Defining parameters
Level: | \( N \) | \(=\) | \( 1936 = 2^{4} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1936.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 51 \) | ||
Sturm bound: | \(1056\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1936))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 828 | 168 | 660 |
Cusp forms | 756 | 159 | 597 |
Eisenstein series | 72 | 9 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(42\) |
\(+\) | \(-\) | \(-\) | \(40\) |
\(-\) | \(+\) | \(-\) | \(37\) |
\(-\) | \(-\) | \(+\) | \(40\) |
Plus space | \(+\) | \(82\) | |
Minus space | \(-\) | \(77\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1936))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1936))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1936)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 2}\)