Properties

Label 176.4.m.d.81.3
Level $176$
Weight $4$
Character 176.81
Analytic conductor $10.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 70 x^{10} - 84 x^{9} + 2459 x^{8} - 8514 x^{7} + 54995 x^{6} - 432951 x^{5} + \cdots + 40896025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.3
Root \(3.41047 + 2.47785i\) of defining polynomial
Character \(\chi\) \(=\) 176.81
Dual form 176.4.m.d.113.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30268 - 4.00925i) q^{3} +(-13.7488 + 9.98909i) q^{5} +(-1.14865 - 3.53519i) q^{7} +(7.46635 + 5.42462i) q^{9} +(35.9801 - 6.03578i) q^{11} +(50.6891 + 36.8278i) q^{13} +(22.1384 + 68.1350i) q^{15} +(67.4838 - 49.0299i) q^{17} +(-15.3707 + 47.3060i) q^{19} -15.6698 q^{21} +42.7247 q^{23} +(50.6205 - 155.794i) q^{25} +(123.558 - 89.7700i) q^{27} +(47.8637 + 147.309i) q^{29} +(-163.585 - 118.852i) q^{31} +(22.6718 - 152.116i) q^{33} +(51.1060 + 37.1306i) q^{35} +(29.6386 + 91.2183i) q^{37} +(213.684 - 155.250i) q^{39} +(-139.139 + 428.225i) q^{41} +343.078 q^{43} -156.840 q^{45} +(-121.252 + 373.175i) q^{47} +(266.315 - 193.489i) q^{49} +(-108.663 - 334.430i) q^{51} +(155.884 + 113.257i) q^{53} +(-434.392 + 442.393i) q^{55} +(169.639 + 123.250i) q^{57} +(163.707 + 503.838i) q^{59} +(273.040 - 198.375i) q^{61} +(10.6008 - 32.6260i) q^{63} -1064.79 q^{65} -831.356 q^{67} +(55.6568 - 171.294i) q^{69} +(546.910 - 397.354i) q^{71} +(-375.494 - 1155.65i) q^{73} +(-558.674 - 405.900i) q^{75} +(-62.6663 - 120.264i) q^{77} +(-867.501 - 630.277i) q^{79} +(-121.952 - 375.331i) q^{81} +(-65.4403 + 47.5452i) q^{83} +(-438.058 + 1348.20i) q^{85} +652.951 q^{87} -30.9863 q^{89} +(71.9691 - 221.498i) q^{91} +(-689.606 + 501.028i) q^{93} +(-261.216 - 803.940i) q^{95} +(-73.7338 - 53.5708i) q^{97} +(301.382 + 150.113i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 4 q^{5} - 6 q^{7} + 47 q^{9} - 39 q^{11} - 10 q^{13} - 74 q^{15} - 56 q^{17} + 141 q^{19} - 304 q^{21} + 388 q^{23} - 203 q^{25} + 331 q^{27} + 772 q^{29} - 882 q^{31} + 981 q^{33} - 412 q^{35}+ \cdots - 3563 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30268 4.00925i 0.250702 0.771581i −0.743944 0.668242i \(-0.767047\pi\)
0.994646 0.103339i \(-0.0329527\pi\)
\(4\) 0 0
\(5\) −13.7488 + 9.98909i −1.22973 + 0.893451i −0.996870 0.0790592i \(-0.974808\pi\)
−0.232860 + 0.972510i \(0.574808\pi\)
\(6\) 0 0
\(7\) −1.14865 3.53519i −0.0620215 0.190882i 0.915245 0.402898i \(-0.131997\pi\)
−0.977266 + 0.212016i \(0.931997\pi\)
\(8\) 0 0
\(9\) 7.46635 + 5.42462i 0.276531 + 0.200912i
\(10\) 0 0
\(11\) 35.9801 6.03578i 0.986220 0.165441i
\(12\) 0 0
\(13\) 50.6891 + 36.8278i 1.08143 + 0.785707i 0.977932 0.208922i \(-0.0669955\pi\)
0.103501 + 0.994629i \(0.466996\pi\)
\(14\) 0 0
\(15\) 22.1384 + 68.1350i 0.381074 + 1.17283i
\(16\) 0 0
\(17\) 67.4838 49.0299i 0.962778 0.699499i 0.00898393 0.999960i \(-0.497140\pi\)
0.953794 + 0.300460i \(0.0971403\pi\)
\(18\) 0 0
\(19\) −15.3707 + 47.3060i −0.185593 + 0.571197i −0.999958 0.00915592i \(-0.997086\pi\)
0.814365 + 0.580353i \(0.197086\pi\)
\(20\) 0 0
\(21\) −15.6698 −0.162830
\(22\) 0 0
\(23\) 42.7247 0.387335 0.193668 0.981067i \(-0.437962\pi\)
0.193668 + 0.981067i \(0.437962\pi\)
\(24\) 0 0
\(25\) 50.6205 155.794i 0.404964 1.24635i
\(26\) 0 0
\(27\) 123.558 89.7700i 0.880693 0.639861i
\(28\) 0 0
\(29\) 47.8637 + 147.309i 0.306485 + 0.943263i 0.979119 + 0.203288i \(0.0651628\pi\)
−0.672634 + 0.739975i \(0.734837\pi\)
\(30\) 0 0
\(31\) −163.585 118.852i −0.947767 0.688593i 0.00251102 0.999997i \(-0.499201\pi\)
−0.950278 + 0.311404i \(0.899201\pi\)
\(32\) 0 0
\(33\) 22.6718 152.116i 0.119596 0.802425i
\(34\) 0 0
\(35\) 51.1060 + 37.1306i 0.246814 + 0.179321i
\(36\) 0 0
\(37\) 29.6386 + 91.2183i 0.131691 + 0.405303i 0.995061 0.0992690i \(-0.0316504\pi\)
−0.863370 + 0.504572i \(0.831650\pi\)
\(38\) 0 0
\(39\) 213.684 155.250i 0.877354 0.637435i
\(40\) 0 0
\(41\) −139.139 + 428.225i −0.529995 + 1.63116i 0.224226 + 0.974537i \(0.428015\pi\)
−0.754221 + 0.656620i \(0.771985\pi\)
\(42\) 0 0
\(43\) 343.078 1.21672 0.608360 0.793661i \(-0.291828\pi\)
0.608360 + 0.793661i \(0.291828\pi\)
\(44\) 0 0
\(45\) −156.840 −0.519564
\(46\) 0 0
\(47\) −121.252 + 373.175i −0.376306 + 1.15815i 0.566287 + 0.824208i \(0.308379\pi\)
−0.942593 + 0.333943i \(0.891621\pi\)
\(48\) 0 0
\(49\) 266.315 193.489i 0.776428 0.564108i
\(50\) 0 0
\(51\) −108.663 334.430i −0.298350 0.918227i
\(52\) 0 0
\(53\) 155.884 + 113.257i 0.404007 + 0.293528i 0.771171 0.636628i \(-0.219671\pi\)
−0.367164 + 0.930156i \(0.619671\pi\)
\(54\) 0 0
\(55\) −434.392 + 442.393i −1.06497 + 1.08459i
\(56\) 0 0
\(57\) 169.639 + 123.250i 0.394196 + 0.286400i
\(58\) 0 0
\(59\) 163.707 + 503.838i 0.361235 + 1.11177i 0.952306 + 0.305146i \(0.0987053\pi\)
−0.591071 + 0.806619i \(0.701295\pi\)
\(60\) 0 0
\(61\) 273.040 198.375i 0.573102 0.416383i −0.263129 0.964761i \(-0.584754\pi\)
0.836231 + 0.548378i \(0.184754\pi\)
\(62\) 0 0
\(63\) 10.6008 32.6260i 0.0211997 0.0652459i
\(64\) 0 0
\(65\) −1064.79 −2.03186
\(66\) 0 0
\(67\) −831.356 −1.51591 −0.757957 0.652304i \(-0.773803\pi\)
−0.757957 + 0.652304i \(0.773803\pi\)
\(68\) 0 0
\(69\) 55.6568 171.294i 0.0971056 0.298860i
\(70\) 0 0
\(71\) 546.910 397.354i 0.914173 0.664186i −0.0278936 0.999611i \(-0.508880\pi\)
0.942067 + 0.335425i \(0.108880\pi\)
\(72\) 0 0
\(73\) −375.494 1155.65i −0.602030 1.85286i −0.516043 0.856563i \(-0.672596\pi\)
−0.0859871 0.996296i \(-0.527404\pi\)
\(74\) 0 0
\(75\) −558.674 405.900i −0.860135 0.624925i
\(76\) 0 0
\(77\) −62.6663 120.264i −0.0927467 0.177991i
\(78\) 0 0
\(79\) −867.501 630.277i −1.23546 0.897616i −0.238175 0.971222i \(-0.576549\pi\)
−0.997287 + 0.0736062i \(0.976549\pi\)
\(80\) 0 0
\(81\) −121.952 375.331i −0.167287 0.514857i
\(82\) 0 0
\(83\) −65.4403 + 47.5452i −0.0865423 + 0.0628766i −0.630215 0.776421i \(-0.717033\pi\)
0.543673 + 0.839297i \(0.317033\pi\)
\(84\) 0 0
\(85\) −438.058 + 1348.20i −0.558989 + 1.72039i
\(86\) 0 0
\(87\) 652.951 0.804640
\(88\) 0 0
\(89\) −30.9863 −0.0369049 −0.0184525 0.999830i \(-0.505874\pi\)
−0.0184525 + 0.999830i \(0.505874\pi\)
\(90\) 0 0
\(91\) 71.9691 221.498i 0.0829057 0.255157i
\(92\) 0 0
\(93\) −689.606 + 501.028i −0.768912 + 0.558647i
\(94\) 0 0
\(95\) −261.216 803.940i −0.282107 0.868237i
\(96\) 0 0
\(97\) −73.7338 53.5708i −0.0771808 0.0560751i 0.548526 0.836134i \(-0.315189\pi\)
−0.625707 + 0.780059i \(0.715189\pi\)
\(98\) 0 0
\(99\) 301.382 + 150.113i 0.305960 + 0.152393i
\(100\) 0 0
\(101\) 973.926 + 707.598i 0.959497 + 0.697116i 0.953034 0.302864i \(-0.0979427\pi\)
0.00646329 + 0.999979i \(0.497943\pi\)
\(102\) 0 0
\(103\) 257.794 + 793.408i 0.246613 + 0.758998i 0.995367 + 0.0961494i \(0.0306527\pi\)
−0.748754 + 0.662849i \(0.769347\pi\)
\(104\) 0 0
\(105\) 215.441 156.527i 0.200237 0.145481i
\(106\) 0 0
\(107\) −123.997 + 381.623i −0.112030 + 0.344794i −0.991316 0.131501i \(-0.958020\pi\)
0.879286 + 0.476295i \(0.158020\pi\)
\(108\) 0 0
\(109\) −1195.49 −1.05052 −0.525262 0.850941i \(-0.676033\pi\)
−0.525262 + 0.850941i \(0.676033\pi\)
\(110\) 0 0
\(111\) 404.327 0.345739
\(112\) 0 0
\(113\) 269.208 828.538i 0.224115 0.689755i −0.774265 0.632861i \(-0.781880\pi\)
0.998380 0.0568936i \(-0.0181196\pi\)
\(114\) 0 0
\(115\) −587.413 + 426.780i −0.476318 + 0.346065i
\(116\) 0 0
\(117\) 178.686 + 549.938i 0.141192 + 0.434546i
\(118\) 0 0
\(119\) −250.846 182.250i −0.193235 0.140394i
\(120\) 0 0
\(121\) 1258.14 434.336i 0.945258 0.326323i
\(122\) 0 0
\(123\) 1535.61 + 1115.68i 1.12570 + 0.817868i
\(124\) 0 0
\(125\) 203.820 + 627.295i 0.145842 + 0.448855i
\(126\) 0 0
\(127\) 699.947 508.541i 0.489057 0.355321i −0.315764 0.948838i \(-0.602261\pi\)
0.804822 + 0.593517i \(0.202261\pi\)
\(128\) 0 0
\(129\) 446.923 1375.49i 0.305034 0.938798i
\(130\) 0 0
\(131\) −2598.55 −1.73310 −0.866551 0.499088i \(-0.833668\pi\)
−0.866551 + 0.499088i \(0.833668\pi\)
\(132\) 0 0
\(133\) 184.892 0.120542
\(134\) 0 0
\(135\) −802.051 + 2468.46i −0.511330 + 1.57371i
\(136\) 0 0
\(137\) 683.314 496.457i 0.426127 0.309600i −0.353971 0.935256i \(-0.615169\pi\)
0.780098 + 0.625657i \(0.215169\pi\)
\(138\) 0 0
\(139\) −385.565 1186.65i −0.235275 0.724101i −0.997085 0.0763004i \(-0.975689\pi\)
0.761810 0.647800i \(-0.224311\pi\)
\(140\) 0 0
\(141\) 1338.20 + 972.258i 0.799267 + 0.580701i
\(142\) 0 0
\(143\) 2046.09 + 1019.12i 1.19652 + 0.595966i
\(144\) 0 0
\(145\) −2129.55 1547.21i −1.21965 0.886130i
\(146\) 0 0
\(147\) −428.822 1319.78i −0.240603 0.740499i
\(148\) 0 0
\(149\) 262.444 190.677i 0.144297 0.104838i −0.513295 0.858212i \(-0.671575\pi\)
0.657592 + 0.753375i \(0.271575\pi\)
\(150\) 0 0
\(151\) 568.606 1749.99i 0.306440 0.943126i −0.672695 0.739919i \(-0.734864\pi\)
0.979136 0.203207i \(-0.0651364\pi\)
\(152\) 0 0
\(153\) 769.826 0.406776
\(154\) 0 0
\(155\) 3436.32 1.78072
\(156\) 0 0
\(157\) −800.616 + 2464.04i −0.406981 + 1.25256i 0.512248 + 0.858838i \(0.328813\pi\)
−0.919229 + 0.393722i \(0.871187\pi\)
\(158\) 0 0
\(159\) 657.142 477.442i 0.327766 0.238136i
\(160\) 0 0
\(161\) −49.0758 151.040i −0.0240231 0.0739355i
\(162\) 0 0
\(163\) 2380.47 + 1729.51i 1.14388 + 0.831079i 0.987655 0.156642i \(-0.0500668\pi\)
0.156227 + 0.987721i \(0.450067\pi\)
\(164\) 0 0
\(165\) 1207.79 + 2317.88i 0.569857 + 1.09362i
\(166\) 0 0
\(167\) −1533.32 1114.02i −0.710489 0.516201i 0.172842 0.984950i \(-0.444705\pi\)
−0.883332 + 0.468749i \(0.844705\pi\)
\(168\) 0 0
\(169\) 534.190 + 1644.07i 0.243145 + 0.748323i
\(170\) 0 0
\(171\) −371.380 + 269.823i −0.166083 + 0.120666i
\(172\) 0 0
\(173\) 628.110 1933.12i 0.276037 0.849553i −0.712907 0.701259i \(-0.752622\pi\)
0.988943 0.148294i \(-0.0473783\pi\)
\(174\) 0 0
\(175\) −608.906 −0.263023
\(176\) 0 0
\(177\) 2233.27 0.948379
\(178\) 0 0
\(179\) 610.245 1878.14i 0.254815 0.784239i −0.739051 0.673649i \(-0.764726\pi\)
0.993866 0.110590i \(-0.0352741\pi\)
\(180\) 0 0
\(181\) 734.395 533.569i 0.301586 0.219115i −0.426692 0.904397i \(-0.640321\pi\)
0.728278 + 0.685282i \(0.240321\pi\)
\(182\) 0 0
\(183\) −439.651 1353.11i −0.177595 0.546583i
\(184\) 0 0
\(185\) −1318.68 958.079i −0.524062 0.380753i
\(186\) 0 0
\(187\) 2132.14 2171.42i 0.833785 0.849143i
\(188\) 0 0
\(189\) −459.279 333.686i −0.176760 0.128424i
\(190\) 0 0
\(191\) 516.342 + 1589.14i 0.195608 + 0.602021i 0.999969 + 0.00787928i \(0.00250808\pi\)
−0.804361 + 0.594141i \(0.797492\pi\)
\(192\) 0 0
\(193\) −1950.48 + 1417.11i −0.727455 + 0.528527i −0.888757 0.458378i \(-0.848431\pi\)
0.161302 + 0.986905i \(0.448431\pi\)
\(194\) 0 0
\(195\) −1387.09 + 4269.01i −0.509391 + 1.56775i
\(196\) 0 0
\(197\) 1966.58 0.711234 0.355617 0.934632i \(-0.384271\pi\)
0.355617 + 0.934632i \(0.384271\pi\)
\(198\) 0 0
\(199\) −136.896 −0.0487653 −0.0243827 0.999703i \(-0.507762\pi\)
−0.0243827 + 0.999703i \(0.507762\pi\)
\(200\) 0 0
\(201\) −1082.99 + 3333.12i −0.380043 + 1.16965i
\(202\) 0 0
\(203\) 465.788 338.414i 0.161044 0.117005i
\(204\) 0 0
\(205\) −2364.58 7277.44i −0.805608 2.47941i
\(206\) 0 0
\(207\) 318.997 + 231.765i 0.107110 + 0.0778202i
\(208\) 0 0
\(209\) −267.510 + 1794.85i −0.0885360 + 0.594031i
\(210\) 0 0
\(211\) −732.412 532.129i −0.238964 0.173617i 0.461858 0.886954i \(-0.347183\pi\)
−0.700821 + 0.713337i \(0.747183\pi\)
\(212\) 0 0
\(213\) −880.639 2710.33i −0.283288 0.871871i
\(214\) 0 0
\(215\) −4716.91 + 3427.04i −1.49624 + 1.08708i
\(216\) 0 0
\(217\) −232.261 + 714.824i −0.0726584 + 0.223620i
\(218\) 0 0
\(219\) −5122.44 −1.58056
\(220\) 0 0
\(221\) 5226.36 1.59078
\(222\) 0 0
\(223\) 338.973 1043.25i 0.101791 0.313280i −0.887173 0.461437i \(-0.847334\pi\)
0.988964 + 0.148157i \(0.0473341\pi\)
\(224\) 0 0
\(225\) 1223.07 888.614i 0.362392 0.263293i
\(226\) 0 0
\(227\) 1053.66 + 3242.85i 0.308080 + 0.948173i 0.978510 + 0.206200i \(0.0661097\pi\)
−0.670430 + 0.741973i \(0.733890\pi\)
\(228\) 0 0
\(229\) −4478.03 3253.48i −1.29221 0.938846i −0.292363 0.956307i \(-0.594442\pi\)
−0.999848 + 0.0174614i \(0.994442\pi\)
\(230\) 0 0
\(231\) −563.802 + 94.5795i −0.160586 + 0.0269389i
\(232\) 0 0
\(233\) −193.071 140.274i −0.0542854 0.0394407i 0.560312 0.828282i \(-0.310681\pi\)
−0.614597 + 0.788841i \(0.710681\pi\)
\(234\) 0 0
\(235\) −2060.61 6341.90i −0.571997 1.76042i
\(236\) 0 0
\(237\) −3657.02 + 2656.98i −1.00232 + 0.728225i
\(238\) 0 0
\(239\) −8.27965 + 25.4821i −0.00224086 + 0.00689667i −0.952171 0.305567i \(-0.901154\pi\)
0.949930 + 0.312463i \(0.101154\pi\)
\(240\) 0 0
\(241\) −440.617 −0.117770 −0.0588851 0.998265i \(-0.518755\pi\)
−0.0588851 + 0.998265i \(0.518755\pi\)
\(242\) 0 0
\(243\) 2459.93 0.649402
\(244\) 0 0
\(245\) −1728.73 + 5320.48i −0.450794 + 1.38740i
\(246\) 0 0
\(247\) −2521.30 + 1831.83i −0.649501 + 0.471890i
\(248\) 0 0
\(249\) 105.372 + 324.303i 0.0268181 + 0.0825376i
\(250\) 0 0
\(251\) 858.998 + 624.099i 0.216014 + 0.156943i 0.690531 0.723303i \(-0.257377\pi\)
−0.474517 + 0.880247i \(0.657377\pi\)
\(252\) 0 0
\(253\) 1537.24 257.877i 0.381997 0.0640813i
\(254\) 0 0
\(255\) 4834.64 + 3512.57i 1.18728 + 0.862610i
\(256\) 0 0
\(257\) 845.449 + 2602.03i 0.205205 + 0.631556i 0.999705 + 0.0242918i \(0.00773307\pi\)
−0.794500 + 0.607264i \(0.792267\pi\)
\(258\) 0 0
\(259\) 288.430 209.557i 0.0691975 0.0502749i
\(260\) 0 0
\(261\) −441.730 + 1359.50i −0.104760 + 0.322418i
\(262\) 0 0
\(263\) −165.974 −0.0389140 −0.0194570 0.999811i \(-0.506194\pi\)
−0.0194570 + 0.999811i \(0.506194\pi\)
\(264\) 0 0
\(265\) −3274.55 −0.759072
\(266\) 0 0
\(267\) −40.3653 + 124.232i −0.00925213 + 0.0284751i
\(268\) 0 0
\(269\) 1679.93 1220.54i 0.380770 0.276645i −0.380893 0.924619i \(-0.624383\pi\)
0.761663 + 0.647974i \(0.224383\pi\)
\(270\) 0 0
\(271\) −2603.52 8012.80i −0.583588 1.79610i −0.604868 0.796326i \(-0.706774\pi\)
0.0212804 0.999774i \(-0.493226\pi\)
\(272\) 0 0
\(273\) −794.289 577.085i −0.176090 0.127937i
\(274\) 0 0
\(275\) 880.994 5911.01i 0.193185 1.29617i
\(276\) 0 0
\(277\) −1947.27 1414.78i −0.422384 0.306880i 0.356213 0.934405i \(-0.384068\pi\)
−0.778596 + 0.627525i \(0.784068\pi\)
\(278\) 0 0
\(279\) −576.659 1774.77i −0.123741 0.380835i
\(280\) 0 0
\(281\) −2707.68 + 1967.25i −0.574828 + 0.417637i −0.836856 0.547423i \(-0.815609\pi\)
0.262028 + 0.965060i \(0.415609\pi\)
\(282\) 0 0
\(283\) −1480.10 + 4555.27i −0.310893 + 0.956830i 0.666519 + 0.745488i \(0.267783\pi\)
−0.977412 + 0.211342i \(0.932217\pi\)
\(284\) 0 0
\(285\) −3563.48 −0.740640
\(286\) 0 0
\(287\) 1673.68 0.344230
\(288\) 0 0
\(289\) 631.938 1944.90i 0.128626 0.395869i
\(290\) 0 0
\(291\) −310.831 + 225.832i −0.0626159 + 0.0454931i
\(292\) 0 0
\(293\) −948.897 2920.41i −0.189199 0.582293i 0.810797 0.585328i \(-0.199034\pi\)
−0.999995 + 0.00303441i \(0.999034\pi\)
\(294\) 0 0
\(295\) −7283.66 5291.89i −1.43753 1.04443i
\(296\) 0 0
\(297\) 3903.79 3975.70i 0.762697 0.776746i
\(298\) 0 0
\(299\) 2165.68 + 1573.46i 0.418877 + 0.304332i
\(300\) 0 0
\(301\) −394.078 1212.85i −0.0754627 0.232250i
\(302\) 0 0
\(303\) 4105.66 2982.93i 0.778429 0.565562i
\(304\) 0 0
\(305\) −1772.39 + 5454.85i −0.332743 + 1.02408i
\(306\) 0 0
\(307\) −9278.28 −1.72488 −0.862442 0.506156i \(-0.831066\pi\)
−0.862442 + 0.506156i \(0.831066\pi\)
\(308\) 0 0
\(309\) 3516.80 0.647455
\(310\) 0 0
\(311\) −2152.99 + 6626.22i −0.392556 + 1.20816i 0.538293 + 0.842758i \(0.319069\pi\)
−0.930849 + 0.365405i \(0.880931\pi\)
\(312\) 0 0
\(313\) 4325.63 3142.75i 0.781147 0.567536i −0.124176 0.992260i \(-0.539629\pi\)
0.905323 + 0.424724i \(0.139629\pi\)
\(314\) 0 0
\(315\) 180.155 + 554.461i 0.0322241 + 0.0991756i
\(316\) 0 0
\(317\) −6487.01 4713.09i −1.14936 0.835058i −0.160963 0.986960i \(-0.551460\pi\)
−0.988396 + 0.151902i \(0.951460\pi\)
\(318\) 0 0
\(319\) 2611.27 + 5011.31i 0.458316 + 0.879559i
\(320\) 0 0
\(321\) 1368.50 + 994.270i 0.237950 + 0.172881i
\(322\) 0 0
\(323\) 1282.14 + 3946.01i 0.220867 + 0.679759i
\(324\) 0 0
\(325\) 8303.45 6032.81i 1.41721 1.02966i
\(326\) 0 0
\(327\) −1557.35 + 4793.02i −0.263368 + 0.810564i
\(328\) 0 0
\(329\) 1458.52 0.244410
\(330\) 0 0
\(331\) 6738.30 1.11894 0.559472 0.828849i \(-0.311004\pi\)
0.559472 + 0.828849i \(0.311004\pi\)
\(332\) 0 0
\(333\) −273.532 + 841.846i −0.0450135 + 0.138537i
\(334\) 0 0
\(335\) 11430.1 8304.49i 1.86417 1.35440i
\(336\) 0 0
\(337\) 1854.56 + 5707.74i 0.299775 + 0.922612i 0.981576 + 0.191074i \(0.0611971\pi\)
−0.681801 + 0.731538i \(0.738803\pi\)
\(338\) 0 0
\(339\) −2971.12 2158.65i −0.476015 0.345845i
\(340\) 0 0
\(341\) −6603.18 3288.93i −1.04863 0.522304i
\(342\) 0 0
\(343\) −2021.40 1468.63i −0.318208 0.231191i
\(344\) 0 0
\(345\) 945.856 + 2911.05i 0.147603 + 0.454277i
\(346\) 0 0
\(347\) −5631.84 + 4091.77i −0.871277 + 0.633020i −0.930929 0.365199i \(-0.881001\pi\)
0.0596522 + 0.998219i \(0.481001\pi\)
\(348\) 0 0
\(349\) 71.3186 219.496i 0.0109387 0.0336658i −0.945438 0.325801i \(-0.894366\pi\)
0.956377 + 0.292136i \(0.0943659\pi\)
\(350\) 0 0
\(351\) 9569.06 1.45515
\(352\) 0 0
\(353\) 6730.46 1.01481 0.507403 0.861709i \(-0.330606\pi\)
0.507403 + 0.861709i \(0.330606\pi\)
\(354\) 0 0
\(355\) −3550.16 + 10926.3i −0.530769 + 1.63354i
\(356\) 0 0
\(357\) −1057.46 + 768.289i −0.156769 + 0.113900i
\(358\) 0 0
\(359\) −246.333 758.137i −0.0362144 0.111457i 0.931315 0.364214i \(-0.118662\pi\)
−0.967530 + 0.252758i \(0.918662\pi\)
\(360\) 0 0
\(361\) 3547.44 + 2577.37i 0.517195 + 0.375764i
\(362\) 0 0
\(363\) −102.405 5610.00i −0.0148068 0.811153i
\(364\) 0 0
\(365\) 16706.5 + 12138.0i 2.39577 + 1.74063i
\(366\) 0 0
\(367\) 3306.07 + 10175.0i 0.470233 + 1.44723i 0.852281 + 0.523085i \(0.175219\pi\)
−0.382048 + 0.924143i \(0.624781\pi\)
\(368\) 0 0
\(369\) −3361.81 + 2442.50i −0.474279 + 0.344584i
\(370\) 0 0
\(371\) 221.327 681.173i 0.0309723 0.0953228i
\(372\) 0 0
\(373\) −748.042 −0.103839 −0.0519197 0.998651i \(-0.516534\pi\)
−0.0519197 + 0.998651i \(0.516534\pi\)
\(374\) 0 0
\(375\) 2780.50 0.382891
\(376\) 0 0
\(377\) −2998.91 + 9229.69i −0.409686 + 1.26088i
\(378\) 0 0
\(379\) 7285.94 5293.55i 0.987477 0.717444i 0.0281097 0.999605i \(-0.491051\pi\)
0.959367 + 0.282161i \(0.0910512\pi\)
\(380\) 0 0
\(381\) −1127.06 3468.73i −0.151551 0.466427i
\(382\) 0 0
\(383\) −5460.78 3967.49i −0.728545 0.529319i 0.160558 0.987026i \(-0.448671\pi\)
−0.889103 + 0.457708i \(0.848671\pi\)
\(384\) 0 0
\(385\) 2062.91 + 1027.50i 0.273080 + 0.136016i
\(386\) 0 0
\(387\) 2561.54 + 1861.07i 0.336461 + 0.244453i
\(388\) 0 0
\(389\) −3363.63 10352.2i −0.438413 1.34930i −0.889548 0.456841i \(-0.848981\pi\)
0.451136 0.892455i \(-0.351019\pi\)
\(390\) 0 0
\(391\) 2883.22 2094.78i 0.372918 0.270941i
\(392\) 0 0
\(393\) −3385.09 + 10418.2i −0.434492 + 1.33723i
\(394\) 0 0
\(395\) 18223.0 2.32126
\(396\) 0 0
\(397\) −2715.71 −0.343318 −0.171659 0.985156i \(-0.554913\pi\)
−0.171659 + 0.985156i \(0.554913\pi\)
\(398\) 0 0
\(399\) 240.855 741.277i 0.0302202 0.0930082i
\(400\) 0 0
\(401\) −279.955 + 203.399i −0.0348636 + 0.0253299i −0.605081 0.796164i \(-0.706859\pi\)
0.570217 + 0.821494i \(0.306859\pi\)
\(402\) 0 0
\(403\) −3914.95 12049.0i −0.483914 1.48933i
\(404\) 0 0
\(405\) 5425.91 + 3942.16i 0.665718 + 0.483673i
\(406\) 0 0
\(407\) 1616.98 + 3103.15i 0.196930 + 0.377930i
\(408\) 0 0
\(409\) −3753.25 2726.90i −0.453756 0.329673i 0.337321 0.941390i \(-0.390479\pi\)
−0.791077 + 0.611716i \(0.790479\pi\)
\(410\) 0 0
\(411\) −1100.28 3386.30i −0.132050 0.406409i
\(412\) 0 0
\(413\) 1593.12 1157.47i 0.189812 0.137907i
\(414\) 0 0
\(415\) 424.793 1307.38i 0.0502464 0.154643i
\(416\) 0 0
\(417\) −5259.83 −0.617686
\(418\) 0 0
\(419\) −4439.38 −0.517609 −0.258804 0.965930i \(-0.583328\pi\)
−0.258804 + 0.965930i \(0.583328\pi\)
\(420\) 0 0
\(421\) 4358.13 13412.9i 0.504518 1.55275i −0.297060 0.954859i \(-0.596006\pi\)
0.801579 0.597889i \(-0.203994\pi\)
\(422\) 0 0
\(423\) −2929.64 + 2128.51i −0.336747 + 0.244661i
\(424\) 0 0
\(425\) −4222.49 12995.5i −0.481931 1.48323i
\(426\) 0 0
\(427\) −1014.92 737.385i −0.115025 0.0835704i
\(428\) 0 0
\(429\) 6751.31 6875.68i 0.759805 0.773802i
\(430\) 0 0
\(431\) −10016.6 7277.51i −1.11945 0.813330i −0.135327 0.990801i \(-0.543209\pi\)
−0.984126 + 0.177471i \(0.943209\pi\)
\(432\) 0 0
\(433\) 1908.49 + 5873.72i 0.211815 + 0.651901i 0.999364 + 0.0356488i \(0.0113498\pi\)
−0.787549 + 0.616252i \(0.788650\pi\)
\(434\) 0 0
\(435\) −8977.29 + 6522.38i −0.989490 + 0.718906i
\(436\) 0 0
\(437\) −656.706 + 2021.13i −0.0718868 + 0.221245i
\(438\) 0 0
\(439\) −6768.55 −0.735867 −0.367933 0.929852i \(-0.619935\pi\)
−0.367933 + 0.929852i \(0.619935\pi\)
\(440\) 0 0
\(441\) 3038.00 0.328043
\(442\) 0 0
\(443\) 425.088 1308.29i 0.0455904 0.140313i −0.925670 0.378331i \(-0.876498\pi\)
0.971261 + 0.238019i \(0.0764980\pi\)
\(444\) 0 0
\(445\) 426.024 309.524i 0.0453831 0.0329727i
\(446\) 0 0
\(447\) −422.589 1300.60i −0.0447154 0.137620i
\(448\) 0 0
\(449\) 712.335 + 517.542i 0.0748712 + 0.0543971i 0.624591 0.780952i \(-0.285266\pi\)
−0.549720 + 0.835349i \(0.685266\pi\)
\(450\) 0 0
\(451\) −2421.56 + 16247.4i −0.252831 + 1.69636i
\(452\) 0 0
\(453\) −6275.43 4559.37i −0.650873 0.472887i
\(454\) 0 0
\(455\) 1223.08 + 3764.24i 0.126019 + 0.387847i
\(456\) 0 0
\(457\) −7593.09 + 5516.70i −0.777221 + 0.564684i −0.904144 0.427229i \(-0.859490\pi\)
0.126923 + 0.991913i \(0.459490\pi\)
\(458\) 0 0
\(459\) 3936.74 12116.0i 0.400330 1.23209i
\(460\) 0 0
\(461\) −14837.4 −1.49902 −0.749508 0.661996i \(-0.769710\pi\)
−0.749508 + 0.661996i \(0.769710\pi\)
\(462\) 0 0
\(463\) −8010.57 −0.804067 −0.402033 0.915625i \(-0.631696\pi\)
−0.402033 + 0.915625i \(0.631696\pi\)
\(464\) 0 0
\(465\) 4476.44 13777.1i 0.446430 1.37397i
\(466\) 0 0
\(467\) −4635.28 + 3367.73i −0.459305 + 0.333704i −0.793258 0.608885i \(-0.791617\pi\)
0.333954 + 0.942589i \(0.391617\pi\)
\(468\) 0 0
\(469\) 954.940 + 2939.00i 0.0940193 + 0.289362i
\(470\) 0 0
\(471\) 8836.01 + 6419.74i 0.864420 + 0.628038i
\(472\) 0 0
\(473\) 12344.0 2070.74i 1.19995 0.201296i
\(474\) 0 0
\(475\) 6591.92 + 4789.31i 0.636754 + 0.462629i
\(476\) 0 0
\(477\) 549.513 + 1691.23i 0.0527473 + 0.162339i
\(478\) 0 0
\(479\) 6818.88 4954.21i 0.650444 0.472575i −0.212978 0.977057i \(-0.568316\pi\)
0.863422 + 0.504482i \(0.168316\pi\)
\(480\) 0 0
\(481\) −1857.01 + 5715.30i −0.176034 + 0.541778i
\(482\) 0 0
\(483\) −669.487 −0.0630698
\(484\) 0 0
\(485\) 1548.87 0.145012
\(486\) 0 0
\(487\) −545.237 + 1678.07i −0.0507332 + 0.156141i −0.973213 0.229904i \(-0.926159\pi\)
0.922480 + 0.386044i \(0.126159\pi\)
\(488\) 0 0
\(489\) 10035.1 7290.90i 0.928018 0.674245i
\(490\) 0 0
\(491\) 1604.32 + 4937.60i 0.147458 + 0.453830i 0.997319 0.0731775i \(-0.0233139\pi\)
−0.849861 + 0.527008i \(0.823314\pi\)
\(492\) 0 0
\(493\) 10452.6 + 7594.24i 0.954889 + 0.693767i
\(494\) 0 0
\(495\) −5643.13 + 946.654i −0.512404 + 0.0859574i
\(496\) 0 0
\(497\) −2032.93 1477.01i −0.183480 0.133306i
\(498\) 0 0
\(499\) −1406.92 4330.05i −0.126217 0.388456i 0.867904 0.496732i \(-0.165467\pi\)
−0.994121 + 0.108276i \(0.965467\pi\)
\(500\) 0 0
\(501\) −6463.82 + 4696.24i −0.576412 + 0.418787i
\(502\) 0 0
\(503\) −1848.60 + 5689.40i −0.163867 + 0.504330i −0.998951 0.0457921i \(-0.985419\pi\)
0.835084 + 0.550122i \(0.185419\pi\)
\(504\) 0 0
\(505\) −20458.6 −1.80276
\(506\) 0 0
\(507\) 7287.36 0.638349
\(508\) 0 0
\(509\) −4576.25 + 14084.2i −0.398504 + 1.22647i 0.527695 + 0.849434i \(0.323056\pi\)
−0.926199 + 0.377035i \(0.876944\pi\)
\(510\) 0 0
\(511\) −3654.14 + 2654.89i −0.316339 + 0.229834i
\(512\) 0 0
\(513\) 2347.50 + 7224.85i 0.202036 + 0.621803i
\(514\) 0 0
\(515\) −11469.8 8333.28i −0.981395 0.713025i
\(516\) 0 0
\(517\) −2110.25 + 14158.7i −0.179514 + 1.20445i
\(518\) 0 0
\(519\) −6932.15 5036.50i −0.586296 0.425969i
\(520\) 0 0
\(521\) −4348.29 13382.7i −0.365647 1.12535i −0.949575 0.313541i \(-0.898485\pi\)
0.583928 0.811806i \(-0.301515\pi\)
\(522\) 0 0
\(523\) 6521.51 4738.15i 0.545250 0.396147i −0.280781 0.959772i \(-0.590594\pi\)
0.826031 + 0.563625i \(0.190594\pi\)
\(524\) 0 0
\(525\) −793.213 + 2441.26i −0.0659403 + 0.202943i
\(526\) 0 0
\(527\) −16866.6 −1.39416
\(528\) 0 0
\(529\) −10341.6 −0.849972
\(530\) 0 0
\(531\) −1510.84 + 4649.88i −0.123474 + 0.380014i
\(532\) 0 0
\(533\) −22823.4 + 16582.2i −1.85477 + 1.34757i
\(534\) 0 0
\(535\) −2107.26 6485.48i −0.170289 0.524097i
\(536\) 0 0
\(537\) −6734.98 4893.25i −0.541222 0.393221i
\(538\) 0 0
\(539\) 8414.18 8569.17i 0.672401 0.684787i
\(540\) 0 0
\(541\) −1873.12 1360.90i −0.148857 0.108151i 0.510864 0.859662i \(-0.329326\pi\)
−0.659721 + 0.751510i \(0.729326\pi\)
\(542\) 0 0
\(543\) −1182.53 3639.45i −0.0934569 0.287631i
\(544\) 0 0
\(545\) 16436.5 11941.8i 1.29186 0.938592i
\(546\) 0 0
\(547\) 3071.91 9454.38i 0.240120 0.739013i −0.756281 0.654247i \(-0.772986\pi\)
0.996401 0.0847660i \(-0.0270143\pi\)
\(548\) 0 0
\(549\) 3114.73 0.242137
\(550\) 0 0
\(551\) −7704.31 −0.595671
\(552\) 0 0
\(553\) −1231.69 + 3790.75i −0.0947140 + 0.291500i
\(554\) 0 0
\(555\) −5559.01 + 4038.86i −0.425165 + 0.308901i
\(556\) 0 0
\(557\) −2116.69 6514.50i −0.161018 0.495563i 0.837703 0.546126i \(-0.183898\pi\)
−0.998721 + 0.0505638i \(0.983898\pi\)
\(558\) 0 0
\(559\) 17390.3 + 12634.8i 1.31580 + 0.955985i
\(560\) 0 0
\(561\) −5928.25 11377.0i −0.446151 0.856214i
\(562\) 0 0
\(563\) −19117.2 13889.5i −1.43107 1.03974i −0.989815 0.142357i \(-0.954532\pi\)
−0.441260 0.897379i \(-0.645468\pi\)
\(564\) 0 0
\(565\) 4575.05 + 14080.5i 0.340661 + 1.04845i
\(566\) 0 0
\(567\) −1186.79 + 862.251i −0.0879018 + 0.0638644i
\(568\) 0 0
\(569\) 8055.13 24791.1i 0.593477 1.82654i 0.0313131 0.999510i \(-0.490031\pi\)
0.562164 0.827026i \(-0.309969\pi\)
\(570\) 0 0
\(571\) 10583.8 0.775688 0.387844 0.921725i \(-0.373220\pi\)
0.387844 + 0.921725i \(0.373220\pi\)
\(572\) 0 0
\(573\) 7043.88 0.513547
\(574\) 0 0
\(575\) 2162.74 6656.24i 0.156857 0.482755i
\(576\) 0 0
\(577\) −8646.18 + 6281.82i −0.623822 + 0.453233i −0.854254 0.519855i \(-0.825986\pi\)
0.230433 + 0.973088i \(0.425986\pi\)
\(578\) 0 0
\(579\) 3140.68 + 9666.02i 0.225427 + 0.693793i
\(580\) 0 0
\(581\) 243.250 + 176.731i 0.0173695 + 0.0126197i
\(582\) 0 0
\(583\) 6292.33 + 3134.10i 0.447001 + 0.222644i
\(584\) 0 0
\(585\) −7950.10 5776.08i −0.561874 0.408225i
\(586\) 0 0
\(587\) 2908.07 + 8950.13i 0.204479 + 0.629321i 0.999734 + 0.0230465i \(0.00733658\pi\)
−0.795256 + 0.606274i \(0.792663\pi\)
\(588\) 0 0
\(589\) 8136.81 5911.74i 0.569221 0.413564i
\(590\) 0 0
\(591\) 2561.83 7884.51i 0.178308 0.548774i
\(592\) 0 0
\(593\) 21740.9 1.50555 0.752776 0.658277i \(-0.228714\pi\)
0.752776 + 0.658277i \(0.228714\pi\)
\(594\) 0 0
\(595\) 5269.34 0.363062
\(596\) 0 0
\(597\) −178.332 + 548.850i −0.0122255 + 0.0376264i
\(598\) 0 0
\(599\) 794.385 577.154i 0.0541864 0.0393687i −0.560362 0.828248i \(-0.689338\pi\)
0.614549 + 0.788879i \(0.289338\pi\)
\(600\) 0 0
\(601\) −2222.06 6838.80i −0.150815 0.464161i 0.846898 0.531756i \(-0.178467\pi\)
−0.997713 + 0.0675949i \(0.978467\pi\)
\(602\) 0 0
\(603\) −6207.19 4509.79i −0.419198 0.304565i
\(604\) 0 0
\(605\) −12959.3 + 18539.3i −0.870859 + 1.24583i
\(606\) 0 0
\(607\) 11261.9 + 8182.23i 0.753057 + 0.547128i 0.896773 0.442491i \(-0.145905\pi\)
−0.143716 + 0.989619i \(0.545905\pi\)
\(608\) 0 0
\(609\) −750.014 2308.31i −0.0499050 0.153592i
\(610\) 0 0
\(611\) −19889.3 + 14450.5i −1.31692 + 0.956797i
\(612\) 0 0
\(613\) 8192.67 25214.4i 0.539802 1.66134i −0.193236 0.981152i \(-0.561898\pi\)
0.733038 0.680188i \(-0.238102\pi\)
\(614\) 0 0
\(615\) −32257.4 −2.11503
\(616\) 0 0
\(617\) 808.541 0.0527563 0.0263782 0.999652i \(-0.491603\pi\)
0.0263782 + 0.999652i \(0.491603\pi\)
\(618\) 0 0
\(619\) 1530.60 4710.72i 0.0993864 0.305880i −0.888986 0.457935i \(-0.848589\pi\)
0.988372 + 0.152055i \(0.0485892\pi\)
\(620\) 0 0
\(621\) 5278.96 3835.39i 0.341123 0.247840i
\(622\) 0 0
\(623\) 35.5925 + 109.542i 0.00228890 + 0.00704450i
\(624\) 0 0
\(625\) 7497.38 + 5447.17i 0.479832 + 0.348619i
\(626\) 0 0
\(627\) 6847.53 + 3410.64i 0.436147 + 0.217237i
\(628\) 0 0
\(629\) 6472.55 + 4702.58i 0.410298 + 0.298099i
\(630\) 0 0
\(631\) 3789.00 + 11661.3i 0.239045 + 0.735706i 0.996559 + 0.0828869i \(0.0264140\pi\)
−0.757513 + 0.652820i \(0.773586\pi\)
\(632\) 0 0
\(633\) −3087.54 + 2243.23i −0.193868 + 0.140854i
\(634\) 0 0
\(635\) −4543.57 + 13983.7i −0.283946 + 0.873897i
\(636\) 0 0
\(637\) 20625.0 1.28288
\(638\) 0 0
\(639\) 6238.91 0.386240
\(640\) 0 0
\(641\) 3083.17 9489.02i 0.189981 0.584702i −0.810017 0.586406i \(-0.800542\pi\)
0.999999 + 0.00170413i \(0.000542441\pi\)
\(642\) 0 0
\(643\) −2639.71 + 1917.86i −0.161897 + 0.117625i −0.665784 0.746144i \(-0.731903\pi\)
0.503887 + 0.863770i \(0.331903\pi\)
\(644\) 0 0
\(645\) 7595.21 + 23375.6i 0.463660 + 1.42700i
\(646\) 0 0
\(647\) 20476.9 + 14877.3i 1.24425 + 0.903999i 0.997874 0.0651758i \(-0.0207608\pi\)
0.246374 + 0.969175i \(0.420761\pi\)
\(648\) 0 0
\(649\) 8931.26 + 17140.1i 0.540189 + 1.03668i
\(650\) 0 0
\(651\) 2563.35 + 1862.38i 0.154325 + 0.112124i
\(652\) 0 0
\(653\) −793.250 2441.37i −0.0475379 0.146307i 0.924470 0.381255i \(-0.124508\pi\)
−0.972008 + 0.234948i \(0.924508\pi\)
\(654\) 0 0
\(655\) 35726.9 25957.1i 2.13125 1.54844i
\(656\) 0 0
\(657\) 3465.40 10665.4i 0.205781 0.633329i
\(658\) 0 0
\(659\) 21712.9 1.28348 0.641742 0.766920i \(-0.278212\pi\)
0.641742 + 0.766920i \(0.278212\pi\)
\(660\) 0 0
\(661\) −9544.46 −0.561629 −0.280814 0.959762i \(-0.590605\pi\)
−0.280814 + 0.959762i \(0.590605\pi\)
\(662\) 0 0
\(663\) 6808.30 20953.8i 0.398812 1.22742i
\(664\) 0 0
\(665\) −2542.04 + 1846.90i −0.148235 + 0.107699i
\(666\) 0 0
\(667\) 2044.96 + 6293.73i 0.118712 + 0.365359i
\(668\) 0 0
\(669\) −3741.09 2718.06i −0.216202 0.157080i
\(670\) 0 0
\(671\) 8626.67 8785.58i 0.496318 0.505460i
\(672\) 0 0
\(673\) −18897.8 13730.1i −1.08240 0.786411i −0.104302 0.994546i \(-0.533261\pi\)
−0.978100 + 0.208135i \(0.933261\pi\)
\(674\) 0 0
\(675\) −7731.05 23793.7i −0.440842 1.35677i
\(676\) 0 0
\(677\) 277.971 201.958i 0.0157803 0.0114651i −0.579867 0.814711i \(-0.696896\pi\)
0.595647 + 0.803246i \(0.296896\pi\)
\(678\) 0 0
\(679\) −104.688 + 322.198i −0.00591689 + 0.0182103i
\(680\) 0 0
\(681\) 14374.0 0.808828
\(682\) 0 0
\(683\) −1268.81 −0.0710831 −0.0355415 0.999368i \(-0.511316\pi\)
−0.0355415 + 0.999368i \(0.511316\pi\)
\(684\) 0 0
\(685\) −4435.60 + 13651.4i −0.247409 + 0.761448i
\(686\) 0 0
\(687\) −18877.5 + 13715.3i −1.04836 + 0.761675i
\(688\) 0 0
\(689\) 3730.65 + 11481.7i 0.206279 + 0.634862i
\(690\) 0 0
\(691\) 5281.83 + 3837.47i 0.290782 + 0.211265i 0.723607 0.690213i \(-0.242483\pi\)
−0.432825 + 0.901478i \(0.642483\pi\)
\(692\) 0 0
\(693\) 184.496 1237.87i 0.0101132 0.0678540i
\(694\) 0 0
\(695\) 17154.6 + 12463.5i 0.936273 + 0.680242i
\(696\) 0 0
\(697\) 11606.2 + 35720.2i 0.630726 + 1.94117i
\(698\) 0 0
\(699\) −813.905 + 591.337i −0.0440411 + 0.0319977i
\(700\) 0 0
\(701\) −7743.51 + 23832.1i −0.417216 + 1.28406i 0.493038 + 0.870008i \(0.335887\pi\)
−0.910254 + 0.414051i \(0.864113\pi\)
\(702\) 0 0
\(703\) −4770.74 −0.255949
\(704\) 0 0
\(705\) −28110.6 −1.50171
\(706\) 0 0
\(707\) 1382.79 4255.80i 0.0735577 0.226387i
\(708\) 0 0
\(709\) 23680.2 17204.7i 1.25434 0.911334i 0.255877 0.966709i \(-0.417636\pi\)
0.998466 + 0.0553756i \(0.0176356\pi\)
\(710\) 0 0
\(711\) −3058.06 9411.73i −0.161303 0.496438i
\(712\) 0 0
\(713\) −6989.12 5077.89i −0.367103 0.266716i
\(714\) 0 0
\(715\) −38311.3 + 6426.84i −2.00386 + 0.336154i
\(716\) 0 0
\(717\) 91.3786 + 66.3904i 0.00475955 + 0.00345801i
\(718\) 0 0
\(719\) −4497.67 13842.4i −0.233289 0.717990i −0.997344 0.0728387i \(-0.976794\pi\)
0.764055 0.645152i \(-0.223206\pi\)
\(720\) 0 0
\(721\) 2508.73 1822.70i 0.129584 0.0941483i
\(722\) 0 0
\(723\) −573.985 + 1766.54i −0.0295252 + 0.0908693i
\(724\) 0 0
\(725\) 25372.7 1.29975
\(726\) 0 0
\(727\) −25556.6 −1.30377 −0.651887 0.758316i \(-0.726022\pi\)
−0.651887 + 0.758316i \(0.726022\pi\)
\(728\) 0 0
\(729\) 6497.23 19996.4i 0.330094 1.01592i
\(730\) 0 0
\(731\) 23152.2 16821.1i 1.17143 0.851095i
\(732\) 0 0
\(733\) −7073.64 21770.4i −0.356441 1.09701i −0.955170 0.296059i \(-0.904327\pi\)
0.598729 0.800952i \(-0.295673\pi\)
\(734\) 0 0
\(735\) 19079.2 + 13861.8i 0.957476 + 0.695647i
\(736\) 0 0
\(737\) −29912.3 + 5017.88i −1.49503 + 0.250795i
\(738\) 0 0
\(739\) 19150.8 + 13913.9i 0.953282 + 0.692600i 0.951581 0.307399i \(-0.0994585\pi\)
0.00170110 + 0.999999i \(0.499459\pi\)
\(740\) 0 0
\(741\) 4059.82 + 12494.8i 0.201270 + 0.619446i
\(742\) 0 0
\(743\) 6506.66 4727.37i 0.321274 0.233419i −0.415445 0.909618i \(-0.636374\pi\)
0.736719 + 0.676199i \(0.236374\pi\)
\(744\) 0 0
\(745\) −1703.60 + 5243.15i −0.0837787 + 0.257844i
\(746\) 0 0
\(747\) −746.515 −0.0365643
\(748\) 0 0
\(749\) 1491.54 0.0727634
\(750\) 0 0
\(751\) 9594.40 29528.5i 0.466185 1.43477i −0.391302 0.920262i \(-0.627975\pi\)
0.857487 0.514506i \(-0.172025\pi\)
\(752\) 0 0
\(753\) 3621.17 2630.94i 0.175249 0.127326i
\(754\) 0 0
\(755\) 9663.14 + 29740.1i 0.465798 + 1.43358i
\(756\) 0 0
\(757\) −2013.15 1462.64i −0.0966569 0.0702253i 0.538407 0.842685i \(-0.319026\pi\)
−0.635064 + 0.772460i \(0.719026\pi\)
\(758\) 0 0
\(759\) 968.645 6499.11i 0.0463236 0.310807i
\(760\) 0 0
\(761\) 12625.9 + 9173.25i 0.601430 + 0.436965i 0.846386 0.532570i \(-0.178774\pi\)
−0.244956 + 0.969534i \(0.578774\pi\)
\(762\) 0 0
\(763\) 1373.20 + 4226.28i 0.0651550 + 0.200527i
\(764\) 0 0
\(765\) −10584.2 + 7689.86i −0.500225 + 0.363435i
\(766\) 0 0
\(767\) −10257.1 + 31568.1i −0.482871 + 1.48612i
\(768\) 0 0
\(769\) 17212.1 0.807129 0.403565 0.914951i \(-0.367771\pi\)
0.403565 + 0.914951i \(0.367771\pi\)
\(770\) 0 0
\(771\) 11533.5 0.538742
\(772\) 0 0
\(773\) −386.582 + 1189.78i −0.0179876 + 0.0553601i −0.959647 0.281206i \(-0.909266\pi\)
0.941660 + 0.336566i \(0.109266\pi\)
\(774\) 0 0
\(775\) −26797.1 + 19469.2i −1.24204 + 0.902394i
\(776\) 0 0
\(777\) −464.432 1429.37i −0.0214432 0.0659955i
\(778\) 0 0
\(779\) −18119.0 13164.2i −0.833349 0.605464i
\(780\) 0 0
\(781\) 17279.6 17597.9i 0.791692 0.806275i
\(782\) 0 0
\(783\) 19137.9 + 13904.5i 0.873476 + 0.634617i
\(784\) 0 0
\(785\) −13606.0 41875.0i −0.618624 1.90393i
\(786\) 0 0
\(787\) −11669.1 + 8478.07i −0.528535 + 0.384003i −0.819810 0.572636i \(-0.805921\pi\)
0.291274 + 0.956640i \(0.405921\pi\)
\(788\) 0 0
\(789\) −216.211 + 665.430i −0.00975580 + 0.0300253i
\(790\) 0 0
\(791\) −3238.27 −0.145562
\(792\) 0 0
\(793\) 21145.9 0.946927
\(794\) 0 0
\(795\) −4265.71 + 13128.5i −0.190301 + 0.585685i
\(796\) 0 0
\(797\) 1092.84 793.998i 0.0485703 0.0352884i −0.563235 0.826297i \(-0.690444\pi\)
0.611806 + 0.791008i \(0.290444\pi\)
\(798\) 0 0
\(799\) 10114.2 + 31128.2i 0.447827 + 1.37827i
\(800\) 0 0
\(801\) −231.354 168.089i −0.0102054 0.00741463i
\(802\) 0 0
\(803\) −20485.6 39314.1i −0.900274 1.72772i
\(804\) 0 0
\(805\) 2183.48 + 1586.39i 0.0955996 + 0.0694572i
\(806\) 0 0
\(807\) −2705.03 8325.23i −0.117995 0.363150i
\(808\) 0 0
\(809\) 5626.46 4087.86i 0.244519 0.177653i −0.458775 0.888552i \(-0.651712\pi\)
0.703294 + 0.710899i \(0.251712\pi\)
\(810\) 0 0
\(811\) 5301.42 16316.1i 0.229541 0.706456i −0.768257 0.640141i \(-0.778876\pi\)
0.997799 0.0663147i \(-0.0211241\pi\)
\(812\) 0 0
\(813\) −35516.9 −1.53214
\(814\) 0 0
\(815\) −50004.9 −2.14920
\(816\) 0 0
\(817\) −5273.34 + 16229.7i −0.225815 + 0.694987i
\(818\) 0 0
\(819\) 1738.89 1263.38i 0.0741902 0.0539023i
\(820\) 0 0
\(821\) 6697.05 + 20611.4i 0.284688 + 0.876178i 0.986492 + 0.163809i \(0.0523780\pi\)
−0.701805 + 0.712370i \(0.747622\pi\)
\(822\) 0 0
\(823\) 6412.00 + 4658.59i 0.271577 + 0.197313i 0.715235 0.698884i \(-0.246319\pi\)
−0.443658 + 0.896196i \(0.646319\pi\)
\(824\) 0 0
\(825\) −22551.1 11232.3i −0.951670 0.474011i
\(826\) 0 0
\(827\) −31189.0 22660.2i −1.31143 0.952807i −0.999997 0.00253737i \(-0.999192\pi\)
−0.311429 0.950269i \(-0.600808\pi\)
\(828\) 0 0
\(829\) −2050.74 6311.54i −0.0859171 0.264426i 0.898863 0.438229i \(-0.144394\pi\)
−0.984780 + 0.173804i \(0.944394\pi\)
\(830\) 0 0
\(831\) −8208.88 + 5964.10i −0.342675 + 0.248968i
\(832\) 0 0
\(833\) 8485.19 26114.7i 0.352935 1.08622i
\(834\) 0 0
\(835\) 32209.3 1.33491
\(836\) 0 0
\(837\) −30881.5 −1.27529
\(838\) 0 0
\(839\) 14486.0 44583.3i 0.596081 1.83455i 0.0468105 0.998904i \(-0.485094\pi\)
0.549270 0.835645i \(-0.314906\pi\)
\(840\) 0 0
\(841\) 322.049 233.983i 0.0132047 0.00959378i
\(842\) 0 0
\(843\) 4359.93 + 13418.5i 0.178130 + 0.548229i
\(844\) 0 0
\(845\) −23767.2 17267.9i −0.967593 0.702998i
\(846\) 0 0
\(847\) −2980.63 3948.86i −0.120916 0.160194i
\(848\) 0 0
\(849\) 16335.1 + 11868.2i 0.660330 + 0.479758i
\(850\) 0 0
\(851\) 1266.30 + 3897.27i 0.0510085 + 0.156988i
\(852\) 0 0
\(853\) 1375.00 998.996i 0.0551924 0.0400996i −0.559847 0.828596i \(-0.689140\pi\)
0.615039 + 0.788496i \(0.289140\pi\)
\(854\) 0 0
\(855\) 2410.74 7419.50i 0.0964276 0.296774i
\(856\) 0 0
\(857\) 1506.84 0.0600615 0.0300308 0.999549i \(-0.490439\pi\)
0.0300308 + 0.999549i \(0.490439\pi\)
\(858\) 0 0
\(859\) −11830.1 −0.469892 −0.234946 0.972008i \(-0.575491\pi\)
−0.234946 + 0.972008i \(0.575491\pi\)
\(860\) 0 0
\(861\) 2180.28 6710.20i 0.0862992 0.265602i
\(862\) 0 0
\(863\) 32602.8 23687.3i 1.28599 0.934330i 0.286278 0.958146i \(-0.407582\pi\)
0.999716 + 0.0238166i \(0.00758178\pi\)
\(864\) 0 0
\(865\) 10674.4 + 32852.4i 0.419584 + 1.29135i
\(866\) 0 0
\(867\) −6974.39 5067.19i −0.273198 0.198490i
\(868\) 0 0
\(869\) −35017.0 17441.4i −1.36694 0.680850i
\(870\) 0 0
\(871\) −42140.7 30617.0i −1.63936 1.19107i
\(872\) 0 0
\(873\) −259.922 799.956i −0.0100768 0.0310131i
\(874\) 0 0
\(875\) 1983.49 1441.09i 0.0766333 0.0556774i
\(876\) 0 0
\(877\) −3976.31 + 12237.8i −0.153102 + 0.471200i −0.997964 0.0637852i \(-0.979683\pi\)
0.844862 + 0.534985i \(0.179683\pi\)
\(878\) 0 0
\(879\) −12944.8 −0.496719
\(880\) 0 0
\(881\) −31803.0 −1.21620 −0.608098 0.793862i \(-0.708067\pi\)
−0.608098 + 0.793862i \(0.708067\pi\)
\(882\) 0 0
\(883\) −10237.6 + 31508.1i −0.390174 + 1.20083i 0.542484 + 0.840066i \(0.317484\pi\)
−0.932657 + 0.360764i \(0.882516\pi\)
\(884\) 0 0
\(885\) −30704.8 + 22308.4i −1.16625 + 0.847330i
\(886\) 0 0
\(887\) 3440.61 + 10589.1i 0.130242 + 0.400843i 0.994820 0.101656i \(-0.0324142\pi\)
−0.864578 + 0.502499i \(0.832414\pi\)
\(888\) 0 0
\(889\) −2601.79 1890.31i −0.0981565 0.0713149i
\(890\) 0 0
\(891\) −6653.28 12768.4i −0.250161 0.480086i
\(892\) 0 0
\(893\) −15789.7 11471.9i −0.591693 0.429890i
\(894\) 0 0
\(895\) 10370.8 + 31918.0i 0.387326 + 1.19207i
\(896\) 0 0
\(897\) 9129.57 6633.02i 0.339830 0.246901i
\(898\) 0 0
\(899\) 9678.15 29786.3i 0.359048 1.10504i
\(900\) 0 0
\(901\) 16072.6 0.594291
\(902\) 0 0
\(903\) −5375.97 −0.198119
\(904\) 0 0
\(905\) −4767.18 + 14671.9i −0.175101 + 0.538905i
\(906\) 0 0
\(907\) −12857.6 + 9341.62i −0.470706 + 0.341988i −0.797717 0.603033i \(-0.793959\pi\)
0.327010 + 0.945021i \(0.393959\pi\)
\(908\) 0 0
\(909\) 3433.22 + 10566.4i 0.125272 + 0.385549i
\(910\) 0 0
\(911\) −36053.9 26194.7i −1.31122 0.952655i −0.999997 0.00231766i \(-0.999262\pi\)
−0.311220 0.950338i \(-0.600738\pi\)
\(912\) 0 0
\(913\) −2067.58 + 2105.66i −0.0749473 + 0.0763279i
\(914\) 0 0
\(915\) 19561.0 + 14211.9i 0.706739 + 0.513476i
\(916\) 0 0
\(917\) 2984.83 + 9186.38i 0.107490 + 0.330819i
\(918\) 0 0
\(919\) 13800.7 10026.8i 0.495369 0.359907i −0.311876 0.950123i \(-0.600957\pi\)
0.807245 + 0.590216i \(0.200957\pi\)
\(920\) 0 0
\(921\) −12086.7 + 37199.0i −0.432432 + 1.33089i
\(922\) 0 0
\(923\) 42356.1 1.51047
\(924\) 0 0
\(925\) 15711.6 0.558479
\(926\) 0 0
\(927\) −2379.16 + 7322.29i −0.0842953 + 0.259434i
\(928\) 0 0
\(929\) −22236.8 + 16156.0i −0.785325 + 0.570572i −0.906572 0.422050i \(-0.861311\pi\)
0.121247 + 0.992622i \(0.461311\pi\)
\(930\) 0 0
\(931\) 5059.76 + 15572.3i 0.178117 + 0.548188i
\(932\) 0 0
\(933\) 23761.5 + 17263.8i 0.833781 + 0.605777i
\(934\) 0 0
\(935\) −7623.92 + 51152.5i −0.266662 + 1.78916i
\(936\) 0 0
\(937\) 1747.29 + 1269.48i 0.0609195 + 0.0442606i 0.617828 0.786313i \(-0.288013\pi\)
−0.556909 + 0.830574i \(0.688013\pi\)
\(938\) 0 0
\(939\) −6965.16 21436.5i −0.242065 0.745000i
\(940\) 0 0
\(941\) 16088.4 11688.9i 0.557352 0.404940i −0.273137 0.961975i \(-0.588061\pi\)
0.830489 + 0.557035i \(0.188061\pi\)
\(942\) 0 0
\(943\) −5944.65 + 18295.8i −0.205286 + 0.631805i
\(944\) 0 0
\(945\) 9647.75 0.332107
\(946\) 0 0
\(947\) 22957.8 0.787780 0.393890 0.919158i \(-0.371129\pi\)
0.393890 + 0.919158i \(0.371129\pi\)
\(948\) 0 0
\(949\) 23526.6 72407.5i 0.804749 2.47676i
\(950\) 0 0
\(951\) −27346.5 + 19868.4i −0.932461 + 0.677473i
\(952\) 0 0
\(953\) 896.033 + 2757.71i 0.0304568 + 0.0937365i 0.965129 0.261773i \(-0.0843073\pi\)
−0.934673 + 0.355510i \(0.884307\pi\)
\(954\) 0 0
\(955\) −22973.1 16690.9i −0.778422 0.565556i
\(956\) 0 0
\(957\) 23493.3 3941.07i 0.793552 0.133121i
\(958\) 0 0
\(959\) −2539.96 1845.39i −0.0855262 0.0621384i
\(960\) 0 0
\(961\) 3428.48 + 10551.8i 0.115085 + 0.354194i
\(962\) 0 0
\(963\) −2995.97 + 2176.70i −0.100253 + 0.0728381i
\(964\) 0 0
\(965\) 12661.2 38967.1i 0.422360 1.29989i
\(966\) 0 0
\(967\) 33626.4 1.11825 0.559127 0.829082i \(-0.311136\pi\)
0.559127 + 0.829082i \(0.311136\pi\)
\(968\) 0 0
\(969\) 17490.8 0.579861
\(970\) 0 0
\(971\) −14579.3 + 44870.5i −0.481846 + 1.48297i 0.354652 + 0.934998i \(0.384599\pi\)
−0.836498 + 0.547970i \(0.815401\pi\)
\(972\) 0 0
\(973\) −3752.14 + 2726.09i −0.123626 + 0.0898196i
\(974\) 0 0
\(975\) −13370.3 41149.5i −0.439171 1.35163i
\(976\) 0 0
\(977\) 8221.34 + 5973.15i 0.269216 + 0.195597i 0.714200 0.699942i \(-0.246791\pi\)
−0.444984 + 0.895538i \(0.646791\pi\)
\(978\) 0 0
\(979\) −1114.89 + 187.026i −0.0363963 + 0.00610560i
\(980\) 0 0
\(981\) −8925.94 6485.07i −0.290503 0.211063i
\(982\) 0 0
\(983\) 12867.2 + 39601.1i 0.417496 + 1.28492i 0.909999 + 0.414611i \(0.136082\pi\)
−0.492502 + 0.870311i \(0.663918\pi\)
\(984\) 0 0
\(985\) −27038.1 + 19644.3i −0.874625 + 0.635452i
\(986\) 0 0
\(987\) 1899.99 5847.57i 0.0612740 0.188582i
\(988\) 0 0
\(989\) 14657.9 0.471278
\(990\) 0 0
\(991\) 23893.3 0.765888 0.382944 0.923772i \(-0.374910\pi\)
0.382944 + 0.923772i \(0.374910\pi\)
\(992\) 0 0
\(993\) 8777.88 27015.5i 0.280521 0.863355i
\(994\) 0 0
\(995\) 1882.15 1367.47i 0.0599681 0.0435694i
\(996\) 0 0
\(997\) 18377.8 + 56561.1i 0.583782 + 1.79670i 0.604106 + 0.796904i \(0.293530\pi\)
−0.0203240 + 0.999793i \(0.506470\pi\)
\(998\) 0 0
\(999\) 11850.7 + 8610.07i 0.375316 + 0.272683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.d.81.3 12
4.3 odd 2 44.4.e.a.37.1 yes 12
11.3 even 5 inner 176.4.m.d.113.3 12
11.5 even 5 1936.4.a.br.1.5 6
11.6 odd 10 1936.4.a.bs.1.5 6
12.11 even 2 396.4.j.d.37.3 12
44.3 odd 10 44.4.e.a.25.1 12
44.27 odd 10 484.4.a.i.1.2 6
44.39 even 10 484.4.a.h.1.2 6
132.47 even 10 396.4.j.d.289.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.1 12 44.3 odd 10
44.4.e.a.37.1 yes 12 4.3 odd 2
176.4.m.d.81.3 12 1.1 even 1 trivial
176.4.m.d.113.3 12 11.3 even 5 inner
396.4.j.d.37.3 12 12.11 even 2
396.4.j.d.289.3 12 132.47 even 10
484.4.a.h.1.2 6 44.39 even 10
484.4.a.i.1.2 6 44.27 odd 10
1936.4.a.br.1.5 6 11.5 even 5
1936.4.a.bs.1.5 6 11.6 odd 10