Properties

Label 176.4.m.d.81.1
Level $176$
Weight $4$
Character 176.81
Analytic conductor $10.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 70 x^{10} - 84 x^{9} + 2459 x^{8} - 8514 x^{7} + 54995 x^{6} - 432951 x^{5} + \cdots + 40896025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(-5.22867 - 3.79885i\) of defining polynomial
Character \(\chi\) \(=\) 176.81
Dual form 176.4.m.d.113.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99717 + 6.14667i) q^{3} +(0.0709832 - 0.0515723i) q^{5} +(7.55109 + 23.2399i) q^{7} +(-11.9494 - 8.68176i) q^{9} +(-36.2742 - 3.89603i) q^{11} +(26.7042 + 19.4017i) q^{13} +(0.175232 + 0.539309i) q^{15} +(-39.3680 + 28.6025i) q^{17} +(33.2359 - 102.290i) q^{19} -157.929 q^{21} -141.967 q^{23} +(-38.6247 + 118.875i) q^{25} +(-63.9451 + 46.4589i) q^{27} +(-37.9483 - 116.793i) q^{29} +(-100.904 - 73.3112i) q^{31} +(96.3936 - 215.185i) q^{33} +(1.73453 + 1.26021i) q^{35} +(-60.0493 - 184.813i) q^{37} +(-172.589 + 125.393i) q^{39} +(-49.0925 + 151.091i) q^{41} +451.693 q^{43} -1.29595 q^{45} +(-188.225 + 579.298i) q^{47} +(-205.580 + 149.362i) q^{49} +(-97.1855 - 299.106i) q^{51} +(281.895 + 204.809i) q^{53} +(-2.77579 + 1.59419i) q^{55} +(562.362 + 408.580i) q^{57} +(28.8437 + 88.7718i) q^{59} +(-371.255 + 269.733i) q^{61} +(111.532 - 343.260i) q^{63} +2.89614 q^{65} +768.836 q^{67} +(283.532 - 872.622i) q^{69} +(900.219 - 654.047i) q^{71} +(326.904 + 1006.11i) q^{73} +(-653.544 - 474.827i) q^{75} +(-183.367 - 872.428i) q^{77} +(-39.6700 - 28.8219i) q^{79} +(-281.093 - 865.116i) q^{81} +(-810.103 + 588.574i) q^{83} +(-1.31937 + 4.06059i) q^{85} +793.677 q^{87} +948.854 q^{89} +(-249.248 + 767.105i) q^{91} +(652.143 - 473.810i) q^{93} +(-2.91612 - 8.97488i) q^{95} +(331.040 + 240.515i) q^{97} +(399.632 + 361.480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 4 q^{5} - 6 q^{7} + 47 q^{9} - 39 q^{11} - 10 q^{13} - 74 q^{15} - 56 q^{17} + 141 q^{19} - 304 q^{21} + 388 q^{23} - 203 q^{25} + 331 q^{27} + 772 q^{29} - 882 q^{31} + 981 q^{33} - 412 q^{35}+ \cdots - 3563 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.99717 + 6.14667i −0.384357 + 1.18293i 0.552590 + 0.833454i \(0.313640\pi\)
−0.936946 + 0.349474i \(0.886360\pi\)
\(4\) 0 0
\(5\) 0.0709832 0.0515723i 0.00634893 0.00461277i −0.584606 0.811317i \(-0.698751\pi\)
0.590955 + 0.806704i \(0.298751\pi\)
\(6\) 0 0
\(7\) 7.55109 + 23.2399i 0.407721 + 1.25483i 0.918602 + 0.395184i \(0.129319\pi\)
−0.510882 + 0.859651i \(0.670681\pi\)
\(8\) 0 0
\(9\) −11.9494 8.68176i −0.442571 0.321547i
\(10\) 0 0
\(11\) −36.2742 3.89603i −0.994282 0.106791i
\(12\) 0 0
\(13\) 26.7042 + 19.4017i 0.569723 + 0.413928i 0.835005 0.550243i \(-0.185465\pi\)
−0.265281 + 0.964171i \(0.585465\pi\)
\(14\) 0 0
\(15\) 0.175232 + 0.539309i 0.00301632 + 0.00928327i
\(16\) 0 0
\(17\) −39.3680 + 28.6025i −0.561655 + 0.408066i −0.832064 0.554679i \(-0.812841\pi\)
0.270409 + 0.962745i \(0.412841\pi\)
\(18\) 0 0
\(19\) 33.2359 102.290i 0.401307 1.23510i −0.522633 0.852558i \(-0.675050\pi\)
0.923940 0.382538i \(-0.124950\pi\)
\(20\) 0 0
\(21\) −157.929 −1.64109
\(22\) 0 0
\(23\) −141.967 −1.28705 −0.643523 0.765427i \(-0.722528\pi\)
−0.643523 + 0.765427i \(0.722528\pi\)
\(24\) 0 0
\(25\) −38.6247 + 118.875i −0.308998 + 0.950998i
\(26\) 0 0
\(27\) −63.9451 + 46.4589i −0.455787 + 0.331149i
\(28\) 0 0
\(29\) −37.9483 116.793i −0.242994 0.747858i −0.995960 0.0897989i \(-0.971378\pi\)
0.752966 0.658059i \(-0.228622\pi\)
\(30\) 0 0
\(31\) −100.904 73.3112i −0.584611 0.424744i 0.255773 0.966737i \(-0.417670\pi\)
−0.840383 + 0.541993i \(0.817670\pi\)
\(32\) 0 0
\(33\) 96.3936 215.185i 0.508484 1.13512i
\(34\) 0 0
\(35\) 1.73453 + 1.26021i 0.00837685 + 0.00608613i
\(36\) 0 0
\(37\) −60.0493 184.813i −0.266812 0.821164i −0.991270 0.131845i \(-0.957910\pi\)
0.724458 0.689319i \(-0.242090\pi\)
\(38\) 0 0
\(39\) −172.589 + 125.393i −0.708624 + 0.514846i
\(40\) 0 0
\(41\) −49.0925 + 151.091i −0.186999 + 0.575524i −0.999977 0.00677054i \(-0.997845\pi\)
0.812978 + 0.582294i \(0.197845\pi\)
\(42\) 0 0
\(43\) 451.693 1.60192 0.800960 0.598718i \(-0.204323\pi\)
0.800960 + 0.598718i \(0.204323\pi\)
\(44\) 0 0
\(45\) −1.29595 −0.00429307
\(46\) 0 0
\(47\) −188.225 + 579.298i −0.584159 + 1.79786i 0.0184617 + 0.999830i \(0.494123\pi\)
−0.602621 + 0.798028i \(0.705877\pi\)
\(48\) 0 0
\(49\) −205.580 + 149.362i −0.599357 + 0.435459i
\(50\) 0 0
\(51\) −97.1855 299.106i −0.266837 0.821240i
\(52\) 0 0
\(53\) 281.895 + 204.809i 0.730590 + 0.530805i 0.889750 0.456448i \(-0.150879\pi\)
−0.159160 + 0.987253i \(0.550879\pi\)
\(54\) 0 0
\(55\) −2.77579 + 1.59419i −0.00680522 + 0.00390838i
\(56\) 0 0
\(57\) 562.362 + 408.580i 1.30678 + 0.949435i
\(58\) 0 0
\(59\) 28.8437 + 88.7718i 0.0636463 + 0.195883i 0.977823 0.209432i \(-0.0671616\pi\)
−0.914177 + 0.405316i \(0.867162\pi\)
\(60\) 0 0
\(61\) −371.255 + 269.733i −0.779252 + 0.566160i −0.904754 0.425934i \(-0.859946\pi\)
0.125503 + 0.992093i \(0.459946\pi\)
\(62\) 0 0
\(63\) 111.532 343.260i 0.223043 0.686455i
\(64\) 0 0
\(65\) 2.89614 0.00552649
\(66\) 0 0
\(67\) 768.836 1.40191 0.700957 0.713204i \(-0.252757\pi\)
0.700957 + 0.713204i \(0.252757\pi\)
\(68\) 0 0
\(69\) 283.532 872.622i 0.494685 1.52248i
\(70\) 0 0
\(71\) 900.219 654.047i 1.50474 1.09326i 0.536291 0.844033i \(-0.319825\pi\)
0.968446 0.249223i \(-0.0801751\pi\)
\(72\) 0 0
\(73\) 326.904 + 1006.11i 0.524127 + 1.61310i 0.766037 + 0.642797i \(0.222226\pi\)
−0.241910 + 0.970299i \(0.577774\pi\)
\(74\) 0 0
\(75\) −653.544 474.827i −1.00620 0.731044i
\(76\) 0 0
\(77\) −183.367 872.428i −0.271384 1.29120i
\(78\) 0 0
\(79\) −39.6700 28.8219i −0.0564965 0.0410471i 0.559179 0.829047i \(-0.311117\pi\)
−0.615675 + 0.788000i \(0.711117\pi\)
\(80\) 0 0
\(81\) −281.093 865.116i −0.385587 1.18672i
\(82\) 0 0
\(83\) −810.103 + 588.574i −1.07133 + 0.778366i −0.976151 0.217094i \(-0.930342\pi\)
−0.0951784 + 0.995460i \(0.530342\pi\)
\(84\) 0 0
\(85\) −1.31937 + 4.06059i −0.00168359 + 0.00518157i
\(86\) 0 0
\(87\) 793.677 0.978059
\(88\) 0 0
\(89\) 948.854 1.13009 0.565047 0.825059i \(-0.308858\pi\)
0.565047 + 0.825059i \(0.308858\pi\)
\(90\) 0 0
\(91\) −249.248 + 767.105i −0.287124 + 0.883676i
\(92\) 0 0
\(93\) 652.143 473.810i 0.727141 0.528299i
\(94\) 0 0
\(95\) −2.91612 8.97488i −0.00314934 0.00969267i
\(96\) 0 0
\(97\) 331.040 + 240.515i 0.346516 + 0.251759i 0.747406 0.664368i \(-0.231299\pi\)
−0.400890 + 0.916126i \(0.631299\pi\)
\(98\) 0 0
\(99\) 399.632 + 361.480i 0.405702 + 0.366970i
\(100\) 0 0
\(101\) −239.170 173.767i −0.235627 0.171193i 0.463706 0.885989i \(-0.346519\pi\)
−0.699333 + 0.714796i \(0.746519\pi\)
\(102\) 0 0
\(103\) −14.6196 44.9945i −0.0139855 0.0430431i 0.943820 0.330459i \(-0.107204\pi\)
−0.957806 + 0.287416i \(0.907204\pi\)
\(104\) 0 0
\(105\) −11.2103 + 8.14474i −0.0104192 + 0.00756996i
\(106\) 0 0
\(107\) −40.9037 + 125.889i −0.0369562 + 0.113739i −0.967833 0.251594i \(-0.919045\pi\)
0.930877 + 0.365334i \(0.119045\pi\)
\(108\) 0 0
\(109\) −1326.34 −1.16551 −0.582756 0.812647i \(-0.698026\pi\)
−0.582756 + 0.812647i \(0.698026\pi\)
\(110\) 0 0
\(111\) 1255.91 1.07393
\(112\) 0 0
\(113\) −406.632 + 1251.48i −0.338519 + 1.04186i 0.626443 + 0.779467i \(0.284510\pi\)
−0.964962 + 0.262388i \(0.915490\pi\)
\(114\) 0 0
\(115\) −10.0772 + 7.32154i −0.00817136 + 0.00593684i
\(116\) 0 0
\(117\) −150.658 463.678i −0.119046 0.366385i
\(118\) 0 0
\(119\) −961.990 698.926i −0.741054 0.538407i
\(120\) 0 0
\(121\) 1300.64 + 282.651i 0.977191 + 0.212360i
\(122\) 0 0
\(123\) −830.662 603.511i −0.608929 0.442413i
\(124\) 0 0
\(125\) 6.77808 + 20.8608i 0.00485000 + 0.0149268i
\(126\) 0 0
\(127\) 279.263 202.896i 0.195123 0.141765i −0.485934 0.873995i \(-0.661521\pi\)
0.681057 + 0.732230i \(0.261521\pi\)
\(128\) 0 0
\(129\) −902.110 + 2776.41i −0.615708 + 1.89495i
\(130\) 0 0
\(131\) −31.6857 −0.0211328 −0.0105664 0.999944i \(-0.503363\pi\)
−0.0105664 + 0.999944i \(0.503363\pi\)
\(132\) 0 0
\(133\) 2628.16 1.71346
\(134\) 0 0
\(135\) −2.14304 + 6.59559i −0.00136625 + 0.00420488i
\(136\) 0 0
\(137\) −772.582 + 561.314i −0.481797 + 0.350046i −0.802021 0.597296i \(-0.796242\pi\)
0.320224 + 0.947342i \(0.396242\pi\)
\(138\) 0 0
\(139\) 428.463 + 1318.67i 0.261452 + 0.804666i 0.992490 + 0.122329i \(0.0390362\pi\)
−0.731038 + 0.682337i \(0.760964\pi\)
\(140\) 0 0
\(141\) −3184.84 2313.92i −1.90221 1.38204i
\(142\) 0 0
\(143\) −893.084 807.823i −0.522262 0.472402i
\(144\) 0 0
\(145\) −8.71696 6.33325i −0.00499244 0.00362722i
\(146\) 0 0
\(147\) −507.503 1561.93i −0.284749 0.876368i
\(148\) 0 0
\(149\) −2145.20 + 1558.58i −1.17947 + 0.856938i −0.992112 0.125353i \(-0.959994\pi\)
−0.187362 + 0.982291i \(0.559994\pi\)
\(150\) 0 0
\(151\) −624.070 + 1920.69i −0.336332 + 1.03512i 0.629731 + 0.776814i \(0.283165\pi\)
−0.966062 + 0.258309i \(0.916835\pi\)
\(152\) 0 0
\(153\) 718.745 0.379785
\(154\) 0 0
\(155\) −10.9433 −0.00567090
\(156\) 0 0
\(157\) −249.783 + 768.754i −0.126974 + 0.390785i −0.994256 0.107033i \(-0.965865\pi\)
0.867282 + 0.497817i \(0.165865\pi\)
\(158\) 0 0
\(159\) −1821.89 + 1323.68i −0.908711 + 0.660217i
\(160\) 0 0
\(161\) −1072.00 3299.28i −0.524755 1.61503i
\(162\) 0 0
\(163\) 74.5331 + 54.1514i 0.0358152 + 0.0260213i 0.605549 0.795808i \(-0.292954\pi\)
−0.569734 + 0.821829i \(0.692954\pi\)
\(164\) 0 0
\(165\) −4.25525 20.2457i −0.00200770 0.00955230i
\(166\) 0 0
\(167\) 513.234 + 372.887i 0.237816 + 0.172783i 0.700310 0.713839i \(-0.253045\pi\)
−0.462494 + 0.886623i \(0.653045\pi\)
\(168\) 0 0
\(169\) −342.224 1053.26i −0.155769 0.479407i
\(170\) 0 0
\(171\) −1285.20 + 933.754i −0.574748 + 0.417579i
\(172\) 0 0
\(173\) 643.360 1980.06i 0.282738 0.870179i −0.704329 0.709874i \(-0.748752\pi\)
0.987067 0.160305i \(-0.0512479\pi\)
\(174\) 0 0
\(175\) −3054.29 −1.31933
\(176\) 0 0
\(177\) −603.257 −0.256179
\(178\) 0 0
\(179\) 323.277 994.945i 0.134988 0.415451i −0.860600 0.509282i \(-0.829911\pi\)
0.995588 + 0.0938306i \(0.0299112\pi\)
\(180\) 0 0
\(181\) 2067.25 1501.94i 0.848936 0.616788i −0.0759166 0.997114i \(-0.524188\pi\)
0.924852 + 0.380326i \(0.124188\pi\)
\(182\) 0 0
\(183\) −916.497 2820.69i −0.370215 1.13941i
\(184\) 0 0
\(185\) −13.7937 10.0217i −0.00548181 0.00398277i
\(186\) 0 0
\(187\) 1539.48 884.156i 0.602021 0.345753i
\(188\) 0 0
\(189\) −1562.55 1135.26i −0.601370 0.436921i
\(190\) 0 0
\(191\) 147.758 + 454.753i 0.0559760 + 0.172276i 0.975136 0.221609i \(-0.0711308\pi\)
−0.919160 + 0.393885i \(0.871131\pi\)
\(192\) 0 0
\(193\) 1431.61 1040.13i 0.533936 0.387927i −0.287892 0.957663i \(-0.592954\pi\)
0.821828 + 0.569736i \(0.192954\pi\)
\(194\) 0 0
\(195\) −5.78409 + 17.8016i −0.00212414 + 0.00653743i
\(196\) 0 0
\(197\) −524.670 −0.189752 −0.0948761 0.995489i \(-0.530245\pi\)
−0.0948761 + 0.995489i \(0.530245\pi\)
\(198\) 0 0
\(199\) 1061.88 0.378264 0.189132 0.981952i \(-0.439433\pi\)
0.189132 + 0.981952i \(0.439433\pi\)
\(200\) 0 0
\(201\) −1535.50 + 4725.78i −0.538835 + 1.65836i
\(202\) 0 0
\(203\) 2427.70 1763.83i 0.839365 0.609834i
\(204\) 0 0
\(205\) 4.30738 + 13.2567i 0.00146751 + 0.00451654i
\(206\) 0 0
\(207\) 1696.42 + 1232.52i 0.569609 + 0.413845i
\(208\) 0 0
\(209\) −1604.13 + 3580.99i −0.530909 + 1.18518i
\(210\) 0 0
\(211\) 4347.67 + 3158.77i 1.41851 + 1.03061i 0.992015 + 0.126120i \(0.0402523\pi\)
0.426496 + 0.904489i \(0.359748\pi\)
\(212\) 0 0
\(213\) 2222.32 + 6839.60i 0.714887 + 2.20020i
\(214\) 0 0
\(215\) 32.0626 23.2948i 0.0101705 0.00738928i
\(216\) 0 0
\(217\) 941.805 2898.58i 0.294626 0.906767i
\(218\) 0 0
\(219\) −6837.10 −2.10963
\(220\) 0 0
\(221\) −1606.23 −0.488898
\(222\) 0 0
\(223\) −356.495 + 1097.18i −0.107052 + 0.329474i −0.990207 0.139609i \(-0.955415\pi\)
0.883154 + 0.469083i \(0.155415\pi\)
\(224\) 0 0
\(225\) 1493.59 1085.15i 0.442544 0.321527i
\(226\) 0 0
\(227\) −1876.95 5776.66i −0.548800 1.68903i −0.711779 0.702404i \(-0.752110\pi\)
0.162979 0.986630i \(-0.447890\pi\)
\(228\) 0 0
\(229\) 2227.05 + 1618.05i 0.642653 + 0.466915i 0.860761 0.509010i \(-0.169988\pi\)
−0.218107 + 0.975925i \(0.569988\pi\)
\(230\) 0 0
\(231\) 5728.74 + 615.295i 1.63170 + 0.175253i
\(232\) 0 0
\(233\) 2389.72 + 1736.23i 0.671914 + 0.488174i 0.870665 0.491876i \(-0.163689\pi\)
−0.198752 + 0.980050i \(0.563689\pi\)
\(234\) 0 0
\(235\) 16.5149 + 50.8276i 0.00458431 + 0.0141091i
\(236\) 0 0
\(237\) 256.387 186.276i 0.0702706 0.0510545i
\(238\) 0 0
\(239\) −1697.65 + 5224.84i −0.459465 + 1.41409i 0.406347 + 0.913719i \(0.366802\pi\)
−0.865812 + 0.500369i \(0.833198\pi\)
\(240\) 0 0
\(241\) 4038.21 1.07935 0.539676 0.841873i \(-0.318547\pi\)
0.539676 + 0.841873i \(0.318547\pi\)
\(242\) 0 0
\(243\) 3744.88 0.988618
\(244\) 0 0
\(245\) −6.88973 + 21.2044i −0.00179661 + 0.00552939i
\(246\) 0 0
\(247\) 2872.13 2086.72i 0.739875 0.537551i
\(248\) 0 0
\(249\) −1999.86 6154.92i −0.508979 1.56647i
\(250\) 0 0
\(251\) 3615.77 + 2627.01i 0.909265 + 0.660620i 0.940829 0.338882i \(-0.110049\pi\)
−0.0315640 + 0.999502i \(0.510049\pi\)
\(252\) 0 0
\(253\) 5149.73 + 553.106i 1.27969 + 0.137445i
\(254\) 0 0
\(255\) −22.3241 16.2194i −0.00548232 0.00398314i
\(256\) 0 0
\(257\) −1464.18 4506.29i −0.355382 1.09375i −0.955788 0.294058i \(-0.904994\pi\)
0.600406 0.799695i \(-0.295006\pi\)
\(258\) 0 0
\(259\) 3841.59 2791.08i 0.921640 0.669611i
\(260\) 0 0
\(261\) −560.507 + 1725.06i −0.132929 + 0.409114i
\(262\) 0 0
\(263\) −3942.64 −0.924386 −0.462193 0.886779i \(-0.652937\pi\)
−0.462193 + 0.886779i \(0.652937\pi\)
\(264\) 0 0
\(265\) 30.5723 0.00708694
\(266\) 0 0
\(267\) −1895.03 + 5832.29i −0.434359 + 1.33682i
\(268\) 0 0
\(269\) 2752.65 1999.92i 0.623910 0.453297i −0.230375 0.973102i \(-0.573995\pi\)
0.854285 + 0.519805i \(0.173995\pi\)
\(270\) 0 0
\(271\) −1231.13 3789.03i −0.275962 0.849325i −0.988963 0.148162i \(-0.952664\pi\)
0.713001 0.701163i \(-0.247336\pi\)
\(272\) 0 0
\(273\) −4217.35 3064.09i −0.934967 0.679293i
\(274\) 0 0
\(275\) 1864.22 4161.61i 0.408789 0.912562i
\(276\) 0 0
\(277\) −2861.55 2079.04i −0.620700 0.450965i 0.232466 0.972605i \(-0.425321\pi\)
−0.853166 + 0.521640i \(0.825321\pi\)
\(278\) 0 0
\(279\) 569.276 + 1752.05i 0.122157 + 0.375959i
\(280\) 0 0
\(281\) 3541.62 2573.14i 0.751870 0.546265i −0.144536 0.989500i \(-0.546169\pi\)
0.896406 + 0.443234i \(0.146169\pi\)
\(282\) 0 0
\(283\) −766.922 + 2360.34i −0.161091 + 0.495787i −0.998727 0.0504415i \(-0.983937\pi\)
0.837636 + 0.546229i \(0.183937\pi\)
\(284\) 0 0
\(285\) 60.9897 0.0126762
\(286\) 0 0
\(287\) −3882.04 −0.798431
\(288\) 0 0
\(289\) −786.466 + 2420.49i −0.160079 + 0.492671i
\(290\) 0 0
\(291\) −2139.51 + 1554.45i −0.430998 + 0.313138i
\(292\) 0 0
\(293\) −1380.78 4249.60i −0.275311 0.847319i −0.989137 0.146996i \(-0.953039\pi\)
0.713826 0.700323i \(-0.246961\pi\)
\(294\) 0 0
\(295\) 6.62558 + 4.81377i 0.00130765 + 0.000950063i
\(296\) 0 0
\(297\) 2500.57 1436.13i 0.488544 0.280581i
\(298\) 0 0
\(299\) −3791.10 2754.39i −0.733260 0.532745i
\(300\) 0 0
\(301\) 3410.77 + 10497.3i 0.653135 + 2.01014i
\(302\) 0 0
\(303\) 1545.75 1123.05i 0.293073 0.212930i
\(304\) 0 0
\(305\) −12.4421 + 38.2930i −0.00233585 + 0.00718901i
\(306\) 0 0
\(307\) 3630.47 0.674925 0.337462 0.941339i \(-0.390431\pi\)
0.337462 + 0.941339i \(0.390431\pi\)
\(308\) 0 0
\(309\) 305.764 0.0562923
\(310\) 0 0
\(311\) 2711.74 8345.89i 0.494434 1.52171i −0.323404 0.946261i \(-0.604827\pi\)
0.817837 0.575449i \(-0.195173\pi\)
\(312\) 0 0
\(313\) −2727.32 + 1981.51i −0.492515 + 0.357833i −0.806151 0.591710i \(-0.798453\pi\)
0.313636 + 0.949543i \(0.398453\pi\)
\(314\) 0 0
\(315\) −9.78580 30.1176i −0.00175037 0.00538709i
\(316\) 0 0
\(317\) 3651.95 + 2653.29i 0.647047 + 0.470107i 0.862264 0.506459i \(-0.169046\pi\)
−0.215217 + 0.976566i \(0.569046\pi\)
\(318\) 0 0
\(319\) 921.517 + 4384.42i 0.161740 + 0.769531i
\(320\) 0 0
\(321\) −692.104 502.843i −0.120341 0.0874329i
\(322\) 0 0
\(323\) 1617.31 + 4977.56i 0.278605 + 0.857458i
\(324\) 0 0
\(325\) −3337.82 + 2425.06i −0.569688 + 0.413903i
\(326\) 0 0
\(327\) 2648.94 8152.61i 0.447972 1.37872i
\(328\) 0 0
\(329\) −14884.1 −2.49419
\(330\) 0 0
\(331\) −575.331 −0.0955379 −0.0477690 0.998858i \(-0.515211\pi\)
−0.0477690 + 0.998858i \(0.515211\pi\)
\(332\) 0 0
\(333\) −886.946 + 2729.74i −0.145959 + 0.449216i
\(334\) 0 0
\(335\) 54.5744 39.6506i 0.00890065 0.00646670i
\(336\) 0 0
\(337\) −2119.29 6522.51i −0.342567 1.05431i −0.962873 0.269954i \(-0.912991\pi\)
0.620306 0.784360i \(-0.287009\pi\)
\(338\) 0 0
\(339\) −6880.35 4998.86i −1.10233 0.800888i
\(340\) 0 0
\(341\) 3374.60 + 3052.43i 0.535909 + 0.484746i
\(342\) 0 0
\(343\) 1757.26 + 1276.73i 0.276627 + 0.200982i
\(344\) 0 0
\(345\) −24.8771 76.5638i −0.00388214 0.0119480i
\(346\) 0 0
\(347\) −5848.41 + 4249.12i −0.904782 + 0.657362i −0.939690 0.342028i \(-0.888886\pi\)
0.0349081 + 0.999391i \(0.488886\pi\)
\(348\) 0 0
\(349\) −3965.03 + 12203.1i −0.608147 + 1.87169i −0.134642 + 0.990894i \(0.542988\pi\)
−0.473505 + 0.880791i \(0.657012\pi\)
\(350\) 0 0
\(351\) −2608.98 −0.396744
\(352\) 0 0
\(353\) 9780.78 1.47473 0.737363 0.675497i \(-0.236071\pi\)
0.737363 + 0.675497i \(0.236071\pi\)
\(354\) 0 0
\(355\) 30.1697 92.8527i 0.00451054 0.0138820i
\(356\) 0 0
\(357\) 6217.33 4517.16i 0.921726 0.669673i
\(358\) 0 0
\(359\) −170.527 524.830i −0.0250699 0.0771572i 0.937739 0.347341i \(-0.112915\pi\)
−0.962809 + 0.270184i \(0.912915\pi\)
\(360\) 0 0
\(361\) −3809.48 2767.75i −0.555398 0.403521i
\(362\) 0 0
\(363\) −4334.97 + 7430.12i −0.626797 + 1.07432i
\(364\) 0 0
\(365\) 75.0919 + 54.5575i 0.0107685 + 0.00782375i
\(366\) 0 0
\(367\) 1379.05 + 4244.29i 0.196147 + 0.603680i 0.999961 + 0.00879870i \(0.00280075\pi\)
−0.803814 + 0.594881i \(0.797199\pi\)
\(368\) 0 0
\(369\) 1898.36 1379.24i 0.267818 0.194581i
\(370\) 0 0
\(371\) −2631.11 + 8097.74i −0.368196 + 1.13319i
\(372\) 0 0
\(373\) −10086.8 −1.40020 −0.700102 0.714043i \(-0.746862\pi\)
−0.700102 + 0.714043i \(0.746862\pi\)
\(374\) 0 0
\(375\) −141.761 −0.0195214
\(376\) 0 0
\(377\) 1252.60 3855.12i 0.171120 0.526654i
\(378\) 0 0
\(379\) −386.794 + 281.022i −0.0524229 + 0.0380875i −0.613688 0.789549i \(-0.710315\pi\)
0.561265 + 0.827636i \(0.310315\pi\)
\(380\) 0 0
\(381\) 689.400 + 2121.76i 0.0927009 + 0.285304i
\(382\) 0 0
\(383\) −14.1316 10.2672i −0.00188536 0.00136979i 0.586842 0.809701i \(-0.300371\pi\)
−0.588728 + 0.808332i \(0.700371\pi\)
\(384\) 0 0
\(385\) −58.0091 52.4710i −0.00767900 0.00694590i
\(386\) 0 0
\(387\) −5397.47 3921.49i −0.708963 0.515092i
\(388\) 0 0
\(389\) −3569.92 10987.1i −0.465301 1.43205i −0.858603 0.512641i \(-0.828667\pi\)
0.393302 0.919409i \(-0.371333\pi\)
\(390\) 0 0
\(391\) 5588.93 4060.60i 0.722876 0.525200i
\(392\) 0 0
\(393\) 63.2819 194.762i 0.00812252 0.0249985i
\(394\) 0 0
\(395\) −4.30231 −0.000548033
\(396\) 0 0
\(397\) −1357.56 −0.171622 −0.0858109 0.996311i \(-0.527348\pi\)
−0.0858109 + 0.996311i \(0.527348\pi\)
\(398\) 0 0
\(399\) −5248.90 + 16154.5i −0.658581 + 2.02690i
\(400\) 0 0
\(401\) −7159.39 + 5201.60i −0.891578 + 0.647769i −0.936289 0.351231i \(-0.885763\pi\)
0.0447109 + 0.999000i \(0.485763\pi\)
\(402\) 0 0
\(403\) −1272.20 3915.43i −0.157253 0.483974i
\(404\) 0 0
\(405\) −64.5689 46.9120i −0.00792210 0.00575575i
\(406\) 0 0
\(407\) 1458.21 + 6937.90i 0.177594 + 0.844961i
\(408\) 0 0
\(409\) 6881.53 + 4999.72i 0.831955 + 0.604451i 0.920112 0.391656i \(-0.128098\pi\)
−0.0881567 + 0.996107i \(0.528098\pi\)
\(410\) 0 0
\(411\) −1907.23 5869.85i −0.228897 0.704473i
\(412\) 0 0
\(413\) −1845.24 + 1340.65i −0.219851 + 0.159731i
\(414\) 0 0
\(415\) −27.1495 + 83.5577i −0.00321137 + 0.00988358i
\(416\) 0 0
\(417\) −8961.18 −1.05235
\(418\) 0 0
\(419\) 8675.96 1.01157 0.505786 0.862659i \(-0.331203\pi\)
0.505786 + 0.862659i \(0.331203\pi\)
\(420\) 0 0
\(421\) 2803.81 8629.23i 0.324582 0.998961i −0.647047 0.762450i \(-0.723996\pi\)
0.971629 0.236511i \(-0.0760039\pi\)
\(422\) 0 0
\(423\) 7278.51 5288.15i 0.836627 0.607845i
\(424\) 0 0
\(425\) −1879.54 5784.62i −0.214520 0.660225i
\(426\) 0 0
\(427\) −9071.93 6591.15i −1.02815 0.746997i
\(428\) 0 0
\(429\) 6749.07 3876.13i 0.759553 0.436227i
\(430\) 0 0
\(431\) −12180.9 8849.92i −1.36133 0.989062i −0.998359 0.0572603i \(-0.981763\pi\)
−0.362968 0.931802i \(-0.618237\pi\)
\(432\) 0 0
\(433\) −1399.62 4307.59i −0.155338 0.478082i 0.842857 0.538138i \(-0.180872\pi\)
−0.998195 + 0.0600559i \(0.980872\pi\)
\(434\) 0 0
\(435\) 56.3377 40.9317i 0.00620962 0.00451155i
\(436\) 0 0
\(437\) −4718.38 + 14521.7i −0.516501 + 1.58963i
\(438\) 0 0
\(439\) −1061.24 −0.115376 −0.0576881 0.998335i \(-0.518373\pi\)
−0.0576881 + 0.998335i \(0.518373\pi\)
\(440\) 0 0
\(441\) 3753.28 0.405278
\(442\) 0 0
\(443\) −1758.82 + 5413.09i −0.188632 + 0.580550i −0.999992 0.00399685i \(-0.998728\pi\)
0.811360 + 0.584547i \(0.198728\pi\)
\(444\) 0 0
\(445\) 67.3526 48.9346i 0.00717488 0.00521285i
\(446\) 0 0
\(447\) −5295.74 16298.6i −0.560357 1.72460i
\(448\) 0 0
\(449\) 6525.44 + 4741.01i 0.685867 + 0.498312i 0.875299 0.483582i \(-0.160665\pi\)
−0.189432 + 0.981894i \(0.560665\pi\)
\(450\) 0 0
\(451\) 2369.45 5289.45i 0.247390 0.552263i
\(452\) 0 0
\(453\) −10559.5 7671.91i −1.09520 0.795712i
\(454\) 0 0
\(455\) 21.8690 + 67.3058i 0.00225326 + 0.00693483i
\(456\) 0 0
\(457\) 2613.10 1898.53i 0.267474 0.194332i −0.445961 0.895052i \(-0.647138\pi\)
0.713436 + 0.700721i \(0.247138\pi\)
\(458\) 0 0
\(459\) 1188.55 3657.98i 0.120864 0.371983i
\(460\) 0 0
\(461\) 14797.9 1.49503 0.747515 0.664245i \(-0.231247\pi\)
0.747515 + 0.664245i \(0.231247\pi\)
\(462\) 0 0
\(463\) 11153.9 1.11958 0.559792 0.828633i \(-0.310881\pi\)
0.559792 + 0.828633i \(0.310881\pi\)
\(464\) 0 0
\(465\) 21.8557 67.2650i 0.00217965 0.00670826i
\(466\) 0 0
\(467\) 15388.0 11180.1i 1.52478 1.10782i 0.565731 0.824590i \(-0.308594\pi\)
0.959052 0.283230i \(-0.0914058\pi\)
\(468\) 0 0
\(469\) 5805.55 + 17867.6i 0.571589 + 1.75917i
\(470\) 0 0
\(471\) −4226.42 3070.67i −0.413467 0.300401i
\(472\) 0 0
\(473\) −16384.8 1759.81i −1.59276 0.171070i
\(474\) 0 0
\(475\) 10875.9 + 7901.81i 1.05057 + 0.763284i
\(476\) 0 0
\(477\) −1590.38 4894.69i −0.152660 0.469838i
\(478\) 0 0
\(479\) −8605.87 + 6252.53i −0.820902 + 0.596420i −0.916971 0.398954i \(-0.869373\pi\)
0.0960686 + 0.995375i \(0.469373\pi\)
\(480\) 0 0
\(481\) 1982.12 6100.34i 0.187894 0.578277i
\(482\) 0 0
\(483\) 22420.6 2.11216
\(484\) 0 0
\(485\) 35.9022 0.00336131
\(486\) 0 0
\(487\) −2394.26 + 7368.77i −0.222781 + 0.685648i 0.775729 + 0.631067i \(0.217383\pi\)
−0.998509 + 0.0545818i \(0.982617\pi\)
\(488\) 0 0
\(489\) −481.707 + 349.980i −0.0445471 + 0.0323654i
\(490\) 0 0
\(491\) 3106.85 + 9561.91i 0.285561 + 0.878865i 0.986230 + 0.165379i \(0.0528848\pi\)
−0.700669 + 0.713486i \(0.747115\pi\)
\(492\) 0 0
\(493\) 4834.52 + 3512.48i 0.441655 + 0.320881i
\(494\) 0 0
\(495\) 47.0094 + 5.04905i 0.00426852 + 0.000458460i
\(496\) 0 0
\(497\) 21997.6 + 15982.2i 1.98537 + 1.44245i
\(498\) 0 0
\(499\) −1354.32 4168.18i −0.121499 0.373935i 0.871748 0.489954i \(-0.162987\pi\)
−0.993247 + 0.116019i \(0.962987\pi\)
\(500\) 0 0
\(501\) −3317.03 + 2409.96i −0.295796 + 0.214909i
\(502\) 0 0
\(503\) −1618.23 + 4980.40i −0.143446 + 0.441482i −0.996808 0.0798375i \(-0.974560\pi\)
0.853362 + 0.521319i \(0.174560\pi\)
\(504\) 0 0
\(505\) −25.9386 −0.00228565
\(506\) 0 0
\(507\) 7157.51 0.626975
\(508\) 0 0
\(509\) −1167.14 + 3592.10i −0.101636 + 0.312804i −0.988926 0.148408i \(-0.952585\pi\)
0.887290 + 0.461212i \(0.152585\pi\)
\(510\) 0 0
\(511\) −20913.3 + 15194.4i −1.81047 + 1.31538i
\(512\) 0 0
\(513\) 2626.98 + 8085.02i 0.226090 + 0.695833i
\(514\) 0 0
\(515\) −3.35821 2.43988i −0.000287341 0.000208765i
\(516\) 0 0
\(517\) 9084.69 20280.3i 0.772813 1.72519i
\(518\) 0 0
\(519\) 10885.9 + 7909.04i 0.920686 + 0.668918i
\(520\) 0 0
\(521\) −25.1807 77.4982i −0.00211744 0.00651681i 0.949992 0.312274i \(-0.101091\pi\)
−0.952110 + 0.305757i \(0.901091\pi\)
\(522\) 0 0
\(523\) −12856.3 + 9340.68i −1.07489 + 0.780955i −0.976785 0.214221i \(-0.931279\pi\)
−0.0981071 + 0.995176i \(0.531279\pi\)
\(524\) 0 0
\(525\) 6099.96 18773.7i 0.507093 1.56067i
\(526\) 0 0
\(527\) 6069.28 0.501673
\(528\) 0 0
\(529\) 7987.49 0.656488
\(530\) 0 0
\(531\) 426.030 1311.19i 0.0348176 0.107157i
\(532\) 0 0
\(533\) −4242.40 + 3082.29i −0.344763 + 0.250485i
\(534\) 0 0
\(535\) 3.58889 + 11.0455i 0.000290021 + 0.000892593i
\(536\) 0 0
\(537\) 5469.96 + 3974.16i 0.439565 + 0.319363i
\(538\) 0 0
\(539\) 8039.16 4617.06i 0.642433 0.368963i
\(540\) 0 0
\(541\) −5879.62 4271.79i −0.467254 0.339480i 0.329116 0.944290i \(-0.393249\pi\)
−0.796370 + 0.604809i \(0.793249\pi\)
\(542\) 0 0
\(543\) 5103.30 + 15706.3i 0.403322 + 1.24130i
\(544\) 0 0
\(545\) −94.1481 + 68.4026i −0.00739975 + 0.00537623i
\(546\) 0 0
\(547\) 5387.74 16581.8i 0.421139 1.29613i −0.485504 0.874234i \(-0.661364\pi\)
0.906643 0.421898i \(-0.138636\pi\)
\(548\) 0 0
\(549\) 6778.04 0.526921
\(550\) 0 0
\(551\) −13207.9 −1.02119
\(552\) 0 0
\(553\) 370.266 1139.56i 0.0284726 0.0876295i
\(554\) 0 0
\(555\) 89.1487 64.7703i 0.00681829 0.00495378i
\(556\) 0 0
\(557\) −3873.73 11922.1i −0.294677 0.906922i −0.983330 0.181831i \(-0.941798\pi\)
0.688653 0.725091i \(-0.258202\pi\)
\(558\) 0 0
\(559\) 12062.1 + 8763.62i 0.912651 + 0.663080i
\(560\) 0 0
\(561\) 2360.00 + 11228.5i 0.177610 + 0.845040i
\(562\) 0 0
\(563\) 3598.62 + 2614.55i 0.269385 + 0.195720i 0.714274 0.699866i \(-0.246757\pi\)
−0.444889 + 0.895586i \(0.646757\pi\)
\(564\) 0 0
\(565\) 35.6779 + 109.805i 0.00265660 + 0.00817618i
\(566\) 0 0
\(567\) 17982.6 13065.1i 1.33192 0.967697i
\(568\) 0 0
\(569\) −2032.67 + 6255.91i −0.149761 + 0.460916i −0.997592 0.0693493i \(-0.977908\pi\)
0.847832 + 0.530265i \(0.177908\pi\)
\(570\) 0 0
\(571\) −17109.0 −1.25392 −0.626962 0.779050i \(-0.715702\pi\)
−0.626962 + 0.779050i \(0.715702\pi\)
\(572\) 0 0
\(573\) −3090.32 −0.225305
\(574\) 0 0
\(575\) 5483.42 16876.2i 0.397695 1.22398i
\(576\) 0 0
\(577\) 8517.64 6188.43i 0.614548 0.446495i −0.236465 0.971640i \(-0.575989\pi\)
0.851013 + 0.525145i \(0.175989\pi\)
\(578\) 0 0
\(579\) 3534.14 + 10877.0i 0.253668 + 0.780709i
\(580\) 0 0
\(581\) −19795.5 14382.3i −1.41352 1.02699i
\(582\) 0 0
\(583\) −9427.59 8527.56i −0.669727 0.605790i
\(584\) 0 0
\(585\) −34.6071 25.1436i −0.00244586 0.00177702i
\(586\) 0 0
\(587\) −4496.79 13839.7i −0.316188 0.973127i −0.975263 0.221049i \(-0.929052\pi\)
0.659075 0.752078i \(-0.270948\pi\)
\(588\) 0 0
\(589\) −10852.6 + 7884.88i −0.759209 + 0.551597i
\(590\) 0 0
\(591\) 1047.86 3224.97i 0.0729325 0.224463i
\(592\) 0 0
\(593\) 4585.83 0.317568 0.158784 0.987313i \(-0.449243\pi\)
0.158784 + 0.987313i \(0.449243\pi\)
\(594\) 0 0
\(595\) −104.330 −0.00718845
\(596\) 0 0
\(597\) −2120.76 + 6527.02i −0.145388 + 0.447459i
\(598\) 0 0
\(599\) 19009.3 13811.0i 1.29666 0.942076i 0.296740 0.954958i \(-0.404101\pi\)
0.999917 + 0.0128821i \(0.00410060\pi\)
\(600\) 0 0
\(601\) −1161.42 3574.49i −0.0788276 0.242607i 0.903875 0.427796i \(-0.140710\pi\)
−0.982703 + 0.185190i \(0.940710\pi\)
\(602\) 0 0
\(603\) −9187.14 6674.85i −0.620446 0.450781i
\(604\) 0 0
\(605\) 106.901 47.0136i 0.00718368 0.00315930i
\(606\) 0 0
\(607\) −12705.8 9231.31i −0.849610 0.617278i 0.0754287 0.997151i \(-0.475967\pi\)
−0.925038 + 0.379874i \(0.875967\pi\)
\(608\) 0 0
\(609\) 5993.13 + 18444.9i 0.398775 + 1.22730i
\(610\) 0 0
\(611\) −16265.8 + 11817.8i −1.07699 + 0.782481i
\(612\) 0 0
\(613\) 844.131 2597.97i 0.0556185 0.171176i −0.919388 0.393351i \(-0.871316\pi\)
0.975007 + 0.222175i \(0.0713157\pi\)
\(614\) 0 0
\(615\) −90.0874 −0.00590679
\(616\) 0 0
\(617\) 3140.17 0.204892 0.102446 0.994739i \(-0.467333\pi\)
0.102446 + 0.994739i \(0.467333\pi\)
\(618\) 0 0
\(619\) −1608.42 + 4950.20i −0.104439 + 0.321430i −0.989598 0.143858i \(-0.954049\pi\)
0.885159 + 0.465288i \(0.154049\pi\)
\(620\) 0 0
\(621\) 9078.07 6595.60i 0.586619 0.426204i
\(622\) 0 0
\(623\) 7164.88 + 22051.2i 0.460762 + 1.41808i
\(624\) 0 0
\(625\) −12638.6 9182.45i −0.808868 0.587677i
\(626\) 0 0
\(627\) −18807.4 17011.9i −1.19792 1.08356i
\(628\) 0 0
\(629\) 7650.13 + 5558.15i 0.484946 + 0.352334i
\(630\) 0 0
\(631\) −6703.88 20632.4i −0.422943 1.30169i −0.904950 0.425518i \(-0.860092\pi\)
0.482007 0.876168i \(-0.339908\pi\)
\(632\) 0 0
\(633\) −28099.0 + 20415.1i −1.76435 + 1.28188i
\(634\) 0 0
\(635\) 9.35913 28.8044i 0.000584891 0.00180011i
\(636\) 0 0
\(637\) −8387.71 −0.521716
\(638\) 0 0
\(639\) −16435.4 −1.01749
\(640\) 0 0
\(641\) −8989.68 + 27667.4i −0.553933 + 1.70483i 0.144813 + 0.989459i \(0.453742\pi\)
−0.698745 + 0.715371i \(0.746258\pi\)
\(642\) 0 0
\(643\) −19584.2 + 14228.7i −1.20113 + 0.872670i −0.994395 0.105728i \(-0.966283\pi\)
−0.206732 + 0.978398i \(0.566283\pi\)
\(644\) 0 0
\(645\) 79.1511 + 243.602i 0.00483190 + 0.0148710i
\(646\) 0 0
\(647\) 10682.0 + 7760.90i 0.649075 + 0.471580i 0.862956 0.505279i \(-0.168611\pi\)
−0.213881 + 0.976860i \(0.568611\pi\)
\(648\) 0 0
\(649\) −700.426 3332.51i −0.0423638 0.201560i
\(650\) 0 0
\(651\) 15935.7 + 11577.9i 0.959398 + 0.697043i
\(652\) 0 0
\(653\) −5960.77 18345.4i −0.357217 1.09940i −0.954713 0.297529i \(-0.903837\pi\)
0.597495 0.801872i \(-0.296163\pi\)
\(654\) 0 0
\(655\) −2.24915 + 1.63410i −0.000134170 + 9.74805e-5i
\(656\) 0 0
\(657\) 4828.47 14860.5i 0.286722 0.882440i
\(658\) 0 0
\(659\) 7086.80 0.418911 0.209456 0.977818i \(-0.432831\pi\)
0.209456 + 0.977818i \(0.432831\pi\)
\(660\) 0 0
\(661\) −23077.2 −1.35794 −0.678969 0.734167i \(-0.737573\pi\)
−0.678969 + 0.734167i \(0.737573\pi\)
\(662\) 0 0
\(663\) 3207.92 9872.95i 0.187911 0.578331i
\(664\) 0 0
\(665\) 186.555 135.540i 0.0108786 0.00790380i
\(666\) 0 0
\(667\) 5387.39 + 16580.7i 0.312744 + 0.962528i
\(668\) 0 0
\(669\) −6032.02 4382.52i −0.348597 0.253271i
\(670\) 0 0
\(671\) 14517.9 8337.93i 0.835256 0.479705i
\(672\) 0 0
\(673\) −18632.1 13537.0i −1.06718 0.775355i −0.0917806 0.995779i \(-0.529256\pi\)
−0.975404 + 0.220424i \(0.929256\pi\)
\(674\) 0 0
\(675\) −3052.92 9395.92i −0.174084 0.535777i
\(676\) 0 0
\(677\) 23003.6 16713.1i 1.30591 0.948798i 0.305913 0.952059i \(-0.401038\pi\)
0.999995 + 0.00326149i \(0.00103817\pi\)
\(678\) 0 0
\(679\) −3089.82 + 9509.48i −0.174634 + 0.537467i
\(680\) 0 0
\(681\) 39255.9 2.20894
\(682\) 0 0
\(683\) −11600.3 −0.649887 −0.324943 0.945733i \(-0.605345\pi\)
−0.324943 + 0.945733i \(0.605345\pi\)
\(684\) 0 0
\(685\) −25.8921 + 79.6877i −0.00144421 + 0.00444483i
\(686\) 0 0
\(687\) −14393.4 + 10457.4i −0.799334 + 0.580751i
\(688\) 0 0
\(689\) 3554.13 + 10938.5i 0.196519 + 0.604824i
\(690\) 0 0
\(691\) 14094.9 + 10240.5i 0.775967 + 0.563773i 0.903766 0.428027i \(-0.140791\pi\)
−0.127799 + 0.991800i \(0.540791\pi\)
\(692\) 0 0
\(693\) −5383.08 + 12017.0i −0.295074 + 0.658710i
\(694\) 0 0
\(695\) 98.4207 + 71.5069i 0.00537167 + 0.00390275i
\(696\) 0 0
\(697\) −2388.91 7352.32i −0.129823 0.399554i
\(698\) 0 0
\(699\) −15444.8 + 11221.3i −0.835729 + 0.607192i
\(700\) 0 0
\(701\) 397.990 1224.89i 0.0214435 0.0659963i −0.939762 0.341829i \(-0.888954\pi\)
0.961206 + 0.275833i \(0.0889536\pi\)
\(702\) 0 0
\(703\) −20900.2 −1.12129
\(704\) 0 0
\(705\) −345.404 −0.0184520
\(706\) 0 0
\(707\) 2232.33 6870.40i 0.118749 0.365471i
\(708\) 0 0
\(709\) −2497.89 + 1814.82i −0.132313 + 0.0961313i −0.651973 0.758242i \(-0.726059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(710\) 0 0
\(711\) 223.808 + 688.811i 0.0118052 + 0.0363325i
\(712\) 0 0
\(713\) 14325.0 + 10407.7i 0.752421 + 0.546666i
\(714\) 0 0
\(715\) −105.055 11.2834i −0.00549488 0.000590177i
\(716\) 0 0
\(717\) −28724.9 20869.9i −1.49617 1.08703i
\(718\) 0 0
\(719\) 5534.31 + 17032.9i 0.287058 + 0.883475i 0.985774 + 0.168075i \(0.0537552\pi\)
−0.698716 + 0.715399i \(0.746245\pi\)
\(720\) 0 0
\(721\) 935.272 679.515i 0.0483098 0.0350991i
\(722\) 0 0
\(723\) −8065.00 + 24821.5i −0.414856 + 1.27679i
\(724\) 0 0
\(725\) 15349.5 0.786296
\(726\) 0 0
\(727\) −5694.09 −0.290484 −0.145242 0.989396i \(-0.546396\pi\)
−0.145242 + 0.989396i \(0.546396\pi\)
\(728\) 0 0
\(729\) 110.333 339.570i 0.00560549 0.0172519i
\(730\) 0 0
\(731\) −17782.2 + 12919.6i −0.899726 + 0.653689i
\(732\) 0 0
\(733\) 3107.21 + 9563.00i 0.156572 + 0.481879i 0.998317 0.0579964i \(-0.0184712\pi\)
−0.841745 + 0.539876i \(0.818471\pi\)
\(734\) 0 0
\(735\) −116.577 84.6978i −0.00585033 0.00425051i
\(736\) 0 0
\(737\) −27888.9 2995.41i −1.39390 0.149711i
\(738\) 0 0
\(739\) −7036.60 5112.39i −0.350264 0.254482i 0.398716 0.917075i \(-0.369456\pi\)
−0.748980 + 0.662593i \(0.769456\pi\)
\(740\) 0 0
\(741\) 7090.26 + 21821.6i 0.351508 + 1.08183i
\(742\) 0 0
\(743\) 21819.4 15852.7i 1.07736 0.782747i 0.100138 0.994974i \(-0.468072\pi\)
0.977220 + 0.212227i \(0.0680716\pi\)
\(744\) 0 0
\(745\) −71.8936 + 221.266i −0.00353554 + 0.0108813i
\(746\) 0 0
\(747\) 14790.1 0.724420
\(748\) 0 0
\(749\) −3234.50 −0.157792
\(750\) 0 0
\(751\) 11956.7 36799.0i 0.580968 1.78804i −0.0339219 0.999424i \(-0.510800\pi\)
0.614890 0.788613i \(-0.289200\pi\)
\(752\) 0 0
\(753\) −23368.7 + 16978.4i −1.13095 + 0.821681i
\(754\) 0 0
\(755\) 54.7559 + 168.521i 0.00263943 + 0.00812334i
\(756\) 0 0
\(757\) 10367.6 + 7532.50i 0.497776 + 0.361656i 0.808167 0.588953i \(-0.200460\pi\)
−0.310391 + 0.950609i \(0.600460\pi\)
\(758\) 0 0
\(759\) −13684.7 + 30549.0i −0.654443 + 1.46095i
\(760\) 0 0
\(761\) 13486.3 + 9798.38i 0.642416 + 0.466742i 0.860679 0.509147i \(-0.170039\pi\)
−0.218263 + 0.975890i \(0.570039\pi\)
\(762\) 0 0
\(763\) −10015.3 30824.1i −0.475203 1.46252i
\(764\) 0 0
\(765\) 51.0188 37.0673i 0.00241122 0.00175186i
\(766\) 0 0
\(767\) −952.078 + 2930.20i −0.0448208 + 0.137944i
\(768\) 0 0
\(769\) 3634.44 0.170431 0.0852154 0.996363i \(-0.472842\pi\)
0.0852154 + 0.996363i \(0.472842\pi\)
\(770\) 0 0
\(771\) 30622.9 1.43042
\(772\) 0 0
\(773\) 7622.28 23459.0i 0.354663 1.09154i −0.601542 0.798841i \(-0.705447\pi\)
0.956205 0.292699i \(-0.0945533\pi\)
\(774\) 0 0
\(775\) 12612.2 9163.33i 0.584575 0.424718i
\(776\) 0 0
\(777\) 9483.52 + 29187.3i 0.437863 + 1.34760i
\(778\) 0 0
\(779\) 13823.4 + 10043.3i 0.635783 + 0.461924i
\(780\) 0 0
\(781\) −35203.0 + 20217.8i −1.61288 + 0.926312i
\(782\) 0 0
\(783\) 7852.67 + 5705.30i 0.358406 + 0.260397i
\(784\) 0 0
\(785\) 21.9160 + 67.4505i 0.000996452 + 0.00306676i
\(786\) 0 0
\(787\) 13567.4 9857.28i 0.614517 0.446473i −0.236485 0.971635i \(-0.575995\pi\)
0.851002 + 0.525162i \(0.175995\pi\)
\(788\) 0 0
\(789\) 7874.14 24234.1i 0.355294 1.09348i
\(790\) 0 0
\(791\) −32154.8 −1.44538
\(792\) 0 0
\(793\) −15147.3 −0.678307
\(794\) 0 0
\(795\) −61.0582 + 187.918i −0.00272391 + 0.00838334i
\(796\) 0 0
\(797\) −7743.18 + 5625.75i −0.344137 + 0.250031i −0.746405 0.665491i \(-0.768222\pi\)
0.402268 + 0.915522i \(0.368222\pi\)
\(798\) 0 0
\(799\) −9159.33 28189.5i −0.405549 1.24815i
\(800\) 0 0
\(801\) −11338.2 8237.72i −0.500147 0.363378i
\(802\) 0 0
\(803\) −7938.37 37769.4i −0.348866 1.65984i
\(804\) 0 0
\(805\) −246.246 178.908i −0.0107814 0.00783314i
\(806\) 0 0
\(807\) 6795.31 + 20913.8i 0.296414 + 0.912269i
\(808\) 0 0
\(809\) 35581.6 25851.5i 1.54633 1.12348i 0.600127 0.799905i \(-0.295117\pi\)
0.946204 0.323570i \(-0.104883\pi\)
\(810\) 0 0
\(811\) 9261.50 28504.0i 0.401005 1.23417i −0.523180 0.852222i \(-0.675255\pi\)
0.924185 0.381945i \(-0.124745\pi\)
\(812\) 0 0
\(813\) 25748.7 1.11076
\(814\) 0 0
\(815\) 8.08330 0.000347418
\(816\) 0 0
\(817\) 15012.4 46203.5i 0.642862 1.97852i
\(818\) 0 0
\(819\) 9638.19 7002.55i 0.411216 0.298766i
\(820\) 0 0
\(821\) −375.536 1155.78i −0.0159638 0.0491315i 0.942757 0.333480i \(-0.108223\pi\)
−0.958721 + 0.284348i \(0.908223\pi\)
\(822\) 0 0
\(823\) −7685.49 5583.83i −0.325515 0.236501i 0.413010 0.910727i \(-0.364477\pi\)
−0.738525 + 0.674226i \(0.764477\pi\)
\(824\) 0 0
\(825\) 21856.9 + 19770.2i 0.922374 + 0.834316i
\(826\) 0 0
\(827\) −23256.2 16896.6i −0.977867 0.710462i −0.0206363 0.999787i \(-0.506569\pi\)
−0.957231 + 0.289325i \(0.906569\pi\)
\(828\) 0 0
\(829\) 3821.03 + 11759.9i 0.160084 + 0.492688i 0.998640 0.0521265i \(-0.0165999\pi\)
−0.838556 + 0.544815i \(0.816600\pi\)
\(830\) 0 0
\(831\) 18494.2 13436.8i 0.772029 0.560912i
\(832\) 0 0
\(833\) 3821.11 11760.2i 0.158936 0.489155i
\(834\) 0 0
\(835\) 55.6616 0.00230689
\(836\) 0 0
\(837\) 9858.29 0.407111
\(838\) 0 0
\(839\) 987.035 3037.78i 0.0406153 0.125001i −0.928693 0.370850i \(-0.879067\pi\)
0.969308 + 0.245848i \(0.0790666\pi\)
\(840\) 0 0
\(841\) 7530.62 5471.31i 0.308771 0.224335i
\(842\) 0 0
\(843\) 8743.00 + 26908.2i 0.357206 + 1.09937i
\(844\) 0 0
\(845\) −78.6111 57.1143i −0.00320036 0.00232520i
\(846\) 0 0
\(847\) 3252.49 + 32361.1i 0.131944 + 1.31280i
\(848\) 0 0
\(849\) −12976.6 9428.04i −0.524564 0.381118i
\(850\) 0 0
\(851\) 8525.00 + 26237.2i 0.343400 + 1.05688i
\(852\) 0 0
\(853\) −4823.75 + 3504.66i −0.193625 + 0.140677i −0.680374 0.732865i \(-0.738183\pi\)
0.486749 + 0.873542i \(0.338183\pi\)
\(854\) 0 0
\(855\) −43.0719 + 132.562i −0.00172284 + 0.00530235i
\(856\) 0 0
\(857\) −17358.2 −0.691886 −0.345943 0.938256i \(-0.612441\pi\)
−0.345943 + 0.938256i \(0.612441\pi\)
\(858\) 0 0
\(859\) 22138.3 0.879337 0.439669 0.898160i \(-0.355096\pi\)
0.439669 + 0.898160i \(0.355096\pi\)
\(860\) 0 0
\(861\) 7753.11 23861.6i 0.306882 0.944486i
\(862\) 0 0
\(863\) −9045.97 + 6572.28i −0.356811 + 0.259239i −0.751721 0.659481i \(-0.770776\pi\)
0.394910 + 0.918720i \(0.370776\pi\)
\(864\) 0 0
\(865\) −56.4484 173.730i −0.00221885 0.00682891i
\(866\) 0 0
\(867\) −13307.3 9668.30i −0.521267 0.378723i
\(868\) 0 0
\(869\) 1326.71 + 1200.05i 0.0517900 + 0.0468457i
\(870\) 0 0
\(871\) 20531.1 + 14916.7i 0.798703 + 0.580292i
\(872\) 0 0
\(873\) −1867.65 5748.02i −0.0724058 0.222842i
\(874\) 0 0
\(875\) −433.620 + 315.043i −0.0167532 + 0.0121719i
\(876\) 0 0
\(877\) −3444.19 + 10600.1i −0.132614 + 0.408143i −0.995211 0.0977480i \(-0.968836\pi\)
0.862598 + 0.505891i \(0.168836\pi\)
\(878\) 0 0
\(879\) 28878.6 1.10813
\(880\) 0 0
\(881\) −35280.1 −1.34917 −0.674584 0.738198i \(-0.735677\pi\)
−0.674584 + 0.738198i \(0.735677\pi\)
\(882\) 0 0
\(883\) −227.794 + 701.077i −0.00868162 + 0.0267193i −0.955303 0.295627i \(-0.904471\pi\)
0.946622 + 0.322346i \(0.104471\pi\)
\(884\) 0 0
\(885\) −42.8211 + 31.1114i −0.00162646 + 0.00118169i
\(886\) 0 0
\(887\) 5692.40 + 17519.4i 0.215481 + 0.663184i 0.999119 + 0.0419654i \(0.0133619\pi\)
−0.783638 + 0.621218i \(0.786638\pi\)
\(888\) 0 0
\(889\) 6824.02 + 4957.94i 0.257447 + 0.187046i
\(890\) 0 0
\(891\) 6825.92 + 32476.6i 0.256652 + 1.22111i
\(892\) 0 0
\(893\) 53000.3 + 38507.0i 1.98610 + 1.44299i
\(894\) 0 0
\(895\) −28.3644 87.2965i −0.00105935 0.00326034i
\(896\) 0 0
\(897\) 24501.8 17801.6i 0.912032 0.662630i
\(898\) 0 0
\(899\) −4733.08 + 14566.9i −0.175592 + 0.540416i
\(900\) 0 0
\(901\) −16955.7 −0.626943
\(902\) 0 0
\(903\) −71335.3 −2.62889
\(904\) 0 0
\(905\) 69.2811 213.225i 0.00254473 0.00783188i
\(906\) 0 0
\(907\) 7557.11 5490.56i 0.276659 0.201005i −0.440800 0.897605i \(-0.645305\pi\)
0.717459 + 0.696601i \(0.245305\pi\)
\(908\) 0 0
\(909\) 1349.34 + 4152.83i 0.0492350 + 0.151530i
\(910\) 0 0
\(911\) 24562.2 + 17845.5i 0.893286 + 0.649010i 0.936733 0.350046i \(-0.113834\pi\)
−0.0434471 + 0.999056i \(0.513834\pi\)
\(912\) 0 0
\(913\) 31679.0 18193.9i 1.14833 0.659507i
\(914\) 0 0
\(915\) −210.525 152.955i −0.00760628 0.00552629i
\(916\) 0 0
\(917\) −239.262 736.371i −0.00861626 0.0265181i
\(918\) 0 0
\(919\) 23333.6 16952.9i 0.837547 0.608514i −0.0841370 0.996454i \(-0.526813\pi\)
0.921684 + 0.387940i \(0.126813\pi\)
\(920\) 0 0
\(921\) −7250.69 + 22315.3i −0.259412 + 0.798387i
\(922\) 0 0
\(923\) 36729.2 1.30981
\(924\) 0 0
\(925\) 24289.0 0.863369
\(926\) 0 0
\(927\) −215.936 + 664.581i −0.00765076 + 0.0235466i
\(928\) 0 0
\(929\) 239.373 173.914i 0.00845378 0.00614203i −0.583550 0.812077i \(-0.698337\pi\)
0.592004 + 0.805935i \(0.298337\pi\)
\(930\) 0 0
\(931\) 8445.58 + 25992.8i 0.297307 + 0.915016i
\(932\) 0 0
\(933\) 45883.6 + 33336.4i 1.61003 + 1.16976i
\(934\) 0 0
\(935\) 63.6792 142.155i 0.00222731 0.00497214i
\(936\) 0 0
\(937\) −40061.2 29106.2i −1.39674 1.01479i −0.995088 0.0989944i \(-0.968437\pi\)
−0.401648 0.915794i \(-0.631563\pi\)
\(938\) 0 0
\(939\) −6732.78 20721.4i −0.233989 0.720145i
\(940\) 0 0
\(941\) 17130.7 12446.2i 0.593457 0.431172i −0.250093 0.968222i \(-0.580461\pi\)
0.843551 + 0.537050i \(0.180461\pi\)
\(942\) 0 0
\(943\) 6969.49 21449.9i 0.240676 0.740726i
\(944\) 0 0
\(945\) −169.463 −0.00583347
\(946\) 0 0
\(947\) −26386.2 −0.905425 −0.452713 0.891656i \(-0.649544\pi\)
−0.452713 + 0.891656i \(0.649544\pi\)
\(948\) 0 0
\(949\) −10790.5 + 33209.8i −0.369099 + 1.13597i
\(950\) 0 0
\(951\) −23602.5 + 17148.2i −0.804799 + 0.584721i
\(952\) 0 0
\(953\) 7402.76 + 22783.4i 0.251625 + 0.774423i 0.994476 + 0.104966i \(0.0334733\pi\)
−0.742850 + 0.669457i \(0.766527\pi\)
\(954\) 0 0
\(955\) 33.9410 + 24.6596i 0.00115006 + 0.000835566i
\(956\) 0 0
\(957\) −28790.0 3092.19i −0.972466 0.104448i
\(958\) 0 0
\(959\) −18878.7 13716.2i −0.635688 0.461854i
\(960\) 0 0
\(961\) −4398.80 13538.1i −0.147655 0.454436i
\(962\) 0 0
\(963\) 1581.71 1149.18i 0.0529282 0.0384546i
\(964\) 0 0
\(965\) 47.9786 147.663i 0.00160050 0.00492584i
\(966\) 0 0
\(967\) 18414.5 0.612380 0.306190 0.951970i \(-0.400946\pi\)
0.306190 + 0.951970i \(0.400946\pi\)
\(968\) 0 0
\(969\) −33825.5 −1.12139
\(970\) 0 0
\(971\) 10283.3 31648.7i 0.339863 1.04599i −0.624414 0.781094i \(-0.714662\pi\)
0.964277 0.264897i \(-0.0853379\pi\)
\(972\) 0 0
\(973\) −27410.5 + 19914.9i −0.903123 + 0.656157i
\(974\) 0 0
\(975\) −8239.88 25359.7i −0.270654 0.832986i
\(976\) 0 0
\(977\) 6788.12 + 4931.86i 0.222284 + 0.161499i 0.693354 0.720597i \(-0.256132\pi\)
−0.471070 + 0.882096i \(0.656132\pi\)
\(978\) 0 0
\(979\) −34419.0 3696.76i −1.12363 0.120683i
\(980\) 0 0
\(981\) 15849.0 + 11515.0i 0.515822 + 0.374766i
\(982\) 0 0
\(983\) 16958.8 + 52193.7i 0.550255 + 1.69351i 0.708157 + 0.706055i \(0.249527\pi\)
−0.157902 + 0.987455i \(0.550473\pi\)
\(984\) 0 0
\(985\) −37.2427 + 27.0584i −0.00120472 + 0.000875282i
\(986\) 0 0
\(987\) 29726.2 91487.8i 0.958657 2.95044i
\(988\) 0 0
\(989\) −64125.3 −2.06174
\(990\) 0 0
\(991\) −45505.7 −1.45866 −0.729332 0.684160i \(-0.760169\pi\)
−0.729332 + 0.684160i \(0.760169\pi\)
\(992\) 0 0
\(993\) 1149.04 3536.37i 0.0367206 0.113014i
\(994\) 0 0
\(995\) 75.3755 54.7635i 0.00240157 0.00174484i
\(996\) 0 0
\(997\) 1010.97 + 3111.44i 0.0321141 + 0.0988369i 0.965829 0.259181i \(-0.0834526\pi\)
−0.933715 + 0.358018i \(0.883453\pi\)
\(998\) 0 0
\(999\) 12426.1 + 9028.06i 0.393537 + 0.285921i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.d.81.1 12
4.3 odd 2 44.4.e.a.37.3 yes 12
11.3 even 5 inner 176.4.m.d.113.1 12
11.5 even 5 1936.4.a.br.1.2 6
11.6 odd 10 1936.4.a.bs.1.2 6
12.11 even 2 396.4.j.d.37.2 12
44.3 odd 10 44.4.e.a.25.3 12
44.27 odd 10 484.4.a.i.1.5 6
44.39 even 10 484.4.a.h.1.5 6
132.47 even 10 396.4.j.d.289.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.3 12 44.3 odd 10
44.4.e.a.37.3 yes 12 4.3 odd 2
176.4.m.d.81.1 12 1.1 even 1 trivial
176.4.m.d.113.1 12 11.3 even 5 inner
396.4.j.d.37.2 12 12.11 even 2
396.4.j.d.289.2 12 132.47 even 10
484.4.a.h.1.5 6 44.39 even 10
484.4.a.i.1.5 6 44.27 odd 10
1936.4.a.br.1.2 6 11.5 even 5
1936.4.a.bs.1.2 6 11.6 odd 10