Properties

Label 1936.4.a
Level $1936$
Weight $4$
Character orbit 1936.a
Rep. character $\chi_{1936}(1,\cdot)$
Character field $\Q$
Dimension $159$
Newform subspaces $51$
Sturm bound $1056$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 51 \)
Sturm bound: \(1056\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1936))\).

Total New Old
Modular forms 828 168 660
Cusp forms 756 159 597
Eisenstein series 72 9 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(42\)
\(+\)\(-\)\(-\)\(40\)
\(-\)\(+\)\(-\)\(37\)
\(-\)\(-\)\(+\)\(40\)
Plus space\(+\)\(82\)
Minus space\(-\)\(77\)

Trace form

\( 159 q + 2 q^{3} - 12 q^{7} + 1361 q^{9} + O(q^{10}) \) \( 159 q + 2 q^{3} - 12 q^{7} + 1361 q^{9} + 24 q^{13} - 52 q^{15} - 24 q^{17} - 160 q^{19} - 40 q^{21} - 184 q^{23} + 3599 q^{25} + 236 q^{27} + 158 q^{31} - 276 q^{35} - 168 q^{37} - 208 q^{39} + 80 q^{41} - 284 q^{43} + 318 q^{45} + 262 q^{47} + 6497 q^{49} - 156 q^{51} + 528 q^{53} - 504 q^{57} + 1414 q^{59} + 752 q^{61} + 152 q^{63} - 72 q^{65} + 768 q^{67} + 1320 q^{69} + 394 q^{71} + 548 q^{75} + 2524 q^{79} + 10951 q^{81} + 1684 q^{83} + 1448 q^{85} + 592 q^{87} - 410 q^{89} - 264 q^{91} + 1496 q^{93} + 1976 q^{95} - 768 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1936))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11
1936.4.a.a 1936.a 1.a $1$ $114.228$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.4.a.a \(0\) \(-8\) \(18\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-8q^{3}+18q^{5}+37q^{9}-12^{2}q^{15}+\cdots\)
1936.4.a.b 1936.a 1.a $1$ $114.228$ \(\Q\) None 88.4.a.b \(0\) \(-7\) \(9\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-7q^{3}+9q^{5}+2q^{7}+22q^{9}-63q^{15}+\cdots\)
1936.4.a.c 1936.a 1.a $1$ $114.228$ \(\Q\) None 242.4.a.c \(0\) \(-5\) \(-15\) \(-36\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}-15q^{5}-6^{2}q^{7}-2q^{9}-12q^{13}+\cdots\)
1936.4.a.d 1936.a 1.a $1$ $114.228$ \(\Q\) None 242.4.a.c \(0\) \(-5\) \(-15\) \(36\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}-15q^{5}+6^{2}q^{7}-2q^{9}+12q^{13}+\cdots\)
1936.4.a.e 1936.a 1.a $1$ $114.228$ \(\Q\) None 242.4.a.b \(0\) \(-4\) \(3\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+3q^{5}-8q^{7}-11q^{9}+83q^{13}+\cdots\)
1936.4.a.f 1936.a 1.a $1$ $114.228$ \(\Q\) None 242.4.a.b \(0\) \(-4\) \(3\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+3q^{5}+8q^{7}-11q^{9}-83q^{13}+\cdots\)
1936.4.a.g 1936.a 1.a $1$ $114.228$ \(\Q\) None 22.4.a.b \(0\) \(-4\) \(14\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+14q^{5}-8q^{7}-11q^{9}+50q^{13}+\cdots\)
1936.4.a.h 1936.a 1.a $1$ $114.228$ \(\Q\) None 22.4.a.c \(0\) \(-1\) \(-3\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}-10q^{7}-26q^{9}+2^{4}q^{13}+\cdots\)
1936.4.a.i 1936.a 1.a $1$ $114.228$ \(\Q\) None 88.4.a.a \(0\) \(1\) \(-7\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-7q^{5}-6q^{7}-26q^{9}+40q^{13}+\cdots\)
1936.4.a.j 1936.a 1.a $1$ $114.228$ \(\Q\) None 968.4.a.b \(0\) \(2\) \(13\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+13q^{5}-10q^{7}-23q^{9}-3^{3}q^{13}+\cdots\)
1936.4.a.k 1936.a 1.a $1$ $114.228$ \(\Q\) None 968.4.a.b \(0\) \(2\) \(13\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+13q^{5}+10q^{7}-23q^{9}+3^{3}q^{13}+\cdots\)
1936.4.a.l 1936.a 1.a $1$ $114.228$ \(\Q\) None 8.4.a.a \(0\) \(4\) \(-2\) \(24\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{3}-2q^{5}+24q^{7}-11q^{9}-22q^{13}+\cdots\)
1936.4.a.m 1936.a 1.a $1$ $114.228$ \(\Q\) None 44.4.a.a \(0\) \(5\) \(-7\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{3}-7q^{5}-26q^{7}-2q^{9}-52q^{13}+\cdots\)
1936.4.a.n 1936.a 1.a $1$ $114.228$ \(\Q\) None 22.4.a.a \(0\) \(7\) \(-19\) \(14\) $-$ $-$ $\mathrm{SU}(2)$ \(q+7q^{3}-19q^{5}+14q^{7}+22q^{9}+72q^{13}+\cdots\)
1936.4.a.o 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{97}) \) None 44.4.a.b \(0\) \(-9\) \(11\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{3}+(6-\beta )q^{5}+(8-6\beta )q^{7}+\cdots\)
1936.4.a.p 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{37}) \) None 242.4.a.j \(0\) \(-6\) \(4\) \(-42\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{3}+(2-3\beta )q^{5}+(-21+\cdots)q^{7}+\cdots\)
1936.4.a.q 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{37}) \) None 242.4.a.j \(0\) \(-6\) \(4\) \(42\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{3}+(2-3\beta )q^{5}+(21-\beta )q^{7}+\cdots\)
1936.4.a.r 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 242.4.a.i \(0\) \(2\) \(-12\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(-6+7\beta )q^{5}+(-3-11\beta )q^{7}+\cdots\)
1936.4.a.s 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 242.4.a.i \(0\) \(2\) \(-12\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(-6+7\beta )q^{5}+(3+11\beta )q^{7}+\cdots\)
1936.4.a.t 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{5}) \) None 88.4.a.c \(0\) \(2\) \(-6\) \(-56\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(-3+4\beta )q^{5}+(-28+\cdots)q^{7}+\cdots\)
1936.4.a.u 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 484.4.a.c \(0\) \(2\) \(0\) \(-18\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+3\beta )q^{3}+3\beta q^{5}+(-9+\beta )q^{7}+\cdots\)
1936.4.a.v 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 484.4.a.c \(0\) \(2\) \(0\) \(18\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+3\beta )q^{3}+3\beta q^{5}+(9-\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
1936.4.a.w 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 11.4.a.a \(0\) \(2\) \(2\) \(20\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(1+2\beta )q^{5}+(10-\beta )q^{7}+\cdots\)
1936.4.a.x 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{33}) \) \(\Q(\sqrt{-11}) \) 484.4.a.b \(0\) \(8\) \(-18\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+(4+\beta )q^{3}+(-9-2\beta )q^{5}+(22+8\beta )q^{9}+\cdots\)
1936.4.a.y 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 121.4.a.b \(0\) \(8\) \(-10\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{3}+(-5-\beta )q^{5}+(-4+7\beta )q^{7}+\cdots\)
1936.4.a.z 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{3}) \) None 121.4.a.b \(0\) \(8\) \(-10\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{3}+(-5-\beta )q^{5}+(4-7\beta )q^{7}+\cdots\)
1936.4.a.ba 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{26}) \) None 121.4.a.d \(0\) \(10\) \(10\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+5q^{3}+5q^{5}+\beta q^{7}-2q^{9}-3\beta q^{13}+\cdots\)
1936.4.a.bb 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{5}) \) None 22.4.c.a \(0\) \(13\) \(-1\) \(-5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(8-3\beta )q^{3}+(-1+\beta )q^{5}+(-8+11\beta )q^{7}+\cdots\)
1936.4.a.bc 1936.a 1.a $2$ $114.228$ \(\Q(\sqrt{5}) \) None 22.4.c.a \(0\) \(13\) \(-1\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(8-3\beta )q^{3}+(-1+\beta )q^{5}+(8-11\beta )q^{7}+\cdots\)
1936.4.a.bd 1936.a 1.a $3$ $114.228$ 3.3.3124.1 None 968.4.a.j \(0\) \(-6\) \(-21\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(-7-\beta _{1})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1936.4.a.be 1936.a 1.a $3$ $114.228$ 3.3.3124.1 None 968.4.a.j \(0\) \(-6\) \(-21\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(-7-\beta _{1})q^{5}+(1+\cdots)q^{7}+\cdots\)
1936.4.a.bf 1936.a 1.a $3$ $114.228$ 3.3.1556.1 None 968.4.a.g \(0\) \(-2\) \(-9\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+(-3+\beta _{2})q^{5}+(-2+\cdots)q^{7}+\cdots\)
1936.4.a.bg 1936.a 1.a $3$ $114.228$ 3.3.1556.1 None 968.4.a.g \(0\) \(-2\) \(-9\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+(-3+\beta _{2})q^{5}+(2+\cdots)q^{7}+\cdots\)
1936.4.a.bh 1936.a 1.a $3$ $114.228$ 3.3.11109.1 None 88.4.a.d \(0\) \(-2\) \(8\) \(24\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(3+\beta _{2})q^{5}+(8-\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bi 1936.a 1.a $3$ $114.228$ 3.3.3124.1 None 484.4.a.f \(0\) \(2\) \(19\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(6-\beta _{1})q^{5}+(-9+\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bj 1936.a 1.a $3$ $114.228$ 3.3.3124.1 None 484.4.a.f \(0\) \(2\) \(19\) \(26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(6-\beta _{1})q^{5}+(9-\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bk 1936.a 1.a $4$ $114.228$ \(\Q(\sqrt{5}, \sqrt{37})\) None 11.4.c.a \(0\) \(-6\) \(-11\) \(-25\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{3}+(-5+\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)
1936.4.a.bl 1936.a 1.a $4$ $114.228$ \(\Q(\sqrt{5}, \sqrt{37})\) None 11.4.c.a \(0\) \(-6\) \(-11\) \(25\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{3}+(-1-\beta _{1}+\beta _{2}-3\beta _{3})q^{5}+\cdots\)
1936.4.a.bm 1936.a 1.a $4$ $114.228$ 4.4.978025.2 None 22.4.c.b \(0\) \(-4\) \(25\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(6-\beta _{2})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1936.4.a.bn 1936.a 1.a $4$ $114.228$ 4.4.978025.2 None 22.4.c.b \(0\) \(-4\) \(25\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(6-\beta _{2})q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bo 1936.a 1.a $4$ $114.228$ 4.4.4166757.2 None 968.4.a.l \(0\) \(3\) \(9\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(2+\beta _{2})q^{5}+(-3-2\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bp 1936.a 1.a $4$ $114.228$ 4.4.4166757.2 None 968.4.a.l \(0\) \(3\) \(9\) \(8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(2+\beta _{2})q^{5}+(3+2\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bq 1936.a 1.a $6$ $114.228$ 6.6.\(\cdots\).1 None 121.4.a.h \(0\) \(-8\) \(14\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{4})q^{3}+(2+\beta _{3}-\beta _{4})q^{5}+\cdots\)
1936.4.a.br 1936.a 1.a $6$ $114.228$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 44.4.e.a \(0\) \(-3\) \(-12\) \(-8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-2+\beta _{1}-\beta _{4})q^{5}+\cdots\)
1936.4.a.bs 1936.a 1.a $6$ $114.228$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 44.4.e.a \(0\) \(-3\) \(-12\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-2+\beta _{1}-\beta _{4})q^{5}+\cdots\)
1936.4.a.bt 1936.a 1.a $8$ $114.228$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 968.4.a.p \(0\) \(6\) \(6\) \(-50\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(1-2\beta _{3}+\beta _{7})q^{5}+(-6+\cdots)q^{7}+\cdots\)
1936.4.a.bu 1936.a 1.a $8$ $114.228$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 968.4.a.p \(0\) \(6\) \(6\) \(50\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(1-2\beta _{3}+\beta _{7})q^{5}+(6+\cdots)q^{7}+\cdots\)
1936.4.a.bv 1936.a 1.a $8$ $114.228$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 88.4.i.a \(0\) \(8\) \(-13\) \(-9\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{3}+(-2-\beta _{5})q^{5}+(\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
1936.4.a.bw 1936.a 1.a $8$ $114.228$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 88.4.i.a \(0\) \(8\) \(-13\) \(9\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{2})q^{3}+(-2-\beta _{5})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1936.4.a.bx 1936.a 1.a $10$ $114.228$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 88.4.i.b \(0\) \(-9\) \(13\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(1+\beta _{4})q^{5}+\beta _{3}q^{7}+\cdots\)
1936.4.a.by 1936.a 1.a $10$ $114.228$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 88.4.i.b \(0\) \(-9\) \(13\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(1+\beta _{4})q^{5}-\beta _{3}q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1936))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1936)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 2}\)