Properties

Label 1936.4.a.bs.1.2
Level $1936$
Weight $4$
Character 1936.1
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,4,Mod(1,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,-12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 82x^{4} + 161x^{3} + 1730x^{2} - 2271x - 5931 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 11 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.46299\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.46299 q^{3} -0.0877400 q^{5} -24.4358 q^{7} +14.7703 q^{9} +33.0082 q^{13} +0.567063 q^{15} -48.6615 q^{17} -107.554 q^{19} +157.929 q^{21} -141.967 q^{23} -124.992 q^{25} +79.0405 q^{27} +122.803 q^{29} +124.724 q^{31} +2.14400 q^{35} -194.324 q^{37} -213.332 q^{39} +158.867 q^{41} -451.693 q^{43} -1.29595 q^{45} -609.110 q^{47} +254.110 q^{49} +314.499 q^{51} -348.442 q^{53} +695.118 q^{57} +93.3402 q^{59} -458.897 q^{61} -360.924 q^{63} -2.89614 q^{65} +768.836 q^{67} +917.529 q^{69} -1112.73 q^{71} -1057.88 q^{73} +807.824 q^{75} -49.0348 q^{79} -909.636 q^{81} -1001.34 q^{83} +4.26956 q^{85} -793.677 q^{87} +948.854 q^{89} -806.582 q^{91} -806.093 q^{93} +9.43675 q^{95} -409.188 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 12 q^{5} + 8 q^{7} + 11 q^{9} + 80 q^{13} + 98 q^{15} + 113 q^{17} - 53 q^{19} + 152 q^{21} + 194 q^{23} + 476 q^{25} - 72 q^{27} + 374 q^{29} - 16 q^{31} - 1044 q^{35} - 456 q^{37} - 592 q^{39}+ \cdots + 683 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.46299 −1.24380 −0.621902 0.783095i \(-0.713640\pi\)
−0.621902 + 0.783095i \(0.713640\pi\)
\(4\) 0 0
\(5\) −0.0877400 −0.00784770 −0.00392385 0.999992i \(-0.501249\pi\)
−0.00392385 + 0.999992i \(0.501249\pi\)
\(6\) 0 0
\(7\) −24.4358 −1.31941 −0.659706 0.751524i \(-0.729319\pi\)
−0.659706 + 0.751524i \(0.729319\pi\)
\(8\) 0 0
\(9\) 14.7703 0.547048
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 33.0082 0.704217 0.352108 0.935959i \(-0.385465\pi\)
0.352108 + 0.935959i \(0.385465\pi\)
\(14\) 0 0
\(15\) 0.567063 0.00976100
\(16\) 0 0
\(17\) −48.6615 −0.694244 −0.347122 0.937820i \(-0.612841\pi\)
−0.347122 + 0.937820i \(0.612841\pi\)
\(18\) 0 0
\(19\) −107.554 −1.29866 −0.649329 0.760508i \(-0.724950\pi\)
−0.649329 + 0.760508i \(0.724950\pi\)
\(20\) 0 0
\(21\) 157.929 1.64109
\(22\) 0 0
\(23\) −141.967 −1.28705 −0.643523 0.765427i \(-0.722528\pi\)
−0.643523 + 0.765427i \(0.722528\pi\)
\(24\) 0 0
\(25\) −124.992 −0.999938
\(26\) 0 0
\(27\) 79.0405 0.563384
\(28\) 0 0
\(29\) 122.803 0.786345 0.393172 0.919465i \(-0.371378\pi\)
0.393172 + 0.919465i \(0.371378\pi\)
\(30\) 0 0
\(31\) 124.724 0.722618 0.361309 0.932446i \(-0.382330\pi\)
0.361309 + 0.932446i \(0.382330\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.14400 0.0103544
\(36\) 0 0
\(37\) −194.324 −0.863422 −0.431711 0.902012i \(-0.642090\pi\)
−0.431711 + 0.902012i \(0.642090\pi\)
\(38\) 0 0
\(39\) −213.332 −0.875908
\(40\) 0 0
\(41\) 158.867 0.605141 0.302571 0.953127i \(-0.402155\pi\)
0.302571 + 0.953127i \(0.402155\pi\)
\(42\) 0 0
\(43\) −451.693 −1.60192 −0.800960 0.598718i \(-0.795677\pi\)
−0.800960 + 0.598718i \(0.795677\pi\)
\(44\) 0 0
\(45\) −1.29595 −0.00429307
\(46\) 0 0
\(47\) −609.110 −1.89038 −0.945189 0.326522i \(-0.894123\pi\)
−0.945189 + 0.326522i \(0.894123\pi\)
\(48\) 0 0
\(49\) 254.110 0.740846
\(50\) 0 0
\(51\) 314.499 0.863503
\(52\) 0 0
\(53\) −348.442 −0.903059 −0.451530 0.892256i \(-0.649121\pi\)
−0.451530 + 0.892256i \(0.649121\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 695.118 1.61527
\(58\) 0 0
\(59\) 93.3402 0.205964 0.102982 0.994683i \(-0.467162\pi\)
0.102982 + 0.994683i \(0.467162\pi\)
\(60\) 0 0
\(61\) −458.897 −0.963208 −0.481604 0.876389i \(-0.659946\pi\)
−0.481604 + 0.876389i \(0.659946\pi\)
\(62\) 0 0
\(63\) −360.924 −0.721781
\(64\) 0 0
\(65\) −2.89614 −0.00552649
\(66\) 0 0
\(67\) 768.836 1.40191 0.700957 0.713204i \(-0.252757\pi\)
0.700957 + 0.713204i \(0.252757\pi\)
\(68\) 0 0
\(69\) 917.529 1.60083
\(70\) 0 0
\(71\) −1112.73 −1.85996 −0.929979 0.367613i \(-0.880175\pi\)
−0.929979 + 0.367613i \(0.880175\pi\)
\(72\) 0 0
\(73\) −1057.88 −1.69611 −0.848055 0.529909i \(-0.822226\pi\)
−0.848055 + 0.529909i \(0.822226\pi\)
\(74\) 0 0
\(75\) 807.824 1.24373
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −49.0348 −0.0698335 −0.0349168 0.999390i \(-0.511117\pi\)
−0.0349168 + 0.999390i \(0.511117\pi\)
\(80\) 0 0
\(81\) −909.636 −1.24779
\(82\) 0 0
\(83\) −1001.34 −1.32424 −0.662118 0.749400i \(-0.730342\pi\)
−0.662118 + 0.749400i \(0.730342\pi\)
\(84\) 0 0
\(85\) 4.26956 0.00544822
\(86\) 0 0
\(87\) −793.677 −0.978059
\(88\) 0 0
\(89\) 948.854 1.13009 0.565047 0.825059i \(-0.308858\pi\)
0.565047 + 0.825059i \(0.308858\pi\)
\(90\) 0 0
\(91\) −806.582 −0.929152
\(92\) 0 0
\(93\) −806.093 −0.898795
\(94\) 0 0
\(95\) 9.43675 0.0101915
\(96\) 0 0
\(97\) −409.188 −0.428317 −0.214159 0.976799i \(-0.568701\pi\)
−0.214159 + 0.976799i \(0.568701\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −295.630 −0.291250 −0.145625 0.989340i \(-0.546519\pi\)
−0.145625 + 0.989340i \(0.546519\pi\)
\(102\) 0 0
\(103\) −47.3100 −0.0452582 −0.0226291 0.999744i \(-0.507204\pi\)
−0.0226291 + 0.999744i \(0.507204\pi\)
\(104\) 0 0
\(105\) −13.8567 −0.0128788
\(106\) 0 0
\(107\) 132.367 0.119593 0.0597963 0.998211i \(-0.480955\pi\)
0.0597963 + 0.998211i \(0.480955\pi\)
\(108\) 0 0
\(109\) 1326.34 1.16551 0.582756 0.812647i \(-0.301974\pi\)
0.582756 + 0.812647i \(0.301974\pi\)
\(110\) 0 0
\(111\) 1255.91 1.07393
\(112\) 0 0
\(113\) −1315.89 −1.09547 −0.547736 0.836651i \(-0.684510\pi\)
−0.547736 + 0.836651i \(0.684510\pi\)
\(114\) 0 0
\(115\) 12.4561 0.0101004
\(116\) 0 0
\(117\) 487.540 0.385240
\(118\) 0 0
\(119\) 1189.08 0.915993
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1026.75 −0.752677
\(124\) 0 0
\(125\) 21.9343 0.0156949
\(126\) 0 0
\(127\) 345.188 0.241185 0.120592 0.992702i \(-0.461521\pi\)
0.120592 + 0.992702i \(0.461521\pi\)
\(128\) 0 0
\(129\) 2919.29 1.99247
\(130\) 0 0
\(131\) 31.6857 0.0211328 0.0105664 0.999944i \(-0.496637\pi\)
0.0105664 + 0.999944i \(0.496637\pi\)
\(132\) 0 0
\(133\) 2628.16 1.71346
\(134\) 0 0
\(135\) −6.93502 −0.00442127
\(136\) 0 0
\(137\) 954.964 0.595534 0.297767 0.954639i \(-0.403758\pi\)
0.297767 + 0.954639i \(0.403758\pi\)
\(138\) 0 0
\(139\) −1386.54 −0.846076 −0.423038 0.906112i \(-0.639036\pi\)
−0.423038 + 0.906112i \(0.639036\pi\)
\(140\) 0 0
\(141\) 3936.67 2.35126
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −10.7748 −0.00617100
\(146\) 0 0
\(147\) −1642.31 −0.921467
\(148\) 0 0
\(149\) −2651.61 −1.45791 −0.728955 0.684562i \(-0.759994\pi\)
−0.728955 + 0.684562i \(0.759994\pi\)
\(150\) 0 0
\(151\) 2019.53 1.08839 0.544196 0.838958i \(-0.316835\pi\)
0.544196 + 0.838958i \(0.316835\pi\)
\(152\) 0 0
\(153\) −718.745 −0.379785
\(154\) 0 0
\(155\) −10.9433 −0.00567090
\(156\) 0 0
\(157\) −808.315 −0.410896 −0.205448 0.978668i \(-0.565865\pi\)
−0.205448 + 0.978668i \(0.565865\pi\)
\(158\) 0 0
\(159\) 2251.98 1.12323
\(160\) 0 0
\(161\) 3469.07 1.69814
\(162\) 0 0
\(163\) −92.1279 −0.0442700 −0.0221350 0.999755i \(-0.507046\pi\)
−0.0221350 + 0.999755i \(0.507046\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 634.393 0.293957 0.146978 0.989140i \(-0.453045\pi\)
0.146978 + 0.989140i \(0.453045\pi\)
\(168\) 0 0
\(169\) −1107.46 −0.504079
\(170\) 0 0
\(171\) −1588.60 −0.710428
\(172\) 0 0
\(173\) −2081.96 −0.914960 −0.457480 0.889220i \(-0.651248\pi\)
−0.457480 + 0.889220i \(0.651248\pi\)
\(174\) 0 0
\(175\) 3054.29 1.31933
\(176\) 0 0
\(177\) −603.257 −0.256179
\(178\) 0 0
\(179\) 1046.15 0.436831 0.218415 0.975856i \(-0.429911\pi\)
0.218415 + 0.975856i \(0.429911\pi\)
\(180\) 0 0
\(181\) −2555.26 −1.04934 −0.524671 0.851305i \(-0.675812\pi\)
−0.524671 + 0.851305i \(0.675812\pi\)
\(182\) 0 0
\(183\) 2965.85 1.19804
\(184\) 0 0
\(185\) 17.0500 0.00677588
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1931.42 −0.743335
\(190\) 0 0
\(191\) 478.156 0.181142 0.0905710 0.995890i \(-0.471131\pi\)
0.0905710 + 0.995890i \(0.471131\pi\)
\(192\) 0 0
\(193\) 1769.57 0.659981 0.329990 0.943984i \(-0.392954\pi\)
0.329990 + 0.943984i \(0.392954\pi\)
\(194\) 0 0
\(195\) 18.7177 0.00687386
\(196\) 0 0
\(197\) 524.670 0.189752 0.0948761 0.995489i \(-0.469755\pi\)
0.0948761 + 0.995489i \(0.469755\pi\)
\(198\) 0 0
\(199\) 1061.88 0.378264 0.189132 0.981952i \(-0.439433\pi\)
0.189132 + 0.981952i \(0.439433\pi\)
\(200\) 0 0
\(201\) −4968.98 −1.74371
\(202\) 0 0
\(203\) −3000.80 −1.03751
\(204\) 0 0
\(205\) −13.9390 −0.00474897
\(206\) 0 0
\(207\) −2096.89 −0.704076
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5374.01 1.75338 0.876688 0.481059i \(-0.159748\pi\)
0.876688 + 0.481059i \(0.159748\pi\)
\(212\) 0 0
\(213\) 7191.58 2.31342
\(214\) 0 0
\(215\) 39.6315 0.0125714
\(216\) 0 0
\(217\) −3047.75 −0.953431
\(218\) 0 0
\(219\) 6837.10 2.10963
\(220\) 0 0
\(221\) −1606.23 −0.488898
\(222\) 0 0
\(223\) −1153.64 −0.346429 −0.173215 0.984884i \(-0.555415\pi\)
−0.173215 + 0.984884i \(0.555415\pi\)
\(224\) 0 0
\(225\) −1846.17 −0.547014
\(226\) 0 0
\(227\) 6073.94 1.77595 0.887977 0.459887i \(-0.152110\pi\)
0.887977 + 0.459887i \(0.152110\pi\)
\(228\) 0 0
\(229\) −2752.78 −0.794363 −0.397182 0.917740i \(-0.630012\pi\)
−0.397182 + 0.917740i \(0.630012\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2953.86 0.830531 0.415265 0.909700i \(-0.363689\pi\)
0.415265 + 0.909700i \(0.363689\pi\)
\(234\) 0 0
\(235\) 53.4433 0.0148351
\(236\) 0 0
\(237\) 316.912 0.0868592
\(238\) 0 0
\(239\) 5493.73 1.48686 0.743430 0.668814i \(-0.233198\pi\)
0.743430 + 0.668814i \(0.233198\pi\)
\(240\) 0 0
\(241\) −4038.21 −1.07935 −0.539676 0.841873i \(-0.681453\pi\)
−0.539676 + 0.841873i \(0.681453\pi\)
\(242\) 0 0
\(243\) 3744.88 0.988618
\(244\) 0 0
\(245\) −22.2956 −0.00581394
\(246\) 0 0
\(247\) −3550.15 −0.914536
\(248\) 0 0
\(249\) 6471.67 1.64709
\(250\) 0 0
\(251\) −4469.34 −1.12391 −0.561957 0.827167i \(-0.689951\pi\)
−0.561957 + 0.827167i \(0.689951\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −27.5941 −0.00677652
\(256\) 0 0
\(257\) −4738.19 −1.15004 −0.575020 0.818139i \(-0.695006\pi\)
−0.575020 + 0.818139i \(0.695006\pi\)
\(258\) 0 0
\(259\) 4748.46 1.13921
\(260\) 0 0
\(261\) 1813.84 0.430168
\(262\) 0 0
\(263\) 3942.64 0.924386 0.462193 0.886779i \(-0.347063\pi\)
0.462193 + 0.886779i \(0.347063\pi\)
\(264\) 0 0
\(265\) 30.5723 0.00708694
\(266\) 0 0
\(267\) −6132.44 −1.40561
\(268\) 0 0
\(269\) −3402.46 −0.771196 −0.385598 0.922667i \(-0.626005\pi\)
−0.385598 + 0.922667i \(0.626005\pi\)
\(270\) 0 0
\(271\) 3984.02 0.893033 0.446516 0.894775i \(-0.352664\pi\)
0.446516 + 0.894775i \(0.352664\pi\)
\(272\) 0 0
\(273\) 5212.94 1.15568
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3537.07 −0.767227 −0.383614 0.923494i \(-0.625321\pi\)
−0.383614 + 0.923494i \(0.625321\pi\)
\(278\) 0 0
\(279\) 1842.22 0.395307
\(280\) 0 0
\(281\) 4377.68 0.929362 0.464681 0.885478i \(-0.346169\pi\)
0.464681 + 0.885478i \(0.346169\pi\)
\(282\) 0 0
\(283\) 2481.81 0.521302 0.260651 0.965433i \(-0.416063\pi\)
0.260651 + 0.965433i \(0.416063\pi\)
\(284\) 0 0
\(285\) −60.9897 −0.0126762
\(286\) 0 0
\(287\) −3882.04 −0.798431
\(288\) 0 0
\(289\) −2545.06 −0.518025
\(290\) 0 0
\(291\) 2644.58 0.532743
\(292\) 0 0
\(293\) 4468.30 0.890924 0.445462 0.895301i \(-0.353039\pi\)
0.445462 + 0.895301i \(0.353039\pi\)
\(294\) 0 0
\(295\) −8.18967 −0.00161634
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4686.05 −0.906360
\(300\) 0 0
\(301\) 11037.5 2.11359
\(302\) 0 0
\(303\) 1910.66 0.362258
\(304\) 0 0
\(305\) 40.2636 0.00755897
\(306\) 0 0
\(307\) −3630.47 −0.674925 −0.337462 0.941339i \(-0.609569\pi\)
−0.337462 + 0.941339i \(0.609569\pi\)
\(308\) 0 0
\(309\) 305.764 0.0562923
\(310\) 0 0
\(311\) 8775.39 1.60002 0.800011 0.599986i \(-0.204827\pi\)
0.800011 + 0.599986i \(0.204827\pi\)
\(312\) 0 0
\(313\) 3371.15 0.608782 0.304391 0.952547i \(-0.401547\pi\)
0.304391 + 0.952547i \(0.401547\pi\)
\(314\) 0 0
\(315\) 31.6675 0.00566433
\(316\) 0 0
\(317\) −4514.05 −0.799794 −0.399897 0.916560i \(-0.630954\pi\)
−0.399897 + 0.916560i \(0.630954\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −855.488 −0.148750
\(322\) 0 0
\(323\) 5233.72 0.901585
\(324\) 0 0
\(325\) −4125.77 −0.704173
\(326\) 0 0
\(327\) −8572.16 −1.44967
\(328\) 0 0
\(329\) 14884.1 2.49419
\(330\) 0 0
\(331\) −575.331 −0.0955379 −0.0477690 0.998858i \(-0.515211\pi\)
−0.0477690 + 0.998858i \(0.515211\pi\)
\(332\) 0 0
\(333\) −2870.22 −0.472333
\(334\) 0 0
\(335\) −67.4576 −0.0110018
\(336\) 0 0
\(337\) 6858.18 1.10857 0.554286 0.832326i \(-0.312991\pi\)
0.554286 + 0.832326i \(0.312991\pi\)
\(338\) 0 0
\(339\) 8504.58 1.36255
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2172.10 0.341930
\(344\) 0 0
\(345\) −80.5040 −0.0125629
\(346\) 0 0
\(347\) −7229.04 −1.11837 −0.559186 0.829042i \(-0.688886\pi\)
−0.559186 + 0.829042i \(0.688886\pi\)
\(348\) 0 0
\(349\) 12831.1 1.96801 0.984003 0.178151i \(-0.0570116\pi\)
0.984003 + 0.178151i \(0.0570116\pi\)
\(350\) 0 0
\(351\) 2608.98 0.396744
\(352\) 0 0
\(353\) 9780.78 1.47473 0.737363 0.675497i \(-0.236071\pi\)
0.737363 + 0.675497i \(0.236071\pi\)
\(354\) 0 0
\(355\) 97.6311 0.0145964
\(356\) 0 0
\(357\) −7685.05 −1.13932
\(358\) 0 0
\(359\) 551.839 0.0811279 0.0405640 0.999177i \(-0.487085\pi\)
0.0405640 + 0.999177i \(0.487085\pi\)
\(360\) 0 0
\(361\) 4708.77 0.686510
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 92.8188 0.0133106
\(366\) 0 0
\(367\) 4462.72 0.634746 0.317373 0.948301i \(-0.397199\pi\)
0.317373 + 0.948301i \(0.397199\pi\)
\(368\) 0 0
\(369\) 2346.51 0.331041
\(370\) 0 0
\(371\) 8514.46 1.19151
\(372\) 0 0
\(373\) 10086.8 1.40020 0.700102 0.714043i \(-0.253138\pi\)
0.700102 + 0.714043i \(0.253138\pi\)
\(374\) 0 0
\(375\) −141.761 −0.0195214
\(376\) 0 0
\(377\) 4053.51 0.553757
\(378\) 0 0
\(379\) 478.104 0.0647983 0.0323991 0.999475i \(-0.489685\pi\)
0.0323991 + 0.999475i \(0.489685\pi\)
\(380\) 0 0
\(381\) −2230.95 −0.299986
\(382\) 0 0
\(383\) 17.4676 0.00233043 0.00116521 0.999999i \(-0.499629\pi\)
0.00116521 + 0.999999i \(0.499629\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6671.64 −0.876326
\(388\) 0 0
\(389\) −11552.5 −1.50575 −0.752873 0.658165i \(-0.771333\pi\)
−0.752873 + 0.658165i \(0.771333\pi\)
\(390\) 0 0
\(391\) 6908.30 0.893524
\(392\) 0 0
\(393\) −204.785 −0.0262850
\(394\) 0 0
\(395\) 4.30231 0.000548033 0
\(396\) 0 0
\(397\) −1357.56 −0.171622 −0.0858109 0.996311i \(-0.527348\pi\)
−0.0858109 + 0.996311i \(0.527348\pi\)
\(398\) 0 0
\(399\) −16985.8 −2.13121
\(400\) 0 0
\(401\) 8849.49 1.10205 0.551026 0.834488i \(-0.314237\pi\)
0.551026 + 0.834488i \(0.314237\pi\)
\(402\) 0 0
\(403\) 4116.92 0.508880
\(404\) 0 0
\(405\) 79.8115 0.00979226
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8506.04 1.02835 0.514177 0.857684i \(-0.328098\pi\)
0.514177 + 0.857684i \(0.328098\pi\)
\(410\) 0 0
\(411\) −6171.93 −0.740727
\(412\) 0 0
\(413\) −2280.85 −0.271751
\(414\) 0 0
\(415\) 87.8577 0.0103922
\(416\) 0 0
\(417\) 8961.18 1.05235
\(418\) 0 0
\(419\) 8675.96 1.01157 0.505786 0.862659i \(-0.331203\pi\)
0.505786 + 0.862659i \(0.331203\pi\)
\(420\) 0 0
\(421\) 9073.31 1.05037 0.525185 0.850988i \(-0.323996\pi\)
0.525185 + 0.850988i \(0.323996\pi\)
\(422\) 0 0
\(423\) −8996.73 −1.03413
\(424\) 0 0
\(425\) 6082.31 0.694201
\(426\) 0 0
\(427\) 11213.5 1.27087
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15056.4 −1.68269 −0.841346 0.540496i \(-0.818237\pi\)
−0.841346 + 0.540496i \(0.818237\pi\)
\(432\) 0 0
\(433\) −4529.27 −0.502685 −0.251343 0.967898i \(-0.580872\pi\)
−0.251343 + 0.967898i \(0.580872\pi\)
\(434\) 0 0
\(435\) 69.6372 0.00767551
\(436\) 0 0
\(437\) 15269.0 1.67143
\(438\) 0 0
\(439\) 1061.24 0.115376 0.0576881 0.998335i \(-0.481627\pi\)
0.0576881 + 0.998335i \(0.481627\pi\)
\(440\) 0 0
\(441\) 3753.28 0.405278
\(442\) 0 0
\(443\) −5691.66 −0.610427 −0.305213 0.952284i \(-0.598728\pi\)
−0.305213 + 0.952284i \(0.598728\pi\)
\(444\) 0 0
\(445\) −83.2524 −0.00886864
\(446\) 0 0
\(447\) 17137.4 1.81335
\(448\) 0 0
\(449\) −8065.89 −0.847779 −0.423889 0.905714i \(-0.639335\pi\)
−0.423889 + 0.905714i \(0.639335\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −13052.2 −1.35375
\(454\) 0 0
\(455\) 70.7695 0.00729171
\(456\) 0 0
\(457\) 3229.97 0.330617 0.165308 0.986242i \(-0.447138\pi\)
0.165308 + 0.986242i \(0.447138\pi\)
\(458\) 0 0
\(459\) −3846.23 −0.391126
\(460\) 0 0
\(461\) −14797.9 −1.49503 −0.747515 0.664245i \(-0.768753\pi\)
−0.747515 + 0.664245i \(0.768753\pi\)
\(462\) 0 0
\(463\) 11153.9 1.11958 0.559792 0.828633i \(-0.310881\pi\)
0.559792 + 0.828633i \(0.310881\pi\)
\(464\) 0 0
\(465\) 70.7266 0.00705348
\(466\) 0 0
\(467\) −19020.7 −1.88474 −0.942368 0.334579i \(-0.891406\pi\)
−0.942368 + 0.334579i \(0.891406\pi\)
\(468\) 0 0
\(469\) −18787.1 −1.84970
\(470\) 0 0
\(471\) 5224.14 0.511073
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 13443.4 1.29858
\(476\) 0 0
\(477\) −5146.58 −0.494017
\(478\) 0 0
\(479\) −10637.4 −1.01469 −0.507345 0.861743i \(-0.669373\pi\)
−0.507345 + 0.861743i \(0.669373\pi\)
\(480\) 0 0
\(481\) −6414.27 −0.608037
\(482\) 0 0
\(483\) −22420.6 −2.11216
\(484\) 0 0
\(485\) 35.9022 0.00336131
\(486\) 0 0
\(487\) −7747.98 −0.720933 −0.360467 0.932772i \(-0.617383\pi\)
−0.360467 + 0.932772i \(0.617383\pi\)
\(488\) 0 0
\(489\) 595.422 0.0550632
\(490\) 0 0
\(491\) −10054.0 −0.924093 −0.462047 0.886856i \(-0.652885\pi\)
−0.462047 + 0.886856i \(0.652885\pi\)
\(492\) 0 0
\(493\) −5975.79 −0.545915
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27190.5 2.45405
\(498\) 0 0
\(499\) −4382.69 −0.393178 −0.196589 0.980486i \(-0.562987\pi\)
−0.196589 + 0.980486i \(0.562987\pi\)
\(500\) 0 0
\(501\) −4100.08 −0.365624
\(502\) 0 0
\(503\) 5236.71 0.464201 0.232101 0.972692i \(-0.425440\pi\)
0.232101 + 0.972692i \(0.425440\pi\)
\(504\) 0 0
\(505\) 25.9386 0.00228565
\(506\) 0 0
\(507\) 7157.51 0.626975
\(508\) 0 0
\(509\) −3776.96 −0.328901 −0.164451 0.986385i \(-0.552585\pi\)
−0.164451 + 0.986385i \(0.552585\pi\)
\(510\) 0 0
\(511\) 25850.3 2.23787
\(512\) 0 0
\(513\) −8501.09 −0.731642
\(514\) 0 0
\(515\) 4.15098 0.000355173 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 13455.7 1.13803
\(520\) 0 0
\(521\) −81.4864 −0.00685218 −0.00342609 0.999994i \(-0.501091\pi\)
−0.00342609 + 0.999994i \(0.501091\pi\)
\(522\) 0 0
\(523\) −15891.3 −1.32864 −0.664320 0.747448i \(-0.731279\pi\)
−0.664320 + 0.747448i \(0.731279\pi\)
\(524\) 0 0
\(525\) −19739.9 −1.64099
\(526\) 0 0
\(527\) −6069.28 −0.501673
\(528\) 0 0
\(529\) 7987.49 0.656488
\(530\) 0 0
\(531\) 1378.66 0.112672
\(532\) 0 0
\(533\) 5243.90 0.426151
\(534\) 0 0
\(535\) −11.6139 −0.000938528 0
\(536\) 0 0
\(537\) −6761.25 −0.543332
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7267.61 −0.577558 −0.288779 0.957396i \(-0.593249\pi\)
−0.288779 + 0.957396i \(0.593249\pi\)
\(542\) 0 0
\(543\) 16514.6 1.30518
\(544\) 0 0
\(545\) −116.374 −0.00914659
\(546\) 0 0
\(547\) −17435.1 −1.36283 −0.681417 0.731895i \(-0.738636\pi\)
−0.681417 + 0.731895i \(0.738636\pi\)
\(548\) 0 0
\(549\) −6778.04 −0.526921
\(550\) 0 0
\(551\) −13207.9 −1.02119
\(552\) 0 0
\(553\) 1198.21 0.0921391
\(554\) 0 0
\(555\) −110.194 −0.00842787
\(556\) 0 0
\(557\) 12535.6 0.953594 0.476797 0.879013i \(-0.341798\pi\)
0.476797 + 0.879013i \(0.341798\pi\)
\(558\) 0 0
\(559\) −14909.6 −1.12810
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4448.14 0.332979 0.166489 0.986043i \(-0.446757\pi\)
0.166489 + 0.986043i \(0.446757\pi\)
\(564\) 0 0
\(565\) 115.456 0.00859694
\(566\) 0 0
\(567\) 22227.7 1.64634
\(568\) 0 0
\(569\) 6577.85 0.484636 0.242318 0.970197i \(-0.422092\pi\)
0.242318 + 0.970197i \(0.422092\pi\)
\(570\) 0 0
\(571\) 17109.0 1.25392 0.626962 0.779050i \(-0.284298\pi\)
0.626962 + 0.779050i \(0.284298\pi\)
\(572\) 0 0
\(573\) −3090.32 −0.225305
\(574\) 0 0
\(575\) 17744.7 1.28697
\(576\) 0 0
\(577\) −10528.4 −0.759623 −0.379811 0.925064i \(-0.624011\pi\)
−0.379811 + 0.925064i \(0.624011\pi\)
\(578\) 0 0
\(579\) −11436.7 −0.820887
\(580\) 0 0
\(581\) 24468.6 1.74721
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −42.7768 −0.00302325
\(586\) 0 0
\(587\) −14551.9 −1.02321 −0.511603 0.859222i \(-0.670948\pi\)
−0.511603 + 0.859222i \(0.670948\pi\)
\(588\) 0 0
\(589\) −13414.6 −0.938433
\(590\) 0 0
\(591\) −3390.94 −0.236014
\(592\) 0 0
\(593\) −4585.83 −0.317568 −0.158784 0.987313i \(-0.550757\pi\)
−0.158784 + 0.987313i \(0.550757\pi\)
\(594\) 0 0
\(595\) −104.330 −0.00718845
\(596\) 0 0
\(597\) −6862.91 −0.470486
\(598\) 0 0
\(599\) −23496.7 −1.60276 −0.801378 0.598158i \(-0.795899\pi\)
−0.801378 + 0.598158i \(0.795899\pi\)
\(600\) 0 0
\(601\) 3758.44 0.255092 0.127546 0.991833i \(-0.459290\pi\)
0.127546 + 0.991833i \(0.459290\pi\)
\(602\) 0 0
\(603\) 11355.9 0.766914
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −15705.2 −1.05018 −0.525088 0.851048i \(-0.675967\pi\)
−0.525088 + 0.851048i \(0.675967\pi\)
\(608\) 0 0
\(609\) 19394.2 1.29046
\(610\) 0 0
\(611\) −20105.6 −1.33124
\(612\) 0 0
\(613\) −2731.67 −0.179985 −0.0899926 0.995942i \(-0.528684\pi\)
−0.0899926 + 0.995942i \(0.528684\pi\)
\(614\) 0 0
\(615\) 90.0874 0.00590679
\(616\) 0 0
\(617\) 3140.17 0.204892 0.102446 0.994739i \(-0.467333\pi\)
0.102446 + 0.994739i \(0.467333\pi\)
\(618\) 0 0
\(619\) −5204.95 −0.337972 −0.168986 0.985618i \(-0.554049\pi\)
−0.168986 + 0.985618i \(0.554049\pi\)
\(620\) 0 0
\(621\) −11221.1 −0.725101
\(622\) 0 0
\(623\) −23186.0 −1.49106
\(624\) 0 0
\(625\) 15622.1 0.999815
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9456.09 0.599426
\(630\) 0 0
\(631\) −21694.2 −1.36867 −0.684337 0.729166i \(-0.739908\pi\)
−0.684337 + 0.729166i \(0.739908\pi\)
\(632\) 0 0
\(633\) −34732.2 −2.18086
\(634\) 0 0
\(635\) −30.2868 −0.00189275
\(636\) 0 0
\(637\) 8387.71 0.521716
\(638\) 0 0
\(639\) −16435.4 −1.01749
\(640\) 0 0
\(641\) −29091.2 −1.79256 −0.896282 0.443485i \(-0.853742\pi\)
−0.896282 + 0.443485i \(0.853742\pi\)
\(642\) 0 0
\(643\) 24207.4 1.48467 0.742337 0.670026i \(-0.233717\pi\)
0.742337 + 0.670026i \(0.233717\pi\)
\(644\) 0 0
\(645\) −256.138 −0.0156363
\(646\) 0 0
\(647\) −13203.6 −0.802300 −0.401150 0.916012i \(-0.631389\pi\)
−0.401150 + 0.916012i \(0.631389\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 19697.6 1.18588
\(652\) 0 0
\(653\) −19289.5 −1.15598 −0.577990 0.816044i \(-0.696163\pi\)
−0.577990 + 0.816044i \(0.696163\pi\)
\(654\) 0 0
\(655\) −2.78010 −0.000165844 0
\(656\) 0 0
\(657\) −15625.3 −0.927853
\(658\) 0 0
\(659\) −7086.80 −0.418911 −0.209456 0.977818i \(-0.567169\pi\)
−0.209456 + 0.977818i \(0.567169\pi\)
\(660\) 0 0
\(661\) −23077.2 −1.35794 −0.678969 0.734167i \(-0.737573\pi\)
−0.678969 + 0.734167i \(0.737573\pi\)
\(662\) 0 0
\(663\) 10381.0 0.608094
\(664\) 0 0
\(665\) −230.595 −0.0134468
\(666\) 0 0
\(667\) −17434.0 −1.01206
\(668\) 0 0
\(669\) 7455.99 0.430890
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −23030.6 −1.31911 −0.659556 0.751655i \(-0.729256\pi\)
−0.659556 + 0.751655i \(0.729256\pi\)
\(674\) 0 0
\(675\) −9879.46 −0.563349
\(676\) 0 0
\(677\) 28434.0 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) 9998.86 0.565127
\(680\) 0 0
\(681\) −39255.9 −2.20894
\(682\) 0 0
\(683\) −11600.3 −0.649887 −0.324943 0.945733i \(-0.605345\pi\)
−0.324943 + 0.945733i \(0.605345\pi\)
\(684\) 0 0
\(685\) −83.7886 −0.00467357
\(686\) 0 0
\(687\) 17791.2 0.988032
\(688\) 0 0
\(689\) −11501.4 −0.635949
\(690\) 0 0
\(691\) −17422.2 −0.959149 −0.479574 0.877501i \(-0.659209\pi\)
−0.479574 + 0.877501i \(0.659209\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 121.655 0.00663975
\(696\) 0 0
\(697\) −7730.69 −0.420116
\(698\) 0 0
\(699\) −19090.8 −1.03302
\(700\) 0 0
\(701\) −1287.92 −0.0693926 −0.0346963 0.999398i \(-0.511046\pi\)
−0.0346963 + 0.999398i \(0.511046\pi\)
\(702\) 0 0
\(703\) 20900.2 1.12129
\(704\) 0 0
\(705\) −345.404 −0.0184520
\(706\) 0 0
\(707\) 7223.97 0.384279
\(708\) 0 0
\(709\) 3087.56 0.163548 0.0817741 0.996651i \(-0.473941\pi\)
0.0817741 + 0.996651i \(0.473941\pi\)
\(710\) 0 0
\(711\) −724.258 −0.0382023
\(712\) 0 0
\(713\) −17706.7 −0.930043
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −35505.9 −1.84936
\(718\) 0 0
\(719\) 17909.4 0.928940 0.464470 0.885589i \(-0.346245\pi\)
0.464470 + 0.885589i \(0.346245\pi\)
\(720\) 0 0
\(721\) 1156.06 0.0597141
\(722\) 0 0
\(723\) 26098.9 1.34250
\(724\) 0 0
\(725\) −15349.5 −0.786296
\(726\) 0 0
\(727\) −5694.09 −0.290484 −0.145242 0.989396i \(-0.546396\pi\)
−0.145242 + 0.989396i \(0.546396\pi\)
\(728\) 0 0
\(729\) 357.045 0.0181397
\(730\) 0 0
\(731\) 21980.1 1.11212
\(732\) 0 0
\(733\) −10055.1 −0.506678 −0.253339 0.967378i \(-0.581529\pi\)
−0.253339 + 0.967378i \(0.581529\pi\)
\(734\) 0 0
\(735\) 144.097 0.00723140
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −8697.71 −0.432951 −0.216475 0.976288i \(-0.569456\pi\)
−0.216475 + 0.976288i \(0.569456\pi\)
\(740\) 0 0
\(741\) 22944.6 1.13750
\(742\) 0 0
\(743\) 26970.3 1.33169 0.665844 0.746091i \(-0.268072\pi\)
0.665844 + 0.746091i \(0.268072\pi\)
\(744\) 0 0
\(745\) 232.653 0.0114412
\(746\) 0 0
\(747\) −14790.1 −0.724420
\(748\) 0 0
\(749\) −3234.50 −0.157792
\(750\) 0 0
\(751\) 38692.8 1.88005 0.940027 0.341101i \(-0.110800\pi\)
0.940027 + 0.341101i \(0.110800\pi\)
\(752\) 0 0
\(753\) 28885.3 1.39793
\(754\) 0 0
\(755\) −177.194 −0.00854138
\(756\) 0 0
\(757\) −12815.1 −0.615285 −0.307643 0.951502i \(-0.599540\pi\)
−0.307643 + 0.951502i \(0.599540\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16670.0 0.794070 0.397035 0.917804i \(-0.370039\pi\)
0.397035 + 0.917804i \(0.370039\pi\)
\(762\) 0 0
\(763\) −32410.4 −1.53779
\(764\) 0 0
\(765\) 63.0627 0.00298044
\(766\) 0 0
\(767\) 3080.99 0.145043
\(768\) 0 0
\(769\) −3634.44 −0.170431 −0.0852154 0.996363i \(-0.527158\pi\)
−0.0852154 + 0.996363i \(0.527158\pi\)
\(770\) 0 0
\(771\) 30622.9 1.43042
\(772\) 0 0
\(773\) 24666.2 1.14771 0.573857 0.818956i \(-0.305447\pi\)
0.573857 + 0.818956i \(0.305447\pi\)
\(774\) 0 0
\(775\) −15589.6 −0.722574
\(776\) 0 0
\(777\) −30689.3 −1.41695
\(778\) 0 0
\(779\) −17086.7 −0.785871
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 9706.44 0.443014
\(784\) 0 0
\(785\) 70.9216 0.00322459
\(786\) 0 0
\(787\) 16770.2 0.759585 0.379793 0.925072i \(-0.375995\pi\)
0.379793 + 0.925072i \(0.375995\pi\)
\(788\) 0 0
\(789\) −25481.2 −1.14975
\(790\) 0 0
\(791\) 32154.8 1.44538
\(792\) 0 0
\(793\) −15147.3 −0.678307
\(794\) 0 0
\(795\) −197.588 −0.00881476
\(796\) 0 0
\(797\) 9571.10 0.425377 0.212689 0.977120i \(-0.431778\pi\)
0.212689 + 0.977120i \(0.431778\pi\)
\(798\) 0 0
\(799\) 29640.2 1.31238
\(800\) 0 0
\(801\) 14014.8 0.618215
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −304.376 −0.0133265
\(806\) 0 0
\(807\) 21990.1 0.959216
\(808\) 0 0
\(809\) 43981.3 1.91137 0.955685 0.294391i \(-0.0951168\pi\)
0.955685 + 0.294391i \(0.0951168\pi\)
\(810\) 0 0
\(811\) −29970.8 −1.29768 −0.648840 0.760925i \(-0.724745\pi\)
−0.648840 + 0.760925i \(0.724745\pi\)
\(812\) 0 0
\(813\) −25748.7 −1.11076
\(814\) 0 0
\(815\) 8.08330 0.000347418 0
\(816\) 0 0
\(817\) 48581.2 2.08034
\(818\) 0 0
\(819\) −11913.5 −0.508290
\(820\) 0 0
\(821\) 1215.26 0.0516600 0.0258300 0.999666i \(-0.491777\pi\)
0.0258300 + 0.999666i \(0.491777\pi\)
\(822\) 0 0
\(823\) 9499.78 0.402359 0.201180 0.979554i \(-0.435523\pi\)
0.201180 + 0.979554i \(0.435523\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28746.2 −1.20871 −0.604355 0.796715i \(-0.706569\pi\)
−0.604355 + 0.796715i \(0.706569\pi\)
\(828\) 0 0
\(829\) 12365.1 0.518043 0.259022 0.965872i \(-0.416600\pi\)
0.259022 + 0.965872i \(0.416600\pi\)
\(830\) 0 0
\(831\) 22860.1 0.954280
\(832\) 0 0
\(833\) −12365.4 −0.514328
\(834\) 0 0
\(835\) −55.6616 −0.00230689
\(836\) 0 0
\(837\) 9858.29 0.407111
\(838\) 0 0
\(839\) 3194.11 0.131434 0.0657169 0.997838i \(-0.479067\pi\)
0.0657169 + 0.997838i \(0.479067\pi\)
\(840\) 0 0
\(841\) −9308.35 −0.381662
\(842\) 0 0
\(843\) −28292.9 −1.15594
\(844\) 0 0
\(845\) 97.1686 0.00395586
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −16039.9 −0.648397
\(850\) 0 0
\(851\) 27587.5 1.11126
\(852\) 0 0
\(853\) −5962.48 −0.239333 −0.119667 0.992814i \(-0.538183\pi\)
−0.119667 + 0.992814i \(0.538183\pi\)
\(854\) 0 0
\(855\) 139.384 0.00557523
\(856\) 0 0
\(857\) 17358.2 0.691886 0.345943 0.938256i \(-0.387559\pi\)
0.345943 + 0.938256i \(0.387559\pi\)
\(858\) 0 0
\(859\) 22138.3 0.879337 0.439669 0.898160i \(-0.355096\pi\)
0.439669 + 0.898160i \(0.355096\pi\)
\(860\) 0 0
\(861\) 25089.6 0.993091
\(862\) 0 0
\(863\) 11181.4 0.441043 0.220522 0.975382i \(-0.429224\pi\)
0.220522 + 0.975382i \(0.429224\pi\)
\(864\) 0 0
\(865\) 182.671 0.00718034
\(866\) 0 0
\(867\) 16448.7 0.644322
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 25377.9 0.987251
\(872\) 0 0
\(873\) −6043.83 −0.234310
\(874\) 0 0
\(875\) −535.984 −0.0207081
\(876\) 0 0
\(877\) 11145.6 0.429147 0.214573 0.976708i \(-0.431164\pi\)
0.214573 + 0.976708i \(0.431164\pi\)
\(878\) 0 0
\(879\) −28878.6 −1.10813
\(880\) 0 0
\(881\) −35280.1 −1.34917 −0.674584 0.738198i \(-0.735677\pi\)
−0.674584 + 0.738198i \(0.735677\pi\)
\(882\) 0 0
\(883\) −737.156 −0.0280943 −0.0140471 0.999901i \(-0.504471\pi\)
−0.0140471 + 0.999901i \(0.504471\pi\)
\(884\) 0 0
\(885\) 52.9298 0.00201041
\(886\) 0 0
\(887\) −18421.0 −0.697312 −0.348656 0.937251i \(-0.613362\pi\)
−0.348656 + 0.937251i \(0.613362\pi\)
\(888\) 0 0
\(889\) −8434.95 −0.318222
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 65511.9 2.45495
\(894\) 0 0
\(895\) −91.7890 −0.00342812
\(896\) 0 0
\(897\) 30285.9 1.12733
\(898\) 0 0
\(899\) 15316.6 0.568227
\(900\) 0 0
\(901\) 16955.7 0.626943
\(902\) 0 0
\(903\) −71335.3 −2.62889
\(904\) 0 0
\(905\) 224.199 0.00823493
\(906\) 0 0
\(907\) −9341.10 −0.341969 −0.170985 0.985274i \(-0.554695\pi\)
−0.170985 + 0.985274i \(0.554695\pi\)
\(908\) 0 0
\(909\) −4366.54 −0.159328
\(910\) 0 0
\(911\) −30360.6 −1.10416 −0.552081 0.833791i \(-0.686166\pi\)
−0.552081 + 0.833791i \(0.686166\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −260.223 −0.00940188
\(916\) 0 0
\(917\) −774.267 −0.0278828
\(918\) 0 0
\(919\) 28842.0 1.03527 0.517633 0.855603i \(-0.326813\pi\)
0.517633 + 0.855603i \(0.326813\pi\)
\(920\) 0 0
\(921\) 23463.7 0.839474
\(922\) 0 0
\(923\) −36729.2 −1.30981
\(924\) 0 0
\(925\) 24289.0 0.863369
\(926\) 0 0
\(927\) −698.782 −0.0247584
\(928\) 0 0
\(929\) −295.881 −0.0104494 −0.00522472 0.999986i \(-0.501663\pi\)
−0.00522472 + 0.999986i \(0.501663\pi\)
\(930\) 0 0
\(931\) −27330.5 −0.962105
\(932\) 0 0
\(933\) −56715.3 −1.99011
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −49518.4 −1.72646 −0.863231 0.504810i \(-0.831563\pi\)
−0.863231 + 0.504810i \(0.831563\pi\)
\(938\) 0 0
\(939\) −21787.7 −0.757206
\(940\) 0 0
\(941\) 21174.7 0.733554 0.366777 0.930309i \(-0.380461\pi\)
0.366777 + 0.930309i \(0.380461\pi\)
\(942\) 0 0
\(943\) −22553.7 −0.778845
\(944\) 0 0
\(945\) 169.463 0.00583347
\(946\) 0 0
\(947\) −26386.2 −0.905425 −0.452713 0.891656i \(-0.649544\pi\)
−0.452713 + 0.891656i \(0.649544\pi\)
\(948\) 0 0
\(949\) −34918.8 −1.19443
\(950\) 0 0
\(951\) 29174.3 0.994786
\(952\) 0 0
\(953\) −23955.8 −0.814277 −0.407138 0.913366i \(-0.633473\pi\)
−0.407138 + 0.913366i \(0.633473\pi\)
\(954\) 0 0
\(955\) −41.9534 −0.00142155
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −23335.4 −0.785754
\(960\) 0 0
\(961\) −14234.8 −0.477823
\(962\) 0 0
\(963\) 1955.10 0.0654229
\(964\) 0 0
\(965\) −155.262 −0.00517933
\(966\) 0 0
\(967\) −18414.5 −0.612380 −0.306190 0.951970i \(-0.599054\pi\)
−0.306190 + 0.951970i \(0.599054\pi\)
\(968\) 0 0
\(969\) −33825.5 −1.12139
\(970\) 0 0
\(971\) 33277.5 1.09982 0.549910 0.835224i \(-0.314662\pi\)
0.549910 + 0.835224i \(0.314662\pi\)
\(972\) 0 0
\(973\) 33881.2 1.11632
\(974\) 0 0
\(975\) 26664.8 0.875854
\(976\) 0 0
\(977\) −8390.58 −0.274758 −0.137379 0.990519i \(-0.543868\pi\)
−0.137379 + 0.990519i \(0.543868\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 19590.5 0.637591
\(982\) 0 0
\(983\) 54879.7 1.78066 0.890331 0.455314i \(-0.150473\pi\)
0.890331 + 0.455314i \(0.150473\pi\)
\(984\) 0 0
\(985\) −46.0345 −0.00148912
\(986\) 0 0
\(987\) −96195.9 −3.10228
\(988\) 0 0
\(989\) 64125.3 2.06174
\(990\) 0 0
\(991\) −45505.7 −1.45866 −0.729332 0.684160i \(-0.760169\pi\)
−0.729332 + 0.684160i \(0.760169\pi\)
\(992\) 0 0
\(993\) 3718.36 0.118830
\(994\) 0 0
\(995\) −93.1692 −0.00296850
\(996\) 0 0
\(997\) −3271.56 −0.103923 −0.0519616 0.998649i \(-0.516547\pi\)
−0.0519616 + 0.998649i \(0.516547\pi\)
\(998\) 0 0
\(999\) −15359.5 −0.486438
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.4.a.bs.1.2 6
4.3 odd 2 484.4.a.h.1.5 6
11.2 odd 10 176.4.m.d.81.1 12
11.6 odd 10 176.4.m.d.113.1 12
11.10 odd 2 1936.4.a.br.1.2 6
44.35 even 10 44.4.e.a.37.3 yes 12
44.39 even 10 44.4.e.a.25.3 12
44.43 even 2 484.4.a.i.1.5 6
132.35 odd 10 396.4.j.d.37.2 12
132.83 odd 10 396.4.j.d.289.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.3 12 44.39 even 10
44.4.e.a.37.3 yes 12 44.35 even 10
176.4.m.d.81.1 12 11.2 odd 10
176.4.m.d.113.1 12 11.6 odd 10
396.4.j.d.37.2 12 132.35 odd 10
396.4.j.d.289.2 12 132.83 odd 10
484.4.a.h.1.5 6 4.3 odd 2
484.4.a.i.1.5 6 44.43 even 2
1936.4.a.br.1.2 6 11.10 odd 2
1936.4.a.bs.1.2 6 1.1 even 1 trivial