Properties

Label 1936.4.a.br.1.5
Level $1936$
Weight $4$
Character 1936.1
Self dual yes
Analytic conductor $114.228$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,4,Mod(1,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,-12,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 82x^{4} + 161x^{3} + 1730x^{2} - 2271x - 5931 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 11 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.21558\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.21558 q^{3} +16.9944 q^{5} -3.71712 q^{7} -9.22891 q^{9} -62.6552 q^{13} +71.6414 q^{15} -83.4146 q^{17} -49.7405 q^{19} -15.6698 q^{21} +42.7247 q^{23} +163.811 q^{25} -152.726 q^{27} +154.890 q^{29} +202.202 q^{31} -63.1704 q^{35} +95.9126 q^{37} -264.128 q^{39} -450.262 q^{41} +343.078 q^{43} -156.840 q^{45} -392.379 q^{47} -329.183 q^{49} -351.641 q^{51} -192.684 q^{53} -209.685 q^{57} +529.767 q^{59} -337.496 q^{61} +34.3050 q^{63} -1064.79 q^{65} -831.356 q^{67} +180.109 q^{69} -676.018 q^{71} -1215.12 q^{73} +690.559 q^{75} +1072.29 q^{79} -394.646 q^{81} +80.8887 q^{83} -1417.58 q^{85} +652.951 q^{87} -30.9863 q^{89} +232.897 q^{91} +852.400 q^{93} -845.313 q^{95} +91.1400 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 12 q^{5} - 8 q^{7} + 11 q^{9} - 80 q^{13} + 98 q^{15} - 113 q^{17} + 53 q^{19} - 152 q^{21} + 194 q^{23} + 476 q^{25} - 72 q^{27} - 374 q^{29} - 16 q^{31} + 1044 q^{35} - 456 q^{37} + 592 q^{39}+ \cdots + 683 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.21558 0.811288 0.405644 0.914031i \(-0.367047\pi\)
0.405644 + 0.914031i \(0.367047\pi\)
\(4\) 0 0
\(5\) 16.9944 1.52003 0.760015 0.649906i \(-0.225192\pi\)
0.760015 + 0.649906i \(0.225192\pi\)
\(6\) 0 0
\(7\) −3.71712 −0.200706 −0.100353 0.994952i \(-0.531997\pi\)
−0.100353 + 0.994952i \(0.531997\pi\)
\(8\) 0 0
\(9\) −9.22891 −0.341812
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −62.6552 −1.33673 −0.668363 0.743836i \(-0.733004\pi\)
−0.668363 + 0.743836i \(0.733004\pi\)
\(14\) 0 0
\(15\) 71.6414 1.23318
\(16\) 0 0
\(17\) −83.4146 −1.19006 −0.595030 0.803704i \(-0.702860\pi\)
−0.595030 + 0.803704i \(0.702860\pi\)
\(18\) 0 0
\(19\) −49.7405 −0.600592 −0.300296 0.953846i \(-0.597086\pi\)
−0.300296 + 0.953846i \(0.597086\pi\)
\(20\) 0 0
\(21\) −15.6698 −0.162830
\(22\) 0 0
\(23\) 42.7247 0.387335 0.193668 0.981067i \(-0.437962\pi\)
0.193668 + 0.981067i \(0.437962\pi\)
\(24\) 0 0
\(25\) 163.811 1.31049
\(26\) 0 0
\(27\) −152.726 −1.08860
\(28\) 0 0
\(29\) 154.890 0.991805 0.495903 0.868378i \(-0.334837\pi\)
0.495903 + 0.868378i \(0.334837\pi\)
\(30\) 0 0
\(31\) 202.202 1.17150 0.585752 0.810490i \(-0.300799\pi\)
0.585752 + 0.810490i \(0.300799\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −63.1704 −0.305079
\(36\) 0 0
\(37\) 95.9126 0.426160 0.213080 0.977035i \(-0.431650\pi\)
0.213080 + 0.977035i \(0.431650\pi\)
\(38\) 0 0
\(39\) −264.128 −1.08447
\(40\) 0 0
\(41\) −450.262 −1.71510 −0.857550 0.514400i \(-0.828015\pi\)
−0.857550 + 0.514400i \(0.828015\pi\)
\(42\) 0 0
\(43\) 343.078 1.21672 0.608360 0.793661i \(-0.291828\pi\)
0.608360 + 0.793661i \(0.291828\pi\)
\(44\) 0 0
\(45\) −156.840 −0.519564
\(46\) 0 0
\(47\) −392.379 −1.21775 −0.608876 0.793265i \(-0.708379\pi\)
−0.608876 + 0.793265i \(0.708379\pi\)
\(48\) 0 0
\(49\) −329.183 −0.959717
\(50\) 0 0
\(51\) −351.641 −0.965481
\(52\) 0 0
\(53\) −192.684 −0.499380 −0.249690 0.968326i \(-0.580329\pi\)
−0.249690 + 0.968326i \(0.580329\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −209.685 −0.487254
\(58\) 0 0
\(59\) 529.767 1.16898 0.584490 0.811401i \(-0.301295\pi\)
0.584490 + 0.811401i \(0.301295\pi\)
\(60\) 0 0
\(61\) −337.496 −0.708393 −0.354197 0.935171i \(-0.615246\pi\)
−0.354197 + 0.935171i \(0.615246\pi\)
\(62\) 0 0
\(63\) 34.3050 0.0686035
\(64\) 0 0
\(65\) −1064.79 −2.03186
\(66\) 0 0
\(67\) −831.356 −1.51591 −0.757957 0.652304i \(-0.773803\pi\)
−0.757957 + 0.652304i \(0.773803\pi\)
\(68\) 0 0
\(69\) 180.109 0.314240
\(70\) 0 0
\(71\) −676.018 −1.12998 −0.564990 0.825098i \(-0.691120\pi\)
−0.564990 + 0.825098i \(0.691120\pi\)
\(72\) 0 0
\(73\) −1215.12 −1.94821 −0.974106 0.226094i \(-0.927404\pi\)
−0.974106 + 0.226094i \(0.927404\pi\)
\(74\) 0 0
\(75\) 690.559 1.06319
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1072.29 1.52712 0.763558 0.645739i \(-0.223451\pi\)
0.763558 + 0.645739i \(0.223451\pi\)
\(80\) 0 0
\(81\) −394.646 −0.541353
\(82\) 0 0
\(83\) 80.8887 0.106972 0.0534861 0.998569i \(-0.482967\pi\)
0.0534861 + 0.998569i \(0.482967\pi\)
\(84\) 0 0
\(85\) −1417.58 −1.80893
\(86\) 0 0
\(87\) 652.951 0.804640
\(88\) 0 0
\(89\) −30.9863 −0.0369049 −0.0184525 0.999830i \(-0.505874\pi\)
−0.0184525 + 0.999830i \(0.505874\pi\)
\(90\) 0 0
\(91\) 232.897 0.268288
\(92\) 0 0
\(93\) 852.400 0.950427
\(94\) 0 0
\(95\) −845.313 −0.912918
\(96\) 0 0
\(97\) 91.1400 0.0954007 0.0477004 0.998862i \(-0.484811\pi\)
0.0477004 + 0.998862i \(0.484811\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1203.84 −1.18600 −0.593002 0.805201i \(-0.702057\pi\)
−0.593002 + 0.805201i \(0.702057\pi\)
\(102\) 0 0
\(103\) 834.238 0.798058 0.399029 0.916938i \(-0.369347\pi\)
0.399029 + 0.916938i \(0.369347\pi\)
\(104\) 0 0
\(105\) −266.300 −0.247507
\(106\) 0 0
\(107\) −401.263 −0.362538 −0.181269 0.983434i \(-0.558020\pi\)
−0.181269 + 0.983434i \(0.558020\pi\)
\(108\) 0 0
\(109\) −1195.49 −1.05052 −0.525262 0.850941i \(-0.676033\pi\)
−0.525262 + 0.850941i \(0.676033\pi\)
\(110\) 0 0
\(111\) 404.327 0.345739
\(112\) 0 0
\(113\) 871.176 0.725251 0.362625 0.931935i \(-0.381880\pi\)
0.362625 + 0.931935i \(0.381880\pi\)
\(114\) 0 0
\(115\) 726.082 0.588761
\(116\) 0 0
\(117\) 578.240 0.456908
\(118\) 0 0
\(119\) 310.062 0.238852
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1898.11 −1.39144
\(124\) 0 0
\(125\) 659.577 0.471955
\(126\) 0 0
\(127\) −865.182 −0.604508 −0.302254 0.953227i \(-0.597739\pi\)
−0.302254 + 0.953227i \(0.597739\pi\)
\(128\) 0 0
\(129\) 1446.27 0.987110
\(130\) 0 0
\(131\) −2598.55 −1.73310 −0.866551 0.499088i \(-0.833668\pi\)
−0.866551 + 0.499088i \(0.833668\pi\)
\(132\) 0 0
\(133\) 184.892 0.120542
\(134\) 0 0
\(135\) −2595.49 −1.65470
\(136\) 0 0
\(137\) −844.622 −0.526722 −0.263361 0.964697i \(-0.584831\pi\)
−0.263361 + 0.964697i \(0.584831\pi\)
\(138\) 0 0
\(139\) −1247.71 −0.761364 −0.380682 0.924706i \(-0.624311\pi\)
−0.380682 + 0.924706i \(0.624311\pi\)
\(140\) 0 0
\(141\) −1654.10 −0.987948
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2632.27 1.50757
\(146\) 0 0
\(147\) −1387.70 −0.778607
\(148\) 0 0
\(149\) −324.398 −0.178361 −0.0891804 0.996015i \(-0.528425\pi\)
−0.0891804 + 0.996015i \(0.528425\pi\)
\(150\) 0 0
\(151\) 1840.05 0.991662 0.495831 0.868419i \(-0.334864\pi\)
0.495831 + 0.868419i \(0.334864\pi\)
\(152\) 0 0
\(153\) 769.826 0.406776
\(154\) 0 0
\(155\) 3436.32 1.78072
\(156\) 0 0
\(157\) −2590.85 −1.31702 −0.658510 0.752572i \(-0.728813\pi\)
−0.658510 + 0.752572i \(0.728813\pi\)
\(158\) 0 0
\(159\) −812.272 −0.405141
\(160\) 0 0
\(161\) −158.813 −0.0777404
\(162\) 0 0
\(163\) −2942.42 −1.41392 −0.706958 0.707255i \(-0.749933\pi\)
−0.706958 + 0.707255i \(0.749933\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1895.29 0.878213 0.439107 0.898435i \(-0.355295\pi\)
0.439107 + 0.898435i \(0.355295\pi\)
\(168\) 0 0
\(169\) 1728.67 0.786834
\(170\) 0 0
\(171\) 459.051 0.205290
\(172\) 0 0
\(173\) 2032.61 0.893273 0.446636 0.894716i \(-0.352622\pi\)
0.446636 + 0.894716i \(0.352622\pi\)
\(174\) 0 0
\(175\) −608.906 −0.263023
\(176\) 0 0
\(177\) 2233.27 0.948379
\(178\) 0 0
\(179\) 1974.79 0.824598 0.412299 0.911049i \(-0.364726\pi\)
0.412299 + 0.911049i \(0.364726\pi\)
\(180\) 0 0
\(181\) −907.762 −0.372781 −0.186391 0.982476i \(-0.559679\pi\)
−0.186391 + 0.982476i \(0.559679\pi\)
\(182\) 0 0
\(183\) −1422.74 −0.574711
\(184\) 0 0
\(185\) 1629.98 0.647777
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 567.700 0.218487
\(190\) 0 0
\(191\) 1670.92 0.633002 0.316501 0.948592i \(-0.397492\pi\)
0.316501 + 0.948592i \(0.397492\pi\)
\(192\) 0 0
\(193\) 2410.93 0.899184 0.449592 0.893234i \(-0.351569\pi\)
0.449592 + 0.893234i \(0.351569\pi\)
\(194\) 0 0
\(195\) −4488.71 −1.64843
\(196\) 0 0
\(197\) 1966.58 0.711234 0.355617 0.934632i \(-0.384271\pi\)
0.355617 + 0.934632i \(0.384271\pi\)
\(198\) 0 0
\(199\) −136.896 −0.0487653 −0.0243827 0.999703i \(-0.507762\pi\)
−0.0243827 + 0.999703i \(0.507762\pi\)
\(200\) 0 0
\(201\) −3504.64 −1.22984
\(202\) 0 0
\(203\) −575.745 −0.199061
\(204\) 0 0
\(205\) −7651.95 −2.60700
\(206\) 0 0
\(207\) −394.302 −0.132396
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 905.311 0.295375 0.147688 0.989034i \(-0.452817\pi\)
0.147688 + 0.989034i \(0.452817\pi\)
\(212\) 0 0
\(213\) −2849.81 −0.916740
\(214\) 0 0
\(215\) 5830.43 1.84945
\(216\) 0 0
\(217\) −751.611 −0.235128
\(218\) 0 0
\(219\) −5122.44 −1.58056
\(220\) 0 0
\(221\) 5226.36 1.59078
\(222\) 0 0
\(223\) 1096.94 0.329402 0.164701 0.986344i \(-0.447334\pi\)
0.164701 + 0.986344i \(0.447334\pi\)
\(224\) 0 0
\(225\) −1511.80 −0.447941
\(226\) 0 0
\(227\) 3409.73 0.996968 0.498484 0.866899i \(-0.333890\pi\)
0.498484 + 0.866899i \(0.333890\pi\)
\(228\) 0 0
\(229\) 5535.14 1.59726 0.798630 0.601822i \(-0.205558\pi\)
0.798630 + 0.601822i \(0.205558\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 238.649 0.0671005 0.0335502 0.999437i \(-0.489319\pi\)
0.0335502 + 0.999437i \(0.489319\pi\)
\(234\) 0 0
\(235\) −6668.26 −1.85102
\(236\) 0 0
\(237\) 4520.32 1.23893
\(238\) 0 0
\(239\) −26.7935 −0.00725158 −0.00362579 0.999993i \(-0.501154\pi\)
−0.00362579 + 0.999993i \(0.501154\pi\)
\(240\) 0 0
\(241\) −440.617 −0.117770 −0.0588851 0.998265i \(-0.518755\pi\)
−0.0588851 + 0.998265i \(0.518755\pi\)
\(242\) 0 0
\(243\) 2459.93 0.649402
\(244\) 0 0
\(245\) −5594.28 −1.45880
\(246\) 0 0
\(247\) 3116.50 0.802827
\(248\) 0 0
\(249\) 340.992 0.0867852
\(250\) 0 0
\(251\) −1061.78 −0.267008 −0.133504 0.991048i \(-0.542623\pi\)
−0.133504 + 0.991048i \(0.542623\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −5975.94 −1.46756
\(256\) 0 0
\(257\) 2735.93 0.664057 0.332029 0.943269i \(-0.392267\pi\)
0.332029 + 0.943269i \(0.392267\pi\)
\(258\) 0 0
\(259\) −356.519 −0.0855328
\(260\) 0 0
\(261\) −1429.47 −0.339011
\(262\) 0 0
\(263\) −165.974 −0.0389140 −0.0194570 0.999811i \(-0.506194\pi\)
−0.0194570 + 0.999811i \(0.506194\pi\)
\(264\) 0 0
\(265\) −3274.55 −0.759072
\(266\) 0 0
\(267\) −130.625 −0.0299405
\(268\) 0 0
\(269\) −2076.50 −0.470657 −0.235329 0.971916i \(-0.575617\pi\)
−0.235329 + 0.971916i \(0.575617\pi\)
\(270\) 0 0
\(271\) −8425.15 −1.88853 −0.944265 0.329186i \(-0.893226\pi\)
−0.944265 + 0.329186i \(0.893226\pi\)
\(272\) 0 0
\(273\) 981.795 0.217659
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2406.96 0.522095 0.261047 0.965326i \(-0.415932\pi\)
0.261047 + 0.965326i \(0.415932\pi\)
\(278\) 0 0
\(279\) −1866.11 −0.400434
\(280\) 0 0
\(281\) 3346.88 0.710527 0.355264 0.934766i \(-0.384391\pi\)
0.355264 + 0.934766i \(0.384391\pi\)
\(282\) 0 0
\(283\) −4789.70 −1.00607 −0.503035 0.864266i \(-0.667783\pi\)
−0.503035 + 0.864266i \(0.667783\pi\)
\(284\) 0 0
\(285\) −3563.48 −0.740640
\(286\) 0 0
\(287\) 1673.68 0.344230
\(288\) 0 0
\(289\) 2044.99 0.416241
\(290\) 0 0
\(291\) 384.208 0.0773975
\(292\) 0 0
\(293\) −3070.70 −0.612259 −0.306130 0.951990i \(-0.599034\pi\)
−0.306130 + 0.951990i \(0.599034\pi\)
\(294\) 0 0
\(295\) 9003.10 1.77688
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2676.92 −0.517761
\(300\) 0 0
\(301\) −1275.26 −0.244203
\(302\) 0 0
\(303\) −5074.87 −0.962191
\(304\) 0 0
\(305\) −5735.56 −1.07678
\(306\) 0 0
\(307\) −9278.28 −1.72488 −0.862442 0.506156i \(-0.831066\pi\)
−0.862442 + 0.506156i \(0.831066\pi\)
\(308\) 0 0
\(309\) 3516.80 0.647455
\(310\) 0 0
\(311\) −6967.22 −1.27034 −0.635169 0.772373i \(-0.719069\pi\)
−0.635169 + 0.772373i \(0.719069\pi\)
\(312\) 0 0
\(313\) −5346.77 −0.965550 −0.482775 0.875744i \(-0.660371\pi\)
−0.482775 + 0.875744i \(0.660371\pi\)
\(314\) 0 0
\(315\) 582.995 0.104279
\(316\) 0 0
\(317\) 8018.39 1.42069 0.710343 0.703856i \(-0.248540\pi\)
0.710343 + 0.703856i \(0.248540\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1691.55 −0.294122
\(322\) 0 0
\(323\) 4149.08 0.714741
\(324\) 0 0
\(325\) −10263.6 −1.75177
\(326\) 0 0
\(327\) −5039.68 −0.852277
\(328\) 0 0
\(329\) 1458.52 0.244410
\(330\) 0 0
\(331\) 6738.30 1.11894 0.559472 0.828849i \(-0.311004\pi\)
0.559472 + 0.828849i \(0.311004\pi\)
\(332\) 0 0
\(333\) −885.169 −0.145667
\(334\) 0 0
\(335\) −14128.4 −2.30424
\(336\) 0 0
\(337\) 6001.47 0.970092 0.485046 0.874489i \(-0.338803\pi\)
0.485046 + 0.874489i \(0.338803\pi\)
\(338\) 0 0
\(339\) 3672.51 0.588387
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2498.59 0.393326
\(344\) 0 0
\(345\) 3060.85 0.477655
\(346\) 0 0
\(347\) 6961.34 1.07696 0.538479 0.842639i \(-0.318999\pi\)
0.538479 + 0.842639i \(0.318999\pi\)
\(348\) 0 0
\(349\) 230.792 0.0353983 0.0176992 0.999843i \(-0.494366\pi\)
0.0176992 + 0.999843i \(0.494366\pi\)
\(350\) 0 0
\(351\) 9569.06 1.45515
\(352\) 0 0
\(353\) 6730.46 1.01481 0.507403 0.861709i \(-0.330606\pi\)
0.507403 + 0.861709i \(0.330606\pi\)
\(354\) 0 0
\(355\) −11488.6 −1.71760
\(356\) 0 0
\(357\) 1307.09 0.193778
\(358\) 0 0
\(359\) −797.152 −0.117192 −0.0585962 0.998282i \(-0.518662\pi\)
−0.0585962 + 0.998282i \(0.518662\pi\)
\(360\) 0 0
\(361\) −4384.88 −0.639289
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20650.3 −2.96134
\(366\) 0 0
\(367\) 10698.7 1.52171 0.760853 0.648925i \(-0.224781\pi\)
0.760853 + 0.648925i \(0.224781\pi\)
\(368\) 0 0
\(369\) 4155.43 0.586241
\(370\) 0 0
\(371\) 716.228 0.100228
\(372\) 0 0
\(373\) −748.042 −0.103839 −0.0519197 0.998651i \(-0.516534\pi\)
−0.0519197 + 0.998651i \(0.516534\pi\)
\(374\) 0 0
\(375\) 2780.50 0.382891
\(376\) 0 0
\(377\) −9704.67 −1.32577
\(378\) 0 0
\(379\) −9005.92 −1.22059 −0.610294 0.792175i \(-0.708949\pi\)
−0.610294 + 0.792175i \(0.708949\pi\)
\(380\) 0 0
\(381\) −3647.24 −0.490430
\(382\) 0 0
\(383\) 6749.89 0.900531 0.450265 0.892895i \(-0.351329\pi\)
0.450265 + 0.892895i \(0.351329\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3166.24 −0.415889
\(388\) 0 0
\(389\) −10884.9 −1.41873 −0.709367 0.704839i \(-0.751019\pi\)
−0.709367 + 0.704839i \(0.751019\pi\)
\(390\) 0 0
\(391\) −3563.86 −0.460952
\(392\) 0 0
\(393\) −10954.4 −1.40605
\(394\) 0 0
\(395\) 18223.0 2.32126
\(396\) 0 0
\(397\) −2715.71 −0.343318 −0.171659 0.985156i \(-0.554913\pi\)
−0.171659 + 0.985156i \(0.554913\pi\)
\(398\) 0 0
\(399\) 779.424 0.0977946
\(400\) 0 0
\(401\) 346.044 0.0430938 0.0215469 0.999768i \(-0.493141\pi\)
0.0215469 + 0.999768i \(0.493141\pi\)
\(402\) 0 0
\(403\) −12669.0 −1.56598
\(404\) 0 0
\(405\) −6706.80 −0.822873
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 4639.27 0.560874 0.280437 0.959872i \(-0.409521\pi\)
0.280437 + 0.959872i \(0.409521\pi\)
\(410\) 0 0
\(411\) −3560.57 −0.427323
\(412\) 0 0
\(413\) −1969.21 −0.234621
\(414\) 0 0
\(415\) 1374.66 0.162601
\(416\) 0 0
\(417\) −5259.83 −0.617686
\(418\) 0 0
\(419\) −4439.38 −0.517609 −0.258804 0.965930i \(-0.583328\pi\)
−0.258804 + 0.965930i \(0.583328\pi\)
\(420\) 0 0
\(421\) 14103.2 1.63266 0.816328 0.577589i \(-0.196006\pi\)
0.816328 + 0.577589i \(0.196006\pi\)
\(422\) 0 0
\(423\) 3621.23 0.416242
\(424\) 0 0
\(425\) −13664.3 −1.55956
\(426\) 0 0
\(427\) 1254.51 0.142179
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12381.2 1.38372 0.691860 0.722032i \(-0.256791\pi\)
0.691860 + 0.722032i \(0.256791\pi\)
\(432\) 0 0
\(433\) 6176.00 0.685449 0.342725 0.939436i \(-0.388650\pi\)
0.342725 + 0.939436i \(0.388650\pi\)
\(434\) 0 0
\(435\) 11096.5 1.22308
\(436\) 0 0
\(437\) −2125.15 −0.232631
\(438\) 0 0
\(439\) −6768.55 −0.735867 −0.367933 0.929852i \(-0.619935\pi\)
−0.367933 + 0.929852i \(0.619935\pi\)
\(440\) 0 0
\(441\) 3038.00 0.328043
\(442\) 0 0
\(443\) 1375.61 0.147534 0.0737668 0.997276i \(-0.476498\pi\)
0.0737668 + 0.997276i \(0.476498\pi\)
\(444\) 0 0
\(445\) −526.594 −0.0560966
\(446\) 0 0
\(447\) −1367.53 −0.144702
\(448\) 0 0
\(449\) −880.495 −0.0925459 −0.0462730 0.998929i \(-0.514734\pi\)
−0.0462730 + 0.998929i \(0.514734\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 7756.86 0.804523
\(454\) 0 0
\(455\) 3957.96 0.407806
\(456\) 0 0
\(457\) 9385.58 0.960697 0.480349 0.877078i \(-0.340510\pi\)
0.480349 + 0.877078i \(0.340510\pi\)
\(458\) 0 0
\(459\) 12739.6 1.29549
\(460\) 0 0
\(461\) −14837.4 −1.49902 −0.749508 0.661996i \(-0.769710\pi\)
−0.749508 + 0.661996i \(0.769710\pi\)
\(462\) 0 0
\(463\) −8010.57 −0.804067 −0.402033 0.915625i \(-0.631696\pi\)
−0.402033 + 0.915625i \(0.631696\pi\)
\(464\) 0 0
\(465\) 14486.1 1.44468
\(466\) 0 0
\(467\) 5729.52 0.567732 0.283866 0.958864i \(-0.408383\pi\)
0.283866 + 0.958864i \(0.408383\pi\)
\(468\) 0 0
\(469\) 3090.25 0.304253
\(470\) 0 0
\(471\) −10921.9 −1.06848
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −8148.06 −0.787071
\(476\) 0 0
\(477\) 1778.26 0.170694
\(478\) 0 0
\(479\) −8428.60 −0.803993 −0.401996 0.915641i \(-0.631684\pi\)
−0.401996 + 0.915641i \(0.631684\pi\)
\(480\) 0 0
\(481\) −6009.42 −0.569659
\(482\) 0 0
\(483\) −669.487 −0.0630698
\(484\) 0 0
\(485\) 1548.87 0.145012
\(486\) 0 0
\(487\) −1764.43 −0.164176 −0.0820880 0.996625i \(-0.526159\pi\)
−0.0820880 + 0.996625i \(0.526159\pi\)
\(488\) 0 0
\(489\) −12404.0 −1.14709
\(490\) 0 0
\(491\) 5191.70 0.477185 0.238593 0.971120i \(-0.423314\pi\)
0.238593 + 0.971120i \(0.423314\pi\)
\(492\) 0 0
\(493\) −12920.1 −1.18031
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2512.84 0.226793
\(498\) 0 0
\(499\) −4552.88 −0.408447 −0.204224 0.978924i \(-0.565467\pi\)
−0.204224 + 0.978924i \(0.565467\pi\)
\(500\) 0 0
\(501\) 7989.72 0.712484
\(502\) 0 0
\(503\) −5982.19 −0.530284 −0.265142 0.964209i \(-0.585419\pi\)
−0.265142 + 0.964209i \(0.585419\pi\)
\(504\) 0 0
\(505\) −20458.6 −1.80276
\(506\) 0 0
\(507\) 7287.36 0.638349
\(508\) 0 0
\(509\) −14809.0 −1.28959 −0.644793 0.764357i \(-0.723056\pi\)
−0.644793 + 0.764357i \(0.723056\pi\)
\(510\) 0 0
\(511\) 4516.76 0.391017
\(512\) 0 0
\(513\) 7596.66 0.653802
\(514\) 0 0
\(515\) 14177.4 1.21307
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 8568.61 0.724702
\(520\) 0 0
\(521\) −14071.4 −1.18326 −0.591630 0.806210i \(-0.701515\pi\)
−0.591630 + 0.806210i \(0.701515\pi\)
\(522\) 0 0
\(523\) −8061.03 −0.673966 −0.336983 0.941511i \(-0.609406\pi\)
−0.336983 + 0.941511i \(0.609406\pi\)
\(524\) 0 0
\(525\) −2566.89 −0.213387
\(526\) 0 0
\(527\) −16866.6 −1.39416
\(528\) 0 0
\(529\) −10341.6 −0.849972
\(530\) 0 0
\(531\) −4889.17 −0.399571
\(532\) 0 0
\(533\) 28211.3 2.29262
\(534\) 0 0
\(535\) −6819.24 −0.551068
\(536\) 0 0
\(537\) 8324.90 0.668987
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2315.31 0.183998 0.0919989 0.995759i \(-0.470674\pi\)
0.0919989 + 0.995759i \(0.470674\pi\)
\(542\) 0 0
\(543\) −3826.74 −0.302433
\(544\) 0 0
\(545\) −20316.7 −1.59683
\(546\) 0 0
\(547\) 9940.92 0.777044 0.388522 0.921439i \(-0.372986\pi\)
0.388522 + 0.921439i \(0.372986\pi\)
\(548\) 0 0
\(549\) 3114.73 0.242137
\(550\) 0 0
\(551\) −7704.31 −0.595671
\(552\) 0 0
\(553\) −3985.84 −0.306501
\(554\) 0 0
\(555\) 6871.31 0.525533
\(556\) 0 0
\(557\) −6849.75 −0.521065 −0.260533 0.965465i \(-0.583898\pi\)
−0.260533 + 0.965465i \(0.583898\pi\)
\(558\) 0 0
\(559\) −21495.6 −1.62642
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23630.2 1.76891 0.884453 0.466629i \(-0.154532\pi\)
0.884453 + 0.466629i \(0.154532\pi\)
\(564\) 0 0
\(565\) 14805.2 1.10240
\(566\) 0 0
\(567\) 1466.95 0.108653
\(568\) 0 0
\(569\) 26066.9 1.92053 0.960266 0.279085i \(-0.0900311\pi\)
0.960266 + 0.279085i \(0.0900311\pi\)
\(570\) 0 0
\(571\) 10583.8 0.775688 0.387844 0.921725i \(-0.373220\pi\)
0.387844 + 0.921725i \(0.373220\pi\)
\(572\) 0 0
\(573\) 7043.88 0.513547
\(574\) 0 0
\(575\) 6998.78 0.507599
\(576\) 0 0
\(577\) 10687.3 0.771086 0.385543 0.922690i \(-0.374014\pi\)
0.385543 + 0.922690i \(0.374014\pi\)
\(578\) 0 0
\(579\) 10163.5 0.729497
\(580\) 0 0
\(581\) −300.673 −0.0214699
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 9826.86 0.694514
\(586\) 0 0
\(587\) 9410.72 0.661707 0.330853 0.943682i \(-0.392663\pi\)
0.330853 + 0.943682i \(0.392663\pi\)
\(588\) 0 0
\(589\) −10057.7 −0.703596
\(590\) 0 0
\(591\) 8290.27 0.577015
\(592\) 0 0
\(593\) 21740.9 1.50555 0.752776 0.658277i \(-0.228714\pi\)
0.752776 + 0.658277i \(0.228714\pi\)
\(594\) 0 0
\(595\) 5269.34 0.363062
\(596\) 0 0
\(597\) −577.095 −0.0395627
\(598\) 0 0
\(599\) −981.913 −0.0669781 −0.0334891 0.999439i \(-0.510662\pi\)
−0.0334891 + 0.999439i \(0.510662\pi\)
\(600\) 0 0
\(601\) −7190.74 −0.488047 −0.244024 0.969769i \(-0.578467\pi\)
−0.244024 + 0.969769i \(0.578467\pi\)
\(602\) 0 0
\(603\) 7672.51 0.518157
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −13920.4 −0.930829 −0.465415 0.885093i \(-0.654095\pi\)
−0.465415 + 0.885093i \(0.654095\pi\)
\(608\) 0 0
\(609\) −2427.10 −0.161496
\(610\) 0 0
\(611\) 24584.6 1.62780
\(612\) 0 0
\(613\) 26512.0 1.74684 0.873418 0.486971i \(-0.161898\pi\)
0.873418 + 0.486971i \(0.161898\pi\)
\(614\) 0 0
\(615\) −32257.4 −2.11503
\(616\) 0 0
\(617\) 808.541 0.0527563 0.0263782 0.999652i \(-0.491603\pi\)
0.0263782 + 0.999652i \(0.491603\pi\)
\(618\) 0 0
\(619\) 4953.14 0.321621 0.160811 0.986985i \(-0.448589\pi\)
0.160811 + 0.986985i \(0.448589\pi\)
\(620\) 0 0
\(621\) −6525.16 −0.421651
\(622\) 0 0
\(623\) 115.180 0.00740702
\(624\) 0 0
\(625\) −9267.27 −0.593105
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8000.51 −0.507156
\(630\) 0 0
\(631\) 12261.5 0.773567 0.386784 0.922170i \(-0.373586\pi\)
0.386784 + 0.922170i \(0.373586\pi\)
\(632\) 0 0
\(633\) 3816.41 0.239634
\(634\) 0 0
\(635\) −14703.3 −0.918870
\(636\) 0 0
\(637\) 20625.0 1.28288
\(638\) 0 0
\(639\) 6238.91 0.386240
\(640\) 0 0
\(641\) 9977.35 0.614792 0.307396 0.951582i \(-0.400542\pi\)
0.307396 + 0.951582i \(0.400542\pi\)
\(642\) 0 0
\(643\) 3262.86 0.200116 0.100058 0.994982i \(-0.468097\pi\)
0.100058 + 0.994982i \(0.468097\pi\)
\(644\) 0 0
\(645\) 24578.6 1.50044
\(646\) 0 0
\(647\) −25310.8 −1.53797 −0.768987 0.639264i \(-0.779239\pi\)
−0.768987 + 0.639264i \(0.779239\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −3168.47 −0.190756
\(652\) 0 0
\(653\) −2567.01 −0.153836 −0.0769180 0.997037i \(-0.524508\pi\)
−0.0769180 + 0.997037i \(0.524508\pi\)
\(654\) 0 0
\(655\) −44160.9 −2.63437
\(656\) 0 0
\(657\) 11214.3 0.665921
\(658\) 0 0
\(659\) 21712.9 1.28348 0.641742 0.766920i \(-0.278212\pi\)
0.641742 + 0.766920i \(0.278212\pi\)
\(660\) 0 0
\(661\) −9544.46 −0.561629 −0.280814 0.959762i \(-0.590605\pi\)
−0.280814 + 0.959762i \(0.590605\pi\)
\(662\) 0 0
\(663\) 22032.1 1.29058
\(664\) 0 0
\(665\) 3142.13 0.183228
\(666\) 0 0
\(667\) 6617.62 0.384161
\(668\) 0 0
\(669\) 4624.24 0.267240
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 23359.0 1.33792 0.668961 0.743297i \(-0.266739\pi\)
0.668961 + 0.743297i \(0.266739\pi\)
\(674\) 0 0
\(675\) −25018.2 −1.42659
\(676\) 0 0
\(677\) −343.591 −0.0195056 −0.00975278 0.999952i \(-0.503104\pi\)
−0.00975278 + 0.999952i \(0.503104\pi\)
\(678\) 0 0
\(679\) −338.779 −0.0191475
\(680\) 0 0
\(681\) 14374.0 0.808828
\(682\) 0 0
\(683\) −1268.81 −0.0710831 −0.0355415 0.999368i \(-0.511316\pi\)
−0.0355415 + 0.999368i \(0.511316\pi\)
\(684\) 0 0
\(685\) −14353.9 −0.800634
\(686\) 0 0
\(687\) 23333.8 1.29584
\(688\) 0 0
\(689\) 12072.6 0.667533
\(690\) 0 0
\(691\) −6528.70 −0.359426 −0.179713 0.983719i \(-0.557517\pi\)
−0.179713 + 0.983719i \(0.557517\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21204.2 −1.15730
\(696\) 0 0
\(697\) 37558.4 2.04107
\(698\) 0 0
\(699\) 1006.04 0.0544378
\(700\) 0 0
\(701\) −25058.5 −1.35014 −0.675070 0.737754i \(-0.735887\pi\)
−0.675070 + 0.737754i \(0.735887\pi\)
\(702\) 0 0
\(703\) −4770.74 −0.255949
\(704\) 0 0
\(705\) −28110.6 −1.50171
\(706\) 0 0
\(707\) 4474.81 0.238038
\(708\) 0 0
\(709\) −29270.4 −1.55045 −0.775227 0.631683i \(-0.782364\pi\)
−0.775227 + 0.631683i \(0.782364\pi\)
\(710\) 0 0
\(711\) −9896.08 −0.521986
\(712\) 0 0
\(713\) 8639.03 0.453765
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −112.950 −0.00588312
\(718\) 0 0
\(719\) −14554.8 −0.754940 −0.377470 0.926022i \(-0.623206\pi\)
−0.377470 + 0.926022i \(0.623206\pi\)
\(720\) 0 0
\(721\) −3100.97 −0.160175
\(722\) 0 0
\(723\) −1857.45 −0.0955456
\(724\) 0 0
\(725\) 25372.7 1.29975
\(726\) 0 0
\(727\) −25556.6 −1.30377 −0.651887 0.758316i \(-0.726022\pi\)
−0.651887 + 0.758316i \(0.726022\pi\)
\(728\) 0 0
\(729\) 21025.5 1.06821
\(730\) 0 0
\(731\) −28617.7 −1.44797
\(732\) 0 0
\(733\) −22890.8 −1.15347 −0.576733 0.816933i \(-0.695673\pi\)
−0.576733 + 0.816933i \(0.695673\pi\)
\(734\) 0 0
\(735\) −23583.1 −1.18351
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −23671.7 −1.17832 −0.589161 0.808016i \(-0.700541\pi\)
−0.589161 + 0.808016i \(0.700541\pi\)
\(740\) 0 0
\(741\) 13137.9 0.651324
\(742\) 0 0
\(743\) −8042.68 −0.397116 −0.198558 0.980089i \(-0.563626\pi\)
−0.198558 + 0.980089i \(0.563626\pi\)
\(744\) 0 0
\(745\) −5512.97 −0.271114
\(746\) 0 0
\(747\) −746.515 −0.0365643
\(748\) 0 0
\(749\) 1491.54 0.0727634
\(750\) 0 0
\(751\) 31048.1 1.50860 0.754302 0.656527i \(-0.227975\pi\)
0.754302 + 0.656527i \(0.227975\pi\)
\(752\) 0 0
\(753\) −4476.02 −0.216620
\(754\) 0 0
\(755\) 31270.6 1.50736
\(756\) 0 0
\(757\) 2488.39 0.119474 0.0597372 0.998214i \(-0.480974\pi\)
0.0597372 + 0.998214i \(0.480974\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15606.5 −0.743408 −0.371704 0.928351i \(-0.621226\pi\)
−0.371704 + 0.928351i \(0.621226\pi\)
\(762\) 0 0
\(763\) 4443.78 0.210846
\(764\) 0 0
\(765\) 13082.8 0.618312
\(766\) 0 0
\(767\) −33192.7 −1.56260
\(768\) 0 0
\(769\) 17212.1 0.807129 0.403565 0.914951i \(-0.367771\pi\)
0.403565 + 0.914951i \(0.367771\pi\)
\(770\) 0 0
\(771\) 11533.5 0.538742
\(772\) 0 0
\(773\) −1251.01 −0.0582090 −0.0291045 0.999576i \(-0.509266\pi\)
−0.0291045 + 0.999576i \(0.509266\pi\)
\(774\) 0 0
\(775\) 33123.0 1.53524
\(776\) 0 0
\(777\) −1502.93 −0.0693918
\(778\) 0 0
\(779\) 22396.3 1.03008
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −23655.7 −1.07968
\(784\) 0 0
\(785\) −44030.0 −2.00191
\(786\) 0 0
\(787\) 14423.8 0.653306 0.326653 0.945144i \(-0.394079\pi\)
0.326653 + 0.945144i \(0.394079\pi\)
\(788\) 0 0
\(789\) −699.675 −0.0315704
\(790\) 0 0
\(791\) −3238.27 −0.145562
\(792\) 0 0
\(793\) 21145.9 0.946927
\(794\) 0 0
\(795\) −13804.1 −0.615826
\(796\) 0 0
\(797\) −1350.83 −0.0600362 −0.0300181 0.999549i \(-0.509556\pi\)
−0.0300181 + 0.999549i \(0.509556\pi\)
\(798\) 0 0
\(799\) 32730.1 1.44920
\(800\) 0 0
\(801\) 285.970 0.0126145
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2698.94 −0.118168
\(806\) 0 0
\(807\) −8753.66 −0.381838
\(808\) 0 0
\(809\) −6954.69 −0.302242 −0.151121 0.988515i \(-0.548288\pi\)
−0.151121 + 0.988515i \(0.548288\pi\)
\(810\) 0 0
\(811\) 17155.8 0.742812 0.371406 0.928471i \(-0.378876\pi\)
0.371406 + 0.928471i \(0.378876\pi\)
\(812\) 0 0
\(813\) −35516.9 −1.53214
\(814\) 0 0
\(815\) −50004.9 −2.14920
\(816\) 0 0
\(817\) −17064.9 −0.730753
\(818\) 0 0
\(819\) −2149.39 −0.0917041
\(820\) 0 0
\(821\) 21672.1 0.921268 0.460634 0.887590i \(-0.347622\pi\)
0.460634 + 0.887590i \(0.347622\pi\)
\(822\) 0 0
\(823\) −7925.66 −0.335688 −0.167844 0.985814i \(-0.553681\pi\)
−0.167844 + 0.985814i \(0.553681\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38551.8 1.62101 0.810506 0.585731i \(-0.199192\pi\)
0.810506 + 0.585731i \(0.199192\pi\)
\(828\) 0 0
\(829\) −6636.34 −0.278033 −0.139017 0.990290i \(-0.544394\pi\)
−0.139017 + 0.990290i \(0.544394\pi\)
\(830\) 0 0
\(831\) 10146.7 0.423569
\(832\) 0 0
\(833\) 27458.7 1.14212
\(834\) 0 0
\(835\) 32209.3 1.33491
\(836\) 0 0
\(837\) −30881.5 −1.27529
\(838\) 0 0
\(839\) 46877.6 1.92896 0.964479 0.264159i \(-0.0850943\pi\)
0.964479 + 0.264159i \(0.0850943\pi\)
\(840\) 0 0
\(841\) −398.075 −0.0163219
\(842\) 0 0
\(843\) 14109.0 0.576442
\(844\) 0 0
\(845\) 29377.9 1.19601
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −20191.3 −0.816213
\(850\) 0 0
\(851\) 4097.83 0.165067
\(852\) 0 0
\(853\) −1699.59 −0.0682215 −0.0341108 0.999418i \(-0.510860\pi\)
−0.0341108 + 0.999418i \(0.510860\pi\)
\(854\) 0 0
\(855\) 7801.32 0.312046
\(856\) 0 0
\(857\) 1506.84 0.0600615 0.0300308 0.999549i \(-0.490439\pi\)
0.0300308 + 0.999549i \(0.490439\pi\)
\(858\) 0 0
\(859\) −11830.1 −0.469892 −0.234946 0.972008i \(-0.575491\pi\)
−0.234946 + 0.972008i \(0.575491\pi\)
\(860\) 0 0
\(861\) 7055.52 0.279270
\(862\) 0 0
\(863\) −40299.3 −1.58958 −0.794788 0.606887i \(-0.792418\pi\)
−0.794788 + 0.606887i \(0.792418\pi\)
\(864\) 0 0
\(865\) 34543.0 1.35780
\(866\) 0 0
\(867\) 8620.83 0.337692
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 52088.8 2.02636
\(872\) 0 0
\(873\) −841.124 −0.0326091
\(874\) 0 0
\(875\) −2451.73 −0.0947240
\(876\) 0 0
\(877\) −12867.6 −0.495449 −0.247724 0.968831i \(-0.579683\pi\)
−0.247724 + 0.968831i \(0.579683\pi\)
\(878\) 0 0
\(879\) −12944.8 −0.496719
\(880\) 0 0
\(881\) −31803.0 −1.21620 −0.608098 0.793862i \(-0.708067\pi\)
−0.608098 + 0.793862i \(0.708067\pi\)
\(882\) 0 0
\(883\) −33129.6 −1.26263 −0.631314 0.775527i \(-0.717484\pi\)
−0.631314 + 0.775527i \(0.717484\pi\)
\(884\) 0 0
\(885\) 37953.2 1.44156
\(886\) 0 0
\(887\) 11134.0 0.421471 0.210735 0.977543i \(-0.432414\pi\)
0.210735 + 0.977543i \(0.432414\pi\)
\(888\) 0 0
\(889\) 3215.99 0.121328
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19517.1 0.731373
\(894\) 0 0
\(895\) 33560.5 1.25341
\(896\) 0 0
\(897\) −11284.8 −0.420053
\(898\) 0 0
\(899\) 31319.1 1.16190
\(900\) 0 0
\(901\) 16072.6 0.594291
\(902\) 0 0
\(903\) −5375.97 −0.198119
\(904\) 0 0
\(905\) −15426.9 −0.566639
\(906\) 0 0
\(907\) 15892.9 0.581825 0.290913 0.956750i \(-0.406041\pi\)
0.290913 + 0.956750i \(0.406041\pi\)
\(908\) 0 0
\(909\) 11110.1 0.405390
\(910\) 0 0
\(911\) 44565.1 1.62075 0.810377 0.585909i \(-0.199262\pi\)
0.810377 + 0.585909i \(0.199262\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −24178.7 −0.873578
\(916\) 0 0
\(917\) 9659.13 0.347843
\(918\) 0 0
\(919\) −17058.6 −0.612310 −0.306155 0.951982i \(-0.599043\pi\)
−0.306155 + 0.951982i \(0.599043\pi\)
\(920\) 0 0
\(921\) −39113.3 −1.39938
\(922\) 0 0
\(923\) 42356.1 1.51047
\(924\) 0 0
\(925\) 15711.6 0.558479
\(926\) 0 0
\(927\) −7699.11 −0.272785
\(928\) 0 0
\(929\) 27486.2 0.970715 0.485358 0.874316i \(-0.338689\pi\)
0.485358 + 0.874316i \(0.338689\pi\)
\(930\) 0 0
\(931\) 16373.7 0.576399
\(932\) 0 0
\(933\) −29370.9 −1.03061
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2159.77 −0.0753007 −0.0376503 0.999291i \(-0.511987\pi\)
−0.0376503 + 0.999291i \(0.511987\pi\)
\(938\) 0 0
\(939\) −22539.7 −0.783340
\(940\) 0 0
\(941\) −19886.4 −0.688925 −0.344462 0.938800i \(-0.611939\pi\)
−0.344462 + 0.938800i \(0.611939\pi\)
\(942\) 0 0
\(943\) −19237.3 −0.664319
\(944\) 0 0
\(945\) 9647.75 0.332107
\(946\) 0 0
\(947\) 22957.8 0.787780 0.393890 0.919158i \(-0.371129\pi\)
0.393890 + 0.919158i \(0.371129\pi\)
\(948\) 0 0
\(949\) 76133.8 2.60422
\(950\) 0 0
\(951\) 33802.1 1.15259
\(952\) 0 0
\(953\) 2899.62 0.0985604 0.0492802 0.998785i \(-0.484307\pi\)
0.0492802 + 0.998785i \(0.484307\pi\)
\(954\) 0 0
\(955\) 28396.3 0.962182
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3139.56 0.105716
\(960\) 0 0
\(961\) 11094.8 0.372421
\(962\) 0 0
\(963\) 3703.22 0.123920
\(964\) 0 0
\(965\) 40972.4 1.36679
\(966\) 0 0
\(967\) 33626.4 1.11825 0.559127 0.829082i \(-0.311136\pi\)
0.559127 + 0.829082i \(0.311136\pi\)
\(968\) 0 0
\(969\) 17490.8 0.579861
\(970\) 0 0
\(971\) −47179.6 −1.55929 −0.779643 0.626225i \(-0.784599\pi\)
−0.779643 + 0.626225i \(0.784599\pi\)
\(972\) 0 0
\(973\) 4637.90 0.152810
\(974\) 0 0
\(975\) −43267.1 −1.42119
\(976\) 0 0
\(977\) −10162.1 −0.332769 −0.166384 0.986061i \(-0.553209\pi\)
−0.166384 + 0.986061i \(0.553209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 11033.1 0.359081
\(982\) 0 0
\(983\) 41639.0 1.35105 0.675523 0.737339i \(-0.263918\pi\)
0.675523 + 0.737339i \(0.263918\pi\)
\(984\) 0 0
\(985\) 33420.9 1.08110
\(986\) 0 0
\(987\) 6148.50 0.198287
\(988\) 0 0
\(989\) 14657.9 0.471278
\(990\) 0 0
\(991\) 23893.3 0.765888 0.382944 0.923772i \(-0.374910\pi\)
0.382944 + 0.923772i \(0.374910\pi\)
\(992\) 0 0
\(993\) 28405.8 0.907786
\(994\) 0 0
\(995\) −2326.47 −0.0741247
\(996\) 0 0
\(997\) 59471.8 1.88916 0.944580 0.328282i \(-0.106470\pi\)
0.944580 + 0.328282i \(0.106470\pi\)
\(998\) 0 0
\(999\) −14648.3 −0.463916
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.4.a.br.1.5 6
4.3 odd 2 484.4.a.i.1.2 6
11.5 even 5 176.4.m.d.113.3 12
11.9 even 5 176.4.m.d.81.3 12
11.10 odd 2 1936.4.a.bs.1.5 6
44.27 odd 10 44.4.e.a.25.1 12
44.31 odd 10 44.4.e.a.37.1 yes 12
44.43 even 2 484.4.a.h.1.2 6
132.71 even 10 396.4.j.d.289.3 12
132.119 even 10 396.4.j.d.37.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.1 12 44.27 odd 10
44.4.e.a.37.1 yes 12 44.31 odd 10
176.4.m.d.81.3 12 11.9 even 5
176.4.m.d.113.3 12 11.5 even 5
396.4.j.d.37.3 12 132.119 even 10
396.4.j.d.289.3 12 132.71 even 10
484.4.a.h.1.2 6 44.43 even 2
484.4.a.i.1.2 6 4.3 odd 2
1936.4.a.br.1.5 6 1.1 even 1 trivial
1936.4.a.bs.1.5 6 11.10 odd 2