
\(170\) 0 0
\(171\) −423.420 + 1303.15i −0.189355 + 0.582775i
\(172\) 0 0
\(173\) 3235.74 + 2350.91i 1.42202 + 1.03316i 0.991434 + 0.130605i \(0.0416920\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(174\) 0 0
\(175\) −1534.74 −0.662944
\(176\) 0 0
\(177\) 165.503 0.0702823
\(178\) 0 0
\(179\) −1799.22 1307.21i −0.751285 0.545841i 0.144940 0.989440i \(-0.453701\pi\)
−0.896225 + 0.443600i \(0.853701\pi\)
\(180\) 0 0
\(181\) 279.277 859.526i 0.114688 0.352973i −0.877194 0.480136i \(-0.840587\pi\)
0.991882 + 0.127163i \(0.0405872\pi\)
\(182\) 0 0
\(183\) −1326.53 + 963.778i −0.535845 + 0.389314i
\(184\) 0 0
\(185\) 632.625 + 1947.02i 0.251413 + 0.773771i
\(186\) 0 0
\(187\) 1478.77 + 121.028i 0.578279 + 0.0473286i
\(188\) 0 0
\(189\) −742.448 2285.02i −0.285742 0.879422i
\(190\) 0 0
\(191\) −2255.20 + 1638.50i −0.854349 + 0.620721i −0.926342 0.376685i \(-0.877064\pi\)
0.0719930 + 0.997405i \(0.477064\pi\)
\(192\) 0 0
\(193\) 307.424 946.155i 0.114657 0.352879i −0.877218 0.480092i \(-0.840603\pi\)
0.991875 + 0.127213i \(0.0406032\pi\)
\(194\) 0 0
\(195\) −1536.16 1116.09i −0.564138 0.409870i
\(196\) 0 0
\(197\) −2774.75 −1.00352 −0.501758 0.865008i \(-0.667313\pi\)
−0.501758 + 0.865008i \(0.667313\pi\)
\(198\) 0 0
\(199\) −2875.77 −1.02441 −0.512206 0.858863i \(-0.671172\pi\)
−0.512206 + 0.858863i \(0.671172\pi\)
\(200\) 0 0
\(201\) 4827.35 + 3507.27i 1.69400 + 1.23077i
\(202\) 0 0
\(203\) 752.488 2315.92i 0.260169 0.800718i
\(204\) 0 0
\(205\) −2416.63 + 1755.78i −0.823339 + 0.598191i
\(206\) 0 0
\(207\) −148.862 458.149i −0.0499836 0.153834i
\(208\) 0 0
\(209\) 1614.50 3863.59i 0.534341 1.27871i
\(210\) 0 0
\(211\) −558.952 1720.28i −0.182369 0.561274i 0.817524 0.575894i \(-0.195346\pi\)
−0.999893 + 0.0146202i \(0.995346\pi\)
\(212\) 0 0
\(213\) −2047.45 + 1487.56i −0.658635 + 0.478526i
\(214\) 0 0
\(215\) 1128.87 3474.29i 0.358084 1.10207i
\(216\) 0 0
\(217\) −4501.46 3270.50i −1.40820 1.02312i
\(218\) 0 0
\(219\) 3480.91 1.07406
\(220\) 0 0
\(221\) −1535.39 −0.467336
\(222\) 0 0
\(223\) 1838.84 + 1336.00i 0.552188 + 0.401188i 0.828592 0.559854i \(-0.189143\pi\)
−0.276404 + 0.961042i \(0.589143\pi\)
\(224\) 0 0
\(225\) −221.481 + 681.648i −0.0656239 + 0.201970i
\(226\) 0 0
\(227\) 2998.36 2178.43i 0.876687 0.636950i −0.0556860 0.998448i \(-0.517735\pi\)
0.932373 + 0.361498i \(0.117735\pi\)
\(228\) 0 0
\(229\) −915.357 2817.18i −0.264142 0.812945i −0.991890 0.127101i \(-0.959433\pi\)
0.727748 0.685845i \(-0.240567\pi\)
\(230\) 0 0
\(231\) −1340.89 5663.05i −0.381923 1.61299i
\(232\) 0 0
\(233\) −1107.83 3409.56i −0.311487 0.958659i −0.977176 0.212430i \(-0.931862\pi\)
0.665689 0.746229i \(-0.268138\pi\)
\(234\) 0 0
\(235\) −1986.83 + 1443.51i −0.551516 + 0.400700i
\(236\) 0 0
\(237\) 1789.67 5508.03i 0.490512 1.50964i
\(238\) 0 0
\(239\) 1397.58 + 1015.40i 0.378251 + 0.274815i 0.760624 0.649193i \(-0.224893\pi\)
−0.382373 + 0.924008i \(0.624893\pi\)
\(240\) 0 0
\(241\) 1906.29 0.509524 0.254762 0.967004i \(-0.418003\pi\)
0.254762 + 0.967004i \(0.418003\pi\)
\(242\) 0 0
\(243\) −3133.39 −0.827189
\(244\) 0 0
\(245\) −2024.59 1470.95i −0.527944 0.383574i
\(246\) 0 0
\(247\) −1339.03 + 4121.11i −0.344941 + 1.06162i
\(248\) 0 0
\(249\) −1880.26 + 1366.09i −0.478541 + 0.347681i
\(250\) 0 0
\(251\) 381.729 + 1174.84i 0.0959940 + 0.295439i 0.987511 0.157547i \(-0.0503586\pi\)
−0.891517 + 0.452986i \(0.850359\pi\)
\(252\) 0 0
\(253\) 339.195 + 1432.54i 0.0842886 + 0.355980i
\(254\) 0 0
\(255\) −632.070 1945.31i −0.155223 0.477726i
\(256\) 0 0
\(257\) −3535.53 + 2568.71i −0.858134 + 0.623471i −0.927377 0.374129i \(-0.877942\pi\)
0.0692428 + 0.997600i \(0.477942\pi\)
\(258\) 0 0
\(259\) 2006.46 6175.24i 0.481372 1.48151i
\(260\) 0 0
\(261\) −920.015 668.430i −0.218190 0.158524i
\(262\) 0 0
\(263\) −2475.73 −0.580455 −0.290228 0.956958i \(-0.593731\pi\)
−0.290228 + 0.956958i \(0.593731\pi\)
\(264\) 0 0
\(265\) 2121.31 0.491741
\(266\) 0 0
\(267\) 6979.97 + 5071.24i 1.59988 + 1.16238i
\(268\) 0 0
\(269\) 2154.61 6631.19i 0.488359 1.50301i −0.338697 0.940895i \(-0.609986\pi\)
0.827056 0.562119i \(-0.190014\pi\)
\(270\) 0 0
\(271\) 850.107 617.639i 0.190555 0.138446i −0.488418 0.872610i \(-0.662426\pi\)
0.678972 + 0.734164i \(0.262426\pi\)
\(272\) 0 0
\(273\) 1861.00 + 5727.57i 0.412574 + 1.26977i
\(274\) 0 0
\(275\) 844.507 2020.95i 0.185184 0.443156i
\(276\) 0 0
\(277\) −494.952 1523.30i −0.107360 0.330421i 0.882917 0.469529i \(-0.155576\pi\)
−0.990277 + 0.139109i \(0.955576\pi\)
\(278\) 0 0
\(279\) −2102.19 + 1527.33i −0.451094 + 0.327739i
\(280\) 0 0
\(281\) 240.109 738.979i 0.0509740 0.156882i −0.922329 0.386405i \(-0.873717\pi\)
0.973303 + 0.229523i \(0.0737167\pi\)
\(282\) 0 0
\(283\) −40.3274 29.2996i −0.00847072 0.00615434i 0.583542 0.812083i \(-0.301666\pi\)
−0.592013 + 0.805929i \(0.701666\pi\)
\(284\) 0 0
\(285\) −5772.62 −1.19979
\(286\) 0 0
\(287\) 9474.05 1.94856
\(288\) 0 0
\(289\) 2636.63 + 1915.62i 0.536664 + 0.389909i
\(290\) 0 0
\(291\) −1888.99 + 5813.71i −0.380531 + 1.17115i
\(292\) 0 0
\(293\) 5155.11 3745.41i 1.02787 0.746788i 0.0599854 0.998199i \(-0.480895\pi\)
0.967880 + 0.251411i \(0.0808946\pi\)
\(294\) 0 0
\(295\) 66.0595 + 203.310i 0.0130377 + 0.0401260i
\(296\) 0 0
\(297\) 3417.47 + 279.699i 0.667682 + 0.0546457i
\(298\) 0 0
\(299\) −470.762 1448.86i −0.0910532 0.280233i
\(300\) 0 0
\(301\) −9373.50 + 6810.25i −1.79495 + 1.30411i
\(302\) 0 0
\(303\) 3552.20 10932.5i 0.673494 2.07280i
\(304\) 0 0
\(305\) −1713.42 1244.87i −0.321672 0.233708i
\(306\) 0 0
\(307\) −7352.11 −1.36680 −0.683399 0.730045i \(-0.739499\pi\)
−0.683399 + 0.730045i \(0.739499\pi\)
\(308\) 0 0
\(309\) 6376.90 1.17401
\(310\) 0 0
\(311\) −561.112 407.672i −0.102308 0.0743310i 0.535455 0.844564i \(-0.320140\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(312\) 0 0
\(313\) −822.015 + 2529.90i −0.148444 + 0.456864i −0.997438 0.0715389i \(-0.977209\pi\)
0.848994 + 0.528403i \(0.177209\pi\)
\(314\) 0 0
\(315\) −1989.98 + 1445.81i −0.355946 + 0.258610i
\(316\) 0 0
\(317\) −2069.34 6368.77i −0.366642 1.12841i −0.948946 0.315438i \(-0.897849\pi\)
0.582304 0.812971i \(-0.302151\pi\)
\(318\) 0 0
\(319\) 2635.55 + 2265.24i 0.462579 + 0.397584i
\(320\) 0 0
\(321\) 2509.35 + 7722.99i 0.436319 + 1.34285i
\(322\) 0 0
\(323\) −3776.32 + 2743.66i −0.650526 + 0.472635i
\(324\) 0 0
\(325\) −700.414 + 2155.65i −0.119545 + 0.367920i
\(326\) 0 0
\(327\) 2672.69 + 1941.82i 0.451987 + 0.328388i
\(328\) 0 0
\(329\) 7789.09 1.30525
\(330\) 0 0
\(331\) −9026.82 −1.49897 −0.749485 0.662021i \(-0.769699\pi\)
−0.749485 + 0.662021i \(0.769699\pi\)
\(332\) 0 0
\(333\) −2453.16 1782.32i −0.403700 0.293305i
\(334\) 0 0
\(335\) −2381.66 + 7330.01i −0.388430 + 1.19547i
\(336\) 0 0
\(337\) −4699.31 + 3414.25i −0.759607 + 0.551887i −0.898790 0.438380i \(-0.855553\pi\)
0.139182 + 0.990267i \(0.455553\pi\)
\(338\) 0 0
\(339\) −1471.79 4529.70i −0.235801 0.725721i
\(340\) 0 0
\(341\) 6783.59 4127.91i 1.07728 0.655540i
\(342\) 0 0
\(343\) −256.830 790.442i −0.0404301 0.124431i
\(344\) 0 0
\(345\) 1641.88 1192.90i 0.256220 0.186155i
\(346\) 0 0
\(347\) −1823.61 + 5612.49i −0.282122 + 0.868283i 0.705124 + 0.709084i \(0.250891\pi\)
−0.987246 + 0.159199i \(0.949109\pi\)
\(348\) 0 0
\(349\) −980.631 712.470i −0.150407 0.109277i 0.510037 0.860153i \(-0.329632\pi\)
−0.660444 + 0.750876i \(0.729632\pi\)
\(350\) 0 0
\(351\) −3548.32 −0.539587
\(352\) 0 0
\(353\) 5188.71 0.782344 0.391172 0.920318i \(-0.372070\pi\)
0.391172 + 0.920318i \(0.372070\pi\)
\(354\) 0 0
\(355\) −2644.61 1921.42i −0.395383 0.287263i
\(356\) 0 0
\(357\) −2004.70 + 6169.83i −0.297199 + 0.914684i
\(358\) 0 0
\(359\) −4183.88 + 3039.77i −0.615089 + 0.446888i −0.851203 0.524837i \(-0.824126\pi\)
0.236114 + 0.971725i \(0.424126\pi\)
\(360\) 0 0
\(361\) 1951.29 + 6005.44i 0.284485 + 0.875556i
\(362\) 0 0
\(363\) 8194.98 + 1350.46i 1.18492 + 0.195264i
\(364\) 0 0
\(365\) 1389.38 + 4276.08i 0.199243 + 0.613206i
\(366\) 0 0
\(367\) 2971.21 2158.71i 0.422605 0.307040i −0.356080 0.934455i \(-0.615887\pi\)
0.778685 + 0.627415i \(0.215887\pi\)
\(368\) 0 0
\(369\) 1367.22 4207.86i 0.192885 0.593639i
\(370\) 0 0
\(371\) −5443.10 3954.65i −0.761703 0.553410i
\(372\) 0 0
\(373\) −3048.06 −0.423116 −0.211558 0.977365i \(-0.567854\pi\)
−0.211558 + 0.977365i \(0.567854\pi\)
\(374\) 0 0
\(375\) −9306.36 −1.28154
\(376\) 0 0
\(377\) −2909.47 2113.85i −0.397467 0.288777i
\(378\) 0 0
\(379\) 3388.05 10427.3i 0.459188 1.41324i −0.406959 0.913446i \(-0.633411\pi\)
0.866147 0.499789i \(-0.166589\pi\)
\(380\) 0 0
\(381\) 7822.35 5683.27i 1.05184 0.764207i
\(382\) 0 0
\(383\) 2676.41 + 8237.15i 0.357071 + 1.09895i 0.954799 + 0.297253i \(0.0960703\pi\)
−0.597728 + 0.801699i \(0.703930\pi\)
\(384\) 0 0
\(385\) 6421.50 3907.57i 0.850051 0.517269i
\(386\) 0 0
\(387\) 1672.04 + 5146.01i 0.219624 + 0.675933i
\(388\) 0 0
\(389\) −9796.55 + 7117.61i −1.27688 + 0.927704i −0.999454 0.0330439i \(-0.989480\pi\)
−0.277422 + 0.960748i \(0.589480\pi\)
\(390\) 0 0
\(391\) 507.114 1560.73i 0.0655904 0.201866i
\(392\) 0 0
\(393\) 1132.85 + 823.061i 0.145406 + 0.105644i
\(394\) 0 0
\(395\) 7480.61 0.952887
\(396\) 0 0
\(397\) −9791.79 −1.23787 −0.618937 0.785441i \(-0.712436\pi\)
−0.618937 + 0.785441i \(0.712436\pi\)
\(398\) 0 0
\(399\) 14812.0 + 10761.6i 1.85847 + 1.35026i
\(400\) 0 0
\(401\) −4003.09 + 12320.2i −0.498515 + 1.53427i 0.312890 + 0.949789i \(0.398703\pi\)
−0.811406 + 0.584483i \(0.801297\pi\)
\(402\) 0 0
\(403\) −6648.01 + 4830.06i −0.821739 + 0.597029i
\(404\) 0 0
\(405\) −2263.55 6966.50i −0.277721 0.854736i
\(406\) 0 0
\(407\) 7027.52 + 6040.11i 0.855875 + 0.735620i
\(408\) 0 0
\(409\) 521.166 + 1603.99i 0.0630074 + 0.193917i 0.977605 0.210449i \(-0.0674924\pi\)
−0.914598 + 0.404365i \(0.867492\pi\)
\(410\) 0 0
\(411\) 10545.9 7662.03i 1.26567 0.919563i
\(412\) 0 0
\(413\) 209.517 644.827i 0.0249629 0.0768278i
\(414\) 0 0
\(415\) −2428.65 1764.52i −0.287272 0.208715i
\(416\) 0 0
\(417\) −10472.5 −1.22983
\(418\) 0 0
\(419\) 491.088 0.0572583 0.0286291 0.999590i \(-0.490886\pi\)
0.0286291 + 0.999590i \(0.490886\pi\)
\(420\) 0 0
\(421\) 6535.69 + 4748.46i 0.756603 + 0.549705i 0.897867 0.440268i \(-0.145116\pi\)
−0.141263 + 0.989972i \(0.545116\pi\)
\(422\) 0 0
\(423\) 1124.06 3459.49i 0.129205 0.397651i
\(424\) 0 0
\(425\) −1975.30 + 1435.14i −0.225450 + 0.163799i
\(426\) 0 0
\(427\) 2075.73 + 6388.45i 0.235250 + 0.724025i
\(428\) 0 0
\(429\) −8566.12 701.085i −0.964047 0.0789013i
\(430\) 0 0
\(431\) −1926.20 5928.25i −0.215272 0.662538i −0.999134 0.0416034i \(-0.986753\pi\)
0.783863 0.620934i \(-0.213247\pi\)
\(432\) 0 0
\(433\) 8248.93 5993.20i 0.915516 0.665161i −0.0268877 0.999638i \(-0.508560\pi\)
0.942404 + 0.334477i \(0.108560\pi\)
\(434\) 0 0
\(435\) 1480.48 4556.46i 0.163181 0.502220i
\(436\) 0 0
\(437\) −3746.89 2722.27i −0.410155 0.297995i
\(438\) 0 0
\(439\) −1418.48 −0.154215 −0.0771073 0.997023i \(-0.524568\pi\)
−0.0771073 + 0.997023i \(0.524568\pi\)
\(440\) 0 0
\(441\) 3706.66 0.400244
\(442\) 0 0
\(443\) 7867.23 + 5715.88i 0.843755 + 0.613024i 0.923417 0.383798i \(-0.125384\pi\)
−0.0796618 + 0.996822i \(0.525384\pi\)
\(444\) 0 0
\(445\) −3443.70 + 10598.6i −0.366847 + 1.12904i
\(446\) 0 0
\(447\) −5902.73 + 4288.58i −0.624585 + 0.453787i
\(448\) 0 0
\(449\) 318.529 + 980.332i 0.0334796 + 0.103039i 0.966400 0.257044i \(-0.0827484\pi\)
−0.932920 + 0.360083i \(0.882748\pi\)
\(450\) 0 0
\(451\) −5213.20 + 12475.5i −0.544302 + 1.30254i
\(452\) 0 0
\(453\) 3668.02 + 11289.0i 0.380439 + 1.17087i
\(454\) 0 0
\(455\) −6293.15 + 4572.24i −0.648412 + 0.471099i
\(456\) 0 0
\(457\) −2057.79 + 6333.23i −0.210633 + 0.648263i 0.788801 + 0.614648i \(0.210702\pi\)
−0.999435 + 0.0336149i \(0.989298\pi\)
\(458\) 0 0
\(459\) −3092.31 2246.70i −0.314459 0.228468i
\(460\) 0 0
\(461\) 6709.39 0.677847 0.338924 0.940814i \(-0.389937\pi\)
0.338924 + 0.940814i \(0.389937\pi\)
\(462\) 0 0
\(463\) 10505.3 1.05448 0.527240 0.849716i \(-0.323227\pi\)
0.527240 + 0.849716i \(0.323227\pi\)
\(464\) 0 0
\(465\) −8856.40 6434.55i −0.883238 0.641710i
\(466\) 0 0
\(467\) 621.845 1913.84i 0.0616179 0.189640i −0.915509 0.402298i \(-0.868212\pi\)
0.977127 + 0.212657i \(0.0682117\pi\)
\(468\) 0 0
\(469\) 19776.1 14368.1i 1.94706 1.41463i
\(470\) 0 0
\(471\) −6623.17 20384.0i −0.647939 1.99415i
\(472\) 0 0
\(473\) −3809.89 16090.5i −0.370358 1.56415i
\(474\) 0 0
\(475\) 2129.36 + 6553.48i 0.205687 + 0.633041i
\(476\) 0 0
\(477\) −2541.95 + 1846.83i −0.243999 + 0.177276i
\(478\) 0 0
\(479\) 231.706 713.117i 0.0221021 0.0680233i −0.939397 0.342831i \(-0.888614\pi\)
0.961499 + 0.274808i \(0.0886142\pi\)
\(480\) 0 0
\(481\) −7757.89 5636.44i −0.735404 0.534303i
\(482\) 0 0
\(483\) −6436.78 −0.606385
\(484\) 0 0
\(485\) −7895.76 −0.739233
\(486\) 0 0
\(487\) −3667.54 2664.62i −0.341257 0.247938i 0.403935 0.914788i \(-0.367642\pi\)
−0.745192 + 0.666850i \(0.767642\pi\)
\(488\) 0 0
\(489\) 6060.55 18652.4i 0.560465 1.72493i
\(490\) 0 0
\(491\) 8443.43 6134.51i 0.776062 0.563842i −0.127732 0.991809i \(-0.540770\pi\)
0.903795 + 0.427966i \(0.140770\pi\)
\(492\) 0 0
\(493\) −1197.13 3684.39i −0.109363 0.336585i
\(494\) 0 0
\(495\) −808.836 3415.99i −0.0734434 0.310177i
\(496\) 0 0
\(497\) 3203.83 + 9860.38i 0.289158 + 0.889937i
\(498\) 0 0
\(499\) 10737.8 7801.48i 0.963308 0.699884i 0.00939148 0.999956i \(-0.497011\pi\)
0.953917 + 0.300072i \(0.0970106\pi\)
\(500\) 0 0
\(501\) 6635.06 20420.6i 0.591682 1.82101i
\(502\) 0 0
\(503\) −10559.2 7671.67i −0.936003 0.680046i 0.0114525 0.999934i \(-0.496354\pi\)
−0.947455 + 0.319889i \(0.896354\pi\)
\(504\) 0 0
\(505\) 14847.8 1.30835
\(506\) 0 0
\(507\) −4815.28 −0.421803
\(508\) 0 0
\(509\) −4751.24 3451.98i −0.413742 0.300602i 0.361373 0.932421i \(-0.382308\pi\)
−0.775115 + 0.631820i \(0.782308\pi\)
\(510\) 0 0
\(511\) 4406.62 13562.2i 0.381483 1.17408i
\(512\) 0 0
\(513\) −8727.17 + 6340.66i −0.751099 + 0.545705i
\(514\) 0 0
\(515\) 2545.30 + 7833.63i 0.217785 + 0.670274i
\(516\) 0 0
\(517\) −4286.03 + 10256.7i −0.364603 + 0.872514i
\(518\) 0 0
\(519\) −7712.35 23736.2i −0.652282 2.00752i
\(520\) 0 0
\(521\) −320.304 + 232.715i −0.0269343 + 0.0195689i −0.601171 0.799120i \(-0.705299\pi\)
0.574237 + 0.818689i \(0.305299\pi\)
\(522\) 0 0
\(523\) 2112.41 6501.32i 0.176614 0.543562i −0.823090 0.567912i \(-0.807752\pi\)
0.999704 + 0.0243497i \(0.00775151\pi\)
\(524\) 0 0
\(525\) 7747.82 + 5629.12i 0.644081 + 0.467952i
\(526\) 0 0
\(527\) −8851.92 −0.731681
\(528\) 0 0
\(529\) −10538.7 −0.866174
\(530\) 0 0
\(531\) −256.162 186.112i −0.0209350 0.0152101i
\(532\) 0 0
\(533\) 4323.71 13307.0i 0.351371 1.08141i
\(534\) 0 0
\(535\) −8485.62 + 6165.17i −0.685730 + 0.498212i
\(536\) 0 0
\(537\) 4288.42 + 13198.4i 0.344616 + 1.06062i
\(538\) 0 0
\(539\) −11289.7 923.996i −0.902196 0.0738392i
\(540\) 0 0
\(541\) 2401.08 + 7389.77i 0.190814 + 0.587266i 1.00000 0.000286877i \(-9.13158e-5\pi\)
−0.809186 + 0.587553i \(0.800091\pi\)
\(542\) 0 0
\(543\) −4562.45 + 3314.82i −0.360578 + 0.261975i
\(544\) 0 0
\(545\) −1318.62 + 4058.29i −0.103639 + 0.318969i
\(546\) 0 0
\(547\) −5997.01 4357.08i −0.468763 0.340577i 0.328196 0.944610i \(-0.393559\pi\)
−0.796959 + 0.604033i \(0.793559\pi\)
\(548\) 0 0
\(549\) 3136.96 0.243866
\(550\) 0 0
\(551\) −10933.2 −0.845321
\(552\) 0 0
\(553\) −19194.6 13945.7i −1.47602 1.07239i
\(554\) 0 0
\(555\) 3947.61 12149.5i 0.301922 0.929220i
\(556\) 0 0
\(557\) −47.9436 + 34.8330i −0.00364710 + 0.00264977i −0.589607 0.807690i \(-0.700717\pi\)
0.585960 + 0.810340i \(0.300717\pi\)
\(558\) 0 0
\(559\) 5287.68 + 16273.8i 0.400080 + 1.23132i
\(560\) 0 0
\(561\) −7021.36 6034.82i −0.528417 0.454172i
\(562\) 0 0
\(563\) −135.140 415.918i −0.0101163 0.0311347i 0.945871 0.324543i \(-0.105210\pi\)
−0.955987 + 0.293408i \(0.905210\pi\)
\(564\) 0 0
\(565\) 4976.99 3616.00i 0.370591 0.269250i
\(566\) 0 0
\(567\) −7179.18 + 22095.2i −0.531741 + 1.63653i
\(568\) 0 0
\(569\) 1674.80 + 1216.81i 0.123394 + 0.0896509i 0.647770 0.761836i \(-0.275702\pi\)
−0.524377 + 0.851486i \(0.675702\pi\)
\(570\) 0 0
\(571\) 14131.1 1.03567 0.517837 0.855479i \(-0.326737\pi\)
0.517837 + 0.855479i \(0.326737\pi\)
\(572\) 0 0
\(573\) 17394.6 1.26819
\(574\) 0 0
\(575\) −1959.91 1423.96i −0.142146 0.103275i
\(576\) 0 0
\(577\) 7964.66 24512.7i 0.574650 1.76859i −0.0627179 0.998031i \(-0.519977\pi\)
0.637368 0.770560i \(-0.280023\pi\)
\(578\) 0 0
\(579\) −5022.29 + 3648.90i −0.360482 + 0.261906i
\(580\) 0 0
\(581\) 2942.21 + 9055.20i 0.210092 + 0.646597i
\(582\) 0 0
\(583\) 8202.63 4991.42i 0.582707 0.354586i
\(584\) 0 0
\(585\) 1122.57 + 3454.91i 0.0793375 + 0.244176i
\(586\) 0 0
\(587\) −3858.76 + 2803.56i −0.271326 + 0.197130i −0.715125 0.698996i \(-0.753630\pi\)
0.443799 + 0.896126i \(0.353630\pi\)
\(588\) 0 0
\(589\) −7719.87 + 23759.3i −0.540054 + 1.66211i
\(590\) 0 0
\(591\) 14007.8 + 10177.2i 0.974963 + 0.708352i
\(592\) 0 0
\(593\) 3093.70 0.214238 0.107119 0.994246i \(-0.465837\pi\)
0.107119 + 0.994246i \(0.465837\pi\)
\(594\) 0 0
\(595\) −8379.42 −0.577349
\(596\) 0 0
\(597\) 14517.8 + 10547.8i 0.995264 + 0.723101i
\(598\) 0 0
\(599\) −5510.74 + 16960.3i −0.375898 + 1.15689i 0.566973 + 0.823736i \(0.308114\pi\)
−0.942871 + 0.333158i \(0.891886\pi\)
\(600\) 0 0
\(601\) 14244.7 10349.3i 0.966808 0.702427i 0.0120861 0.999927i \(-0.496153\pi\)
0.954722 + 0.297500i \(0.0961528\pi\)
\(602\) 0 0
\(603\) −3527.64 10857.0i −0.238236 0.733216i
\(604\) 0 0
\(605\) 1612.01 + 10606.0i 0.108327 + 0.712722i
\(606\) 0 0
\(607\) 3474.45 + 10693.3i 0.232329 + 0.715034i 0.997465 + 0.0711653i \(0.0226718\pi\)
−0.765136 + 0.643869i \(0.777328\pi\)
\(608\) 0 0
\(609\) −12293.1 + 8931.49i −0.817969 + 0.594289i
\(610\) 0 0
\(611\) 3554.74 10940.4i 0.235367 0.724385i
\(612\) 0 0
\(613\) −1103.15 801.483i −0.0726846 0.0528085i 0.550850 0.834605i \(-0.314304\pi\)
−0.623534 + 0.781796i \(0.714304\pi\)
\(614\) 0 0
\(615\) 18639.7 1.22216
\(616\) 0 0
\(617\) −9137.98 −0.596242 −0.298121 0.954528i \(-0.596360\pi\)
−0.298121 + 0.954528i \(0.596360\pi\)
\(618\) 0 0
\(619\) 5464.94 + 3970.51i 0.354854 + 0.257816i 0.750902 0.660413i \(-0.229619\pi\)
−0.396049 + 0.918229i \(0.629619\pi\)
\(620\) 0 0
\(621\) 1171.95 3606.90i 0.0757308 0.233075i
\(622\) 0 0
\(623\) 28594.6 20775.2i 1.83888 1.33602i
\(624\) 0 0
\(625\) −1395.54 4295.02i −0.0893144 0.274882i
\(626\) 0 0
\(627\) −22321.4 + 13582.9i −1.42174 + 0.865149i
\(628\) 0 0
\(629\) −3192.07 9824.17i −0.202347 0.622759i
\(630\) 0 0
\(631\) 7248.74 5266.52i 0.457318 0.332261i −0.335160 0.942161i \(-0.608790\pi\)
0.792478 + 0.609900i \(0.208790\pi\)
\(632\) 0 0
\(633\) −3487.89 + 10734.6i −0.219007 + 0.674033i
\(634\) 0 0
\(635\) 10103.8 + 7340.83i 0.631428 + 0.458759i
\(636\) 0 0
\(637\) 11722.0 0.729109
\(638\) 0 0
\(639\) 4841.80 0.299748
\(640\) 0 0
\(641\) −1501.34 1090.78i −0.0925104 0.0672127i 0.540569 0.841300i \(-0.318209\pi\)
−0.633079 + 0.774087i \(0.718209\pi\)
\(642\) 0 0
\(643\) 5860.06 18035.4i 0.359407 1.10614i −0.594004 0.804462i \(-0.702454\pi\)
0.953410 0.301677i \(-0.0975465\pi\)
\(644\) 0 0
\(645\) −18441.9 + 13398.8i −1.12581 + 0.817951i
\(646\) 0 0
\(647\) 152.657 + 469.831i 0.00927601 + 0.0285486i 0.955587 0.294708i \(-0.0952223\pi\)
−0.946311 + 0.323257i \(0.895222\pi\)
\(648\) 0 0
\(649\) 733.823 + 630.716i 0.0443837 + 0.0381476i
\(650\) 0 0
\(651\) 10729.2 + 33021.0i 0.645943 + 1.98801i
\(652\) 0 0
\(653\) −4903.00 + 3562.24i −0.293828 + 0.213478i −0.724926 0.688827i \(-0.758126\pi\)
0.431099 + 0.902305i \(0.358126\pi\)
\(654\) 0 0
\(655\) −558.911 + 1720.15i −0.0333412 + 0.102614i
\(656\) 0 0
\(657\) −5387.67 3914.37i −0.319928 0.232442i
\(658\) 0 0
\(659\) 22461.7 1.32774 0.663872 0.747846i \(-0.268912\pi\)
0.663872 + 0.747846i \(0.268912\pi\)
\(660\) 0 0
\(661\) −10681.4 −0.628531 −0.314265 0.949335i \(-0.601758\pi\)
−0.314265 + 0.949335i \(0.601758\pi\)
\(662\) 0 0
\(663\) 7751.10 + 5631.50i 0.454039 + 0.329878i
\(664\) 0 0
\(665\) −7307.79 + 22491.1i −0.426142 + 1.31153i
\(666\) 0 0
\(667\) 3109.70 2259.33i 0.180522 0.131157i
\(668\) 0 0
\(669\) −4382.85 13489.0i −0.253290 0.779546i
\(670\) 0 0
\(671\) −9554.54 781.980i −0.549700 0.0449896i
\(672\) 0 0
\(673\) −7718.25 23754.3i −0.442075 1.36057i −0.885659 0.464336i \(-0.846293\pi\)
0.443584 0.896233i \(-0.353707\pi\)
\(674\) 0 0
\(675\) −4564.97 + 3316.65i −0.260305 + 0.189123i
\(676\) 0 0
\(677\) −7753.17 + 23861.8i −0.440146 + 1.35463i 0.447575 + 0.894247i \(0.352288\pi\)
−0.887720 + 0.460383i \(0.847712\pi\)
\(678\) 0 0
\(679\) 20259.8 + 14719.6i 1.14507 + 0.831940i
\(680\) 0 0
\(681\) −23126.7 −1.30135
\(682\) 0 0
\(683\) −28044.5 −1.57114 −0.785572 0.618770i \(-0.787631\pi\)
−0.785572 + 0.618770i \(0.787631\pi\)
\(684\) 0 0
\(685\) 13621.7 + 9896.71i 0.759791 + 0.552020i
\(686\) 0 0
\(687\) −5711.87 + 17579.3i −0.317207 + 0.976264i
\(688\) 0 0
\(689\) −8038.68 + 5840.45i −0.444484 + 0.322937i
\(690\) 0 0
\(691\) 3174.31 + 9769.53i 0.174756 + 0.537844i 0.999622 0.0274839i \(-0.00874949\pi\)
−0.824866 + 0.565328i \(0.808749\pi\)
\(692\) 0 0
\(693\) −4292.84 + 10273.0i −0.235312 + 0.563116i
\(694\) 0 0
\(695\) −4180.03 12864.8i −0.228140 0.702144i
\(696\) 0 0
\(697\) 12193.7 8859.23i 0.662653 0.481445i
\(698\) 0 0
\(699\) −6912.92 + 21275.8i −0.374064 + 1.15125i
\(700\) 0 0
\(701\) 11238.8 + 8165.43i 0.605538 + 0.439949i 0.847840 0.530252i \(-0.177903\pi\)
−0.242302 + 0.970201i \(0.577903\pi\)
\(702\) 0 0
\(703\) −29152.8 −1.56404
\(704\) 0 0
\(705\) 15324.6 0.818666
\(706\) 0 0
\(707\) −38098.1 27679.9i −2.02663 1.47243i
\(708\) 0 0
\(709\) −5357.41 + 16488.4i −0.283782 + 0.873392i 0.702979 + 0.711211i \(0.251853\pi\)
−0.986761 + 0.162181i \(0.948147\pi\)
\(710\) 0 0
\(711\) −8963.93 + 6512.68i −0.472818 + 0.343522i
\(712\) 0 0
\(713\) −2714.07 8353.06i −0.142557 0.438744i
\(714\) 0 0
\(715\) −2557.88 10802.8i −0.133789 0.565037i
\(716\) 0 0
\(717\) −3331.11 10252.1i −0.173504 0.533992i
\(718\) 0 0
\(719\) 27655.7 20093.0i 1.43447 1.04220i 0.445306 0.895378i \(-0.353095\pi\)
0.989163 0.146824i \(-0.0469051\pi\)
\(720\) 0 0
\(721\) 8072.78 24845.5i 0.416985 1.28335i
\(722\) 0 0
\(723\) −9623.56 6991.92i −0.495026 0.359658i
\(724\) 0 0
\(725\) −5718.92 −0.292959
\(726\) 0 0
\(727\) 12623.5 0.643987 0.321994 0.946742i \(-0.395647\pi\)
0.321994 + 0.946742i \(0.395647\pi\)
\(728\) 0 0
\(729\) −4033.27 2930.34i −0.204911 0.148877i
\(730\) 0 0
\(731\) −5695.98 + 17530.4i −0.288199 + 0.886985i
\(732\) 0 0
\(733\) 12958.5 9414.91i 0.652979 0.474417i −0.211305 0.977420i \(-0.567771\pi\)
0.864285 + 0.503003i \(0.167771\pi\)
\(734\) 0 0
\(735\) 4825.58 + 14851.6i 0.242169 + 0.745320i
\(736\) 0 0
\(737\) 8038.05 + 33947.4i 0.401744 + 1.69670i
\(738\) 0 0
\(739\) 4254.96 + 13095.4i 0.211801 + 0.651858i 0.999365 + 0.0356245i \(0.0113420\pi\)
−0.787564 + 0.616233i \(0.788658\pi\)
\(740\) 0 0
\(741\) 21875.3 15893.3i 1.08449 0.787929i
\(742\) 0 0
\(743\) 3829.04 11784.6i 0.189063 0.581876i −0.810932 0.585141i \(-0.801039\pi\)
0.999995 + 0.00326492i \(0.00103926\pi\)
\(744\) 0 0
\(745\) −7624.29 5539.37i −0.374943 0.272412i
\(746\) 0 0
\(747\) 4446.43 0.217786
\(748\) 0 0
\(749\) 33266.7 1.62288
\(750\) 0 0
\(751\) −24133.2 17533.8i −1.17261 0.851954i −0.181295 0.983429i \(-0.558029\pi\)
−0.991320 + 0.131475i \(0.958029\pi\)
\(752\) 0 0
\(753\) 2382.00 7331.06i 0.115279 0.354792i
\(754\) 0 0
\(755\) −12403.8 + 9011.88i −0.597907 + 0.434405i
\(756\) 0 0
\(757\) 4742.52 + 14596.0i 0.227701 + 0.700792i 0.998006 + 0.0631163i \(0.0201039\pi\)
−0.770305 + 0.637675i \(0.779896\pi\)
\(758\) 0 0
\(759\) 3541.91 8475.99i 0.169385 0.405348i
\(760\) 0 0
\(761\) −2584.42 7954.03i −0.123108 0.378888i 0.870444 0.492268i \(-0.163832\pi\)
−0.993552 + 0.113381i \(0.963832\pi\)
\(762\) 0 0
\(763\) 10949.1 7954.99i 0.519508 0.377444i
\(764\) 0 0
\(765\) −1209.25 + 3721.69i −0.0571510 + 0.175893i
\(766\) 0 0
\(767\) −810.089 588.564i −0.0381364 0.0277077i
\(768\) 0 0
\(769\) 20316.4 0.952704 0.476352 0.879255i \(-0.341959\pi\)
0.476352 + 0.879255i \(0.341959\pi\)
\(770\) 0 0
\(771\) 27270.0 1.27381
\(772\) 0 0
\(773\) −11806.9 8578.18i −0.549370 0.399141i 0.278183 0.960528i \(-0.410268\pi\)
−0.827553 + 0.561387i \(0.810268\pi\)
\(774\) 0 0
\(775\) −4038.08 + 12427.9i −0.187164 + 0.576031i
\(776\) 0 0
\(777\) −32778.8 + 23815.2i −1.51343 + 1.09957i
\(778\) 0 0
\(779\) −13144.7 40455.1i −0.604566 1.86066i
\(780\) 0 0
\(781\) −14747.1 1206.96i −0.675665 0.0552990i
\(782\) 0 0
\(783\) −2766.60 8514.71i −0.126271 0.388622i
\(784\) 0 0
\(785\) 22396.9 16272.3i 1.01832 0.739851i
\(786\) 0 0
\(787\) −3590.44 + 11050.2i −0.162624 + 0.500506i −0.998853 0.0478741i \(-0.984755\pi\)
0.836229 + 0.548380i \(0.184755\pi\)
\(788\) 0 0
\(789\) 12498.2 + 9080.48i 0.563939 + 0.409726i
\(790\) 0 0
\(791\) −19511.6 −0.877059
\(792\) 0 0
\(793\) 9920.37 0.444240
\(794\) 0 0
\(795\) −10709.0 7780.57i −0.477749 0.347105i
\(796\) 0 0
\(797\) 4142.39 12749.0i 0.184104 0.566614i −0.815828 0.578295i \(-0.803718\pi\)
0.999932 + 0.0116808i \(0.00371821\pi\)
\(798\) 0 0
\(799\) 10025.0 7283.62i 0.443880 0.322498i
\(800\) 0 0
\(801\) −5100.69 15698.3i −0.224999 0.692475i
\(802\) 0 0
\(803\) 15434.0 + 13265.4i 0.678273 + 0.582972i
\(804\) 0 0
\(805\) −2569.20 7907.19i −0.112488 0.346201i
\(806\) 0 0
\(807\) −35199.0 + 25573.6i −1.53540 + 1.11553i
\(808\) 0 0
\(809\) −3096.50 + 9530.05i −0.134570 + 0.414164i −0.995523 0.0945207i \(-0.969868\pi\)
0.860953 + 0.508685i \(0.169868\pi\)
\(810\) 0 0
\(811\) 20665.2 + 15014.2i 0.894764 + 0.650084i 0.937116 0.349018i \(-0.113485\pi\)
−0.0423515 + 0.999103i \(0.513485\pi\)
\(812\) 0 0
\(813\) −6556.98 −0.282858
\(814\) 0 0
\(815\) 25332.4 1.08878
\(816\) 0 0
\(817\) 42085.6 + 30577.0i 1.80219 + 1.30937i
\(818\) 0 0
\(819\) 3560.38 10957.7i 0.151905 0.467514i
\(820\) 0 0
\(821\) −24127.9 + 17530.0i −1.02566 + 0.745188i −0.967436 0.253115i \(-0.918545\pi\)
−0.0582277 + 0.998303i \(0.518545\pi\)
\(822\) 0 0
\(823\) −5383.82 16569.7i −0.228029 0.701802i −0.997970 0.0636868i \(-0.979714\pi\)
0.769940 0.638116i \(-0.220286\pi\)
\(824\) 0 0
\(825\) −11675.8 + 7104.88i −0.492726 + 0.299831i
\(826\) 0 0
\(827\) 340.676 + 1048.49i 0.0143246 + 0.0440866i 0.957963 0.286891i \(-0.0926216\pi\)
−0.943639 + 0.330977i \(0.892622\pi\)
\(828\) 0 0
\(829\) 26540.6 19282.9i 1.11193 0.807867i 0.128967 0.991649i \(-0.458834\pi\)
0.982967 + 0.183782i \(0.0588339\pi\)
\(830\) 0 0
\(831\) −3088.52 + 9505.49i −0.128929 + 0.396801i
\(832\) 0 0
\(833\) 10215.6 + 7422.05i 0.424908 + 0.308714i
\(834\) 0 0
\(835\) 27733.8 1.14942
\(836\) 0 0
\(837\) −20457.0 −0.844800
\(838\) 0 0
\(839\) −12498.1 9080.43i −0.514283 0.373649i 0.300163 0.953888i \(-0.402959\pi\)
−0.814446 + 0.580239i \(0.802959\pi\)
\(840\) 0 0
\(841\) −4732.60 + 14565.5i −0.194047 + 0.597214i
\(842\) 0 0
\(843\) −3922.58 + 2849.92i −0.160262 + 0.116437i
\(844\) 0 0
\(845\) −1921.99 5915.27i −0.0782467 0.240818i
\(846\) 0 0
\(847\) 15636.0 30219.4i 0.634308 1.22591i
\(848\) 0 0
\(849\) 96.1198 + 295.826i 0.00388554 + 0.0119585i
\(850\) 0 0
\(851\) 8291.80 6024.35i 0.334006 0.242670i
\(852\) 0 0
\(853\) 3454.47 10631.8i 0.138662 0.426758i −0.857480 0.514518i \(-0.827971\pi\)
0.996142 + 0.0877602i \(0.0279709\pi\)
\(854\) 0 0
\(855\) 8934.73 + 6491.46i 0.357381 + 0.259653i
\(856\) 0 0
\(857\) −10846.6 −0.432338 −0.216169 0.976356i \(-0.569356\pi\)
−0.216169 + 0.976356i \(0.569356\pi\)
\(858\) 0 0
\(859\) 18632.5 0.740086 0.370043 0.929015i \(-0.379343\pi\)
0.370043 + 0.929015i \(0.379343\pi\)
\(860\) 0 0
\(861\) −47827.9 34749.0i −1.89311 1.37543i
\(862\) 0 0
\(863\) −11305.0 + 34793.1i −0.445916 + 1.37239i 0.435560 + 0.900160i \(0.356550\pi\)
−0.881476 + 0.472229i \(0.843450\pi\)
\(864\) 0 0
\(865\) 26080.1 18948.3i 1.02514 0.744810i
\(866\) 0 0
\(867\) −6284.37 19341.3i −0.246169 0.757630i
\(868\) 0 0
\(869\) 28925.8 17601.8i 1.12916 0.687110i
\(870\) 0 0
\(871\) −11155.9 34334.2i −0.433986 1.33567i
\(872\) 0 0
\(873\) 9461.40 6874.11i 0.366804 0.266499i
\(874\) 0 0
\(875\) −11781.3 + 36259.1i −0.455178 + 1.40089i
\(876\) 0 0
\(877\) 2220.08 + 1612.98i 0.0854809 + 0.0621055i 0.629705 0.776834i \(-0.283176\pi\)
−0.544224 + 0.838940i \(0.683176\pi\)
\(878\) 0 0
\(879\) −39762.0 −1.52575
\(880\) 0 0
\(881\) −43965.1 −1.68130 −0.840649 0.541581i \(-0.817826\pi\)
−0.840649 + 0.541581i \(0.817826\pi\)
\(882\) 0 0
\(883\) −20983.0 15245.1i −0.799701 0.581017i 0.111126 0.993806i \(-0.464554\pi\)
−0.910826 + 0.412790i \(0.864554\pi\)
\(884\) 0 0
\(885\) 412.214 1268.67i 0.0156570 0.0481873i
\(886\) 0 0
\(887\) 10218.8 7424.37i 0.386824 0.281044i −0.377329 0.926079i \(-0.623157\pi\)
0.764153 + 0.645035i \(0.223157\pi\)
\(888\) 0 0
\(889\) −12240.3 37671.9i −0.461786 1.42123i
\(890\) 0 0
\(891\) −25144.7 21611.7i −0.945431 0.812593i
\(892\) 0 0
\(893\) −10806.9 33260.2i −0.404971 1.24637i
\(894\) 0 0
\(895\) −14501.7 + 10536.1i −0.541607 + 0.393501i
\(896\) 0 0
\(897\) −2937.58 + 9040.94i −0.109346 + 0.336531i
\(898\) 0 0
\(899\) −16773.9 12186.9i −0.622291 0.452121i
\(900\) 0 0
\(901\) −10703.6 −0.395771
\(902\) 0 0
\(903\) 72299.0 2.66441
\(904\) 0 0
\(905\) −5893.12 4281.60i −0.216457 0.157266i
\(906\) 0 0
\(907\) 11927.2 36708.2i 0.436644 1.34385i −0.454748 0.890620i \(-0.650271\pi\)
0.891392 0.453233i \(-0.149729\pi\)
\(908\) 0 0
\(909\) −17791.9 + 12926.6i −0.649198 + 0.471670i
\(910\) 0 0
\(911\) −2605.83 8019.92i −0.0947695 0.291671i 0.892424 0.451198i \(-0.149003\pi\)
−0.987194 + 0.159527i \(0.949003\pi\)
\(912\) 0 0
\(913\) −13542.9 1108.40i −0.490915 0.0401784i
\(914\) 0 0
\(915\) 4083.90 + 12569.0i 0.147552 + 0.454117i
\(916\) 0 0
\(917\) 4640.90 3371.81i 0.167128 0.121425i
\(918\) 0 0
\(919\) −9889.83 + 30437.8i −0.354989 + 1.09255i 0.601026 + 0.799229i \(0.294759\pi\)
−0.956016 + 0.293316i \(0.905241\pi\)
\(920\) 0 0
\(921\) 37115.7 + 26966.1i 1.32791 + 0.964781i
\(922\) 0 0
\(923\) 15311.8 0.546038
\(924\) 0 0
\(925\) −15249.1 −0.542041
\(926\) 0 0
\(927\) −9870.02 7170.99i −0.349702 0.254074i
\(928\) 0 0
\(929\) −9441.74 + 29058.7i −0.333448 + 1.02625i 0.634033 + 0.773306i \(0.281398\pi\)
−0.967481 + 0.252942i \(0.918602\pi\)
\(930\) 0 0
\(931\) 28830.5 20946.6i 1.01491 0.737377i
\(932\) 0 0
\(933\) 1337.40 + 4116.10i 0.0469288 + 0.144432i
\(934\) 0 0
\(935\) 4610.87 11034.1i 0.161274 0.385938i
\(936\) 0 0
\(937\) −15554.7 47872.6i −0.542317 1.66908i −0.727284 0.686336i \(-0.759218\pi\)
0.184967 0.982745i \(-0.440782\pi\)
\(938\) 0 0
\(939\) 13429.0 9756.72i 0.466707 0.339083i
\(940\) 0 0
\(941\) 7758.78 23879.1i 0.268788 0.827243i −0.722009 0.691884i \(-0.756781\pi\)
0.990797 0.135360i \(-0.0432189\pi\)
\(942\) 0 0
\(943\) 12098.6 + 8790.18i 0.417801 + 0.303550i
\(944\) 0 0
\(945\) −19365.0 −0.666609
\(946\) 0 0
\(947\) 21894.4 0.751292 0.375646 0.926763i \(-0.377421\pi\)
0.375646 + 0.926763i \(0.377421\pi\)
\(948\) 0 0
\(949\) −17038.0 12378.9i −0.582801 0.423430i
\(950\) 0 0
\(951\) −12912.8 + 39741.4i −0.440300 + 1.35510i
\(952\) 0 0
\(953\) 8807.21 6398.81i 0.299363 0.217500i −0.427956 0.903800i \(-0.640766\pi\)
0.727319 + 0.686299i \(0.240766\pi\)
\(954\) 0 0
\(955\) 6942.96 + 21368.2i 0.235255 + 0.724042i
\(956\) 0 0
\(957\) −4996.59 21102.3i −0.168774 0.712791i
\(958\) 0 0
\(959\) −16502.1 50788.2i −0.555662 1.71015i
\(960\) 0 0
\(961\) −14226.2 + 10335.9i −0.477532 + 0.346948i
\(962\) 0 0
\(963\) 4800.78 14775.3i 0.160647 0.494421i
\(964\) 0 0
\(965\) −6487.07 4713.13i −0.216400 0.157224i
\(966\) 0 0
\(967\) 36363.5 1.20928 0.604639 0.796499i \(-0.293317\pi\)
0.604639 + 0.796499i \(0.293317\pi\)
\(968\) 0 0
\(969\) 29127.2 0.965635
\(970\) 0 0
\(971\) 26661.2 + 19370.5i 0.881152 + 0.640194i 0.933556 0.358432i \(-0.116688\pi\)
−0.0524042 + 0.998626i \(0.516688\pi\)
\(972\) 0 0
\(973\) −13257.5 + 40802.5i −0.436811 + 1.34437i
\(974\) 0 0
\(975\) 11442.4 8313.41i 0.375847 0.273069i
\(976\) 0 0
\(977\) 8074.40 + 24850.4i 0.264404 + 0.813752i 0.991830 + 0.127566i \(0.0407165\pi\)
−0.727426 + 0.686186i \(0.759283\pi\)
\(978\) 0 0
\(979\) 11622.4 + 49085.3i 0.379421 + 1.60242i
\(980\) 0 0
\(981\) −1953.09 6011.00i −0.0635652 0.195634i
\(982\) 0 0
\(983\) −22498.9 + 16346.4i −0.730014 + 0.530386i −0.889568 0.456803i \(-0.848994\pi\)
0.159554 + 0.987189i \(0.448994\pi\)
\(984\) 0 0
\(985\) −6911.00 + 21269.9i −0.223556 + 0.688035i
\(986\) 0 0
\(987\) −39321.7 28568.9i −1.26811 0.921335i
\(988\) 0 0
\(989\) −18288.9 −0.588022
\(990\) 0 0
\(991\) −39402.4 −1.26303 −0.631513 0.775365i \(-0.717566\pi\)
−0.631513 + 0.775365i \(0.717566\pi\)
\(992\) 0 0
\(993\) 45570.2 + 33108.7i 1.45632 + 1.05808i
\(994\) 0 0
\(995\) −7162.61 + 22044.2i −0.228211 + 0.702361i
\(996\) 0 0
\(997\) −31622.8 + 22975.3i −1.00452 + 0.729824i −0.963052 0.269316i \(-0.913203\pi\)
−0.0414651 + 0.999140i \(0.513203\pi\)
\(998\) 0 0
\(999\) −7376.95 22703.9i −0.233630 0.719039i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.e.49.1 16
4.3 odd 2 88.4.i.a.49.4 yes 16
11.3 even 5 1936.4.a.bw.1.7 8
11.8 odd 10 1936.4.a.bv.1.7 8
11.9 even 5 inner 176.4.m.e.97.1 16
44.3 odd 10 968.4.a.n.1.2 8
44.19 even 10 968.4.a.o.1.2 8
44.31 odd 10 88.4.i.a.9.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.4 16 44.31 odd 10
88.4.i.a.49.4 yes 16 4.3 odd 2
176.4.m.e.49.1 16 1.1 even 1 trivial
176.4.m.e.97.1 16 11.9 even 5 inner
968.4.a.n.1.2 8 44.3 odd 10
968.4.a.o.1.2 8 44.19 even 10
1936.4.a.bv.1.7 8 11.8 odd 10
1936.4.a.bw.1.7 8 11.3 even 5