Properties

Label 1740.2.bc.c.853.7
Level $1740$
Weight $2$
Character 1740.853
Analytic conductor $13.894$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1740,2,Mod(853,1740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1740.853"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8939699517\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 853.7
Character \(\chi\) \(=\) 1740.853
Dual form 1740.2.bc.c.1177.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(0.0712321 - 2.23493i) q^{5} +(-0.799559 + 0.799559i) q^{7} -1.00000 q^{9} +(-0.319721 - 0.319721i) q^{11} +(1.26826 - 1.26826i) q^{13} +(2.23493 + 0.0712321i) q^{15} -3.94993 q^{17} +(2.75925 - 2.75925i) q^{19} +(-0.799559 - 0.799559i) q^{21} +(0.270640 + 0.270640i) q^{23} +(-4.98985 - 0.318398i) q^{25} -1.00000i q^{27} +(0.120713 + 5.38381i) q^{29} +(-3.45071 - 3.45071i) q^{31} +(0.319721 - 0.319721i) q^{33} +(1.73001 + 1.84391i) q^{35} -9.42147i q^{37} +(1.26826 + 1.26826i) q^{39} +(-5.22978 + 5.22978i) q^{41} -9.82527i q^{43} +(-0.0712321 + 2.23493i) q^{45} -5.91081i q^{47} +5.72141i q^{49} -3.94993i q^{51} +(-3.04710 - 3.04710i) q^{53} +(-0.737329 + 0.691780i) q^{55} +(2.75925 + 2.75925i) q^{57} -3.40967i q^{59} +(-8.02776 - 8.02776i) q^{61} +(0.799559 - 0.799559i) q^{63} +(-2.74415 - 2.92483i) q^{65} +(-2.10897 - 2.10897i) q^{67} +(-0.270640 + 0.270640i) q^{69} -4.89291i q^{71} +1.74581 q^{73} +(0.318398 - 4.98985i) q^{75} +0.511271 q^{77} +(2.41919 - 2.41919i) q^{79} +1.00000 q^{81} +(-1.43981 - 1.43981i) q^{83} +(-0.281362 + 8.82784i) q^{85} +(-5.38381 + 0.120713i) q^{87} +(-6.19743 + 6.19743i) q^{89} +2.02810i q^{91} +(3.45071 - 3.45071i) q^{93} +(-5.97019 - 6.36329i) q^{95} +3.50657i q^{97} +(0.319721 + 0.319721i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 30 q^{9} + 4 q^{11} - 6 q^{13} - 6 q^{15} + 8 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{33} - 16 q^{35} - 6 q^{39} - 10 q^{41} - 6 q^{53} + 4 q^{55} + 8 q^{57} + 30 q^{61} - 2 q^{65} + 4 q^{67} + 12 q^{73}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.0712321 2.23493i 0.0318559 0.999492i
\(6\) 0 0
\(7\) −0.799559 + 0.799559i −0.302205 + 0.302205i −0.841876 0.539671i \(-0.818549\pi\)
0.539671 + 0.841876i \(0.318549\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −0.319721 0.319721i −0.0963994 0.0963994i 0.657262 0.753662i \(-0.271714\pi\)
−0.753662 + 0.657262i \(0.771714\pi\)
\(12\) 0 0
\(13\) 1.26826 1.26826i 0.351753 0.351753i −0.509008 0.860762i \(-0.669988\pi\)
0.860762 + 0.509008i \(0.169988\pi\)
\(14\) 0 0
\(15\) 2.23493 + 0.0712321i 0.577057 + 0.0183920i
\(16\) 0 0
\(17\) −3.94993 −0.957999 −0.479000 0.877815i \(-0.659001\pi\)
−0.479000 + 0.877815i \(0.659001\pi\)
\(18\) 0 0
\(19\) 2.75925 2.75925i 0.633015 0.633015i −0.315808 0.948823i \(-0.602275\pi\)
0.948823 + 0.315808i \(0.102275\pi\)
\(20\) 0 0
\(21\) −0.799559 0.799559i −0.174478 0.174478i
\(22\) 0 0
\(23\) 0.270640 + 0.270640i 0.0564324 + 0.0564324i 0.734760 0.678327i \(-0.237295\pi\)
−0.678327 + 0.734760i \(0.737295\pi\)
\(24\) 0 0
\(25\) −4.98985 0.318398i −0.997970 0.0636796i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.120713 + 5.38381i 0.0224158 + 0.999749i
\(30\) 0 0
\(31\) −3.45071 3.45071i −0.619765 0.619765i 0.325706 0.945471i \(-0.394398\pi\)
−0.945471 + 0.325706i \(0.894398\pi\)
\(32\) 0 0
\(33\) 0.319721 0.319721i 0.0556562 0.0556562i
\(34\) 0 0
\(35\) 1.73001 + 1.84391i 0.292424 + 0.311678i
\(36\) 0 0
\(37\) 9.42147i 1.54888i −0.632647 0.774440i \(-0.718032\pi\)
0.632647 0.774440i \(-0.281968\pi\)
\(38\) 0 0
\(39\) 1.26826 + 1.26826i 0.203085 + 0.203085i
\(40\) 0 0
\(41\) −5.22978 + 5.22978i −0.816754 + 0.816754i −0.985636 0.168882i \(-0.945984\pi\)
0.168882 + 0.985636i \(0.445984\pi\)
\(42\) 0 0
\(43\) 9.82527i 1.49834i −0.662378 0.749170i \(-0.730453\pi\)
0.662378 0.749170i \(-0.269547\pi\)
\(44\) 0 0
\(45\) −0.0712321 + 2.23493i −0.0106186 + 0.333164i
\(46\) 0 0
\(47\) 5.91081i 0.862180i −0.902309 0.431090i \(-0.858129\pi\)
0.902309 0.431090i \(-0.141871\pi\)
\(48\) 0 0
\(49\) 5.72141i 0.817345i
\(50\) 0 0
\(51\) 3.94993i 0.553101i
\(52\) 0 0
\(53\) −3.04710 3.04710i −0.418551 0.418551i 0.466153 0.884704i \(-0.345640\pi\)
−0.884704 + 0.466153i \(0.845640\pi\)
\(54\) 0 0
\(55\) −0.737329 + 0.691780i −0.0994214 + 0.0932796i
\(56\) 0 0
\(57\) 2.75925 + 2.75925i 0.365472 + 0.365472i
\(58\) 0 0
\(59\) 3.40967i 0.443901i −0.975058 0.221950i \(-0.928758\pi\)
0.975058 0.221950i \(-0.0712423\pi\)
\(60\) 0 0
\(61\) −8.02776 8.02776i −1.02785 1.02785i −0.999601 0.0282480i \(-0.991007\pi\)
−0.0282480 0.999601i \(-0.508993\pi\)
\(62\) 0 0
\(63\) 0.799559 0.799559i 0.100735 0.100735i
\(64\) 0 0
\(65\) −2.74415 2.92483i −0.340369 0.362780i
\(66\) 0 0
\(67\) −2.10897 2.10897i −0.257652 0.257652i 0.566446 0.824099i \(-0.308318\pi\)
−0.824099 + 0.566446i \(0.808318\pi\)
\(68\) 0 0
\(69\) −0.270640 + 0.270640i −0.0325813 + 0.0325813i
\(70\) 0 0
\(71\) 4.89291i 0.580681i −0.956923 0.290341i \(-0.906231\pi\)
0.956923 0.290341i \(-0.0937686\pi\)
\(72\) 0 0
\(73\) 1.74581 0.204331 0.102166 0.994767i \(-0.467423\pi\)
0.102166 + 0.994767i \(0.467423\pi\)
\(74\) 0 0
\(75\) 0.318398 4.98985i 0.0367654 0.576178i
\(76\) 0 0
\(77\) 0.511271 0.0582647
\(78\) 0 0
\(79\) 2.41919 2.41919i 0.272180 0.272180i −0.557797 0.829977i \(-0.688353\pi\)
0.829977 + 0.557797i \(0.188353\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.43981 1.43981i −0.158040 0.158040i 0.623658 0.781698i \(-0.285646\pi\)
−0.781698 + 0.623658i \(0.785646\pi\)
\(84\) 0 0
\(85\) −0.281362 + 8.82784i −0.0305180 + 0.957513i
\(86\) 0 0
\(87\) −5.38381 + 0.120713i −0.577205 + 0.0129418i
\(88\) 0 0
\(89\) −6.19743 + 6.19743i −0.656926 + 0.656926i −0.954651 0.297726i \(-0.903772\pi\)
0.297726 + 0.954651i \(0.403772\pi\)
\(90\) 0 0
\(91\) 2.02810i 0.212603i
\(92\) 0 0
\(93\) 3.45071 3.45071i 0.357822 0.357822i
\(94\) 0 0
\(95\) −5.97019 6.36329i −0.612529 0.652859i
\(96\) 0 0
\(97\) 3.50657i 0.356038i 0.984027 + 0.178019i \(0.0569689\pi\)
−0.984027 + 0.178019i \(0.943031\pi\)
\(98\) 0 0
\(99\) 0.319721 + 0.319721i 0.0321331 + 0.0321331i
\(100\) 0 0
\(101\) 0.515252 + 0.515252i 0.0512695 + 0.0512695i 0.732277 0.681007i \(-0.238458\pi\)
−0.681007 + 0.732277i \(0.738458\pi\)
\(102\) 0 0
\(103\) −4.50575 4.50575i −0.443964 0.443964i 0.449378 0.893342i \(-0.351646\pi\)
−0.893342 + 0.449378i \(0.851646\pi\)
\(104\) 0 0
\(105\) −1.84391 + 1.73001i −0.179948 + 0.168831i
\(106\) 0 0
\(107\) −2.33805 + 2.33805i −0.226028 + 0.226028i −0.811031 0.585003i \(-0.801093\pi\)
0.585003 + 0.811031i \(0.301093\pi\)
\(108\) 0 0
\(109\) 1.65077 0.158115 0.0790573 0.996870i \(-0.474809\pi\)
0.0790573 + 0.996870i \(0.474809\pi\)
\(110\) 0 0
\(111\) 9.42147 0.894247
\(112\) 0 0
\(113\) −0.735489 −0.0691890 −0.0345945 0.999401i \(-0.511014\pi\)
−0.0345945 + 0.999401i \(0.511014\pi\)
\(114\) 0 0
\(115\) 0.624141 0.585585i 0.0582015 0.0546061i
\(116\) 0 0
\(117\) −1.26826 + 1.26826i −0.117251 + 0.117251i
\(118\) 0 0
\(119\) 3.15820 3.15820i 0.289512 0.289512i
\(120\) 0 0
\(121\) 10.7956i 0.981414i
\(122\) 0 0
\(123\) −5.22978 5.22978i −0.471553 0.471553i
\(124\) 0 0
\(125\) −1.06704 + 11.1293i −0.0954385 + 0.995435i
\(126\) 0 0
\(127\) 9.87429 0.876202 0.438101 0.898926i \(-0.355651\pi\)
0.438101 + 0.898926i \(0.355651\pi\)
\(128\) 0 0
\(129\) 9.82527 0.865067
\(130\) 0 0
\(131\) 8.11330 8.11330i 0.708863 0.708863i −0.257433 0.966296i \(-0.582877\pi\)
0.966296 + 0.257433i \(0.0828768\pi\)
\(132\) 0 0
\(133\) 4.41236i 0.382601i
\(134\) 0 0
\(135\) −2.23493 0.0712321i −0.192352 0.00613068i
\(136\) 0 0
\(137\) −5.15227 −0.440188 −0.220094 0.975479i \(-0.570636\pi\)
−0.220094 + 0.975479i \(0.570636\pi\)
\(138\) 0 0
\(139\) 2.85059i 0.241784i −0.992666 0.120892i \(-0.961425\pi\)
0.992666 0.120892i \(-0.0385754\pi\)
\(140\) 0 0
\(141\) 5.91081 0.497780
\(142\) 0 0
\(143\) −0.810981 −0.0678176
\(144\) 0 0
\(145\) 12.0411 + 0.113715i 0.999955 + 0.00944352i
\(146\) 0 0
\(147\) −5.72141 −0.471894
\(148\) 0 0
\(149\) −9.66746 −0.791989 −0.395995 0.918253i \(-0.629600\pi\)
−0.395995 + 0.918253i \(0.629600\pi\)
\(150\) 0 0
\(151\) 1.40564i 0.114390i −0.998363 0.0571948i \(-0.981784\pi\)
0.998363 0.0571948i \(-0.0182156\pi\)
\(152\) 0 0
\(153\) 3.94993 0.319333
\(154\) 0 0
\(155\) −7.95790 + 7.46630i −0.639194 + 0.599707i
\(156\) 0 0
\(157\) 23.2145i 1.85272i −0.376640 0.926360i \(-0.622921\pi\)
0.376640 0.926360i \(-0.377079\pi\)
\(158\) 0 0
\(159\) 3.04710 3.04710i 0.241651 0.241651i
\(160\) 0 0
\(161\) −0.432786 −0.0341083
\(162\) 0 0
\(163\) 21.7935 1.70700 0.853500 0.521093i \(-0.174475\pi\)
0.853500 + 0.521093i \(0.174475\pi\)
\(164\) 0 0
\(165\) −0.691780 0.737329i −0.0538550 0.0574010i
\(166\) 0 0
\(167\) −9.52550 9.52550i −0.737106 0.737106i 0.234911 0.972017i \(-0.424520\pi\)
−0.972017 + 0.234911i \(0.924520\pi\)
\(168\) 0 0
\(169\) 9.78301i 0.752539i
\(170\) 0 0
\(171\) −2.75925 + 2.75925i −0.211005 + 0.211005i
\(172\) 0 0
\(173\) −5.60109 + 5.60109i −0.425843 + 0.425843i −0.887210 0.461366i \(-0.847359\pi\)
0.461366 + 0.887210i \(0.347359\pi\)
\(174\) 0 0
\(175\) 4.24426 3.73510i 0.320836 0.282347i
\(176\) 0 0
\(177\) 3.40967 0.256286
\(178\) 0 0
\(179\) −12.3759 −0.925018 −0.462509 0.886615i \(-0.653051\pi\)
−0.462509 + 0.886615i \(0.653051\pi\)
\(180\) 0 0
\(181\) 10.9683 0.815265 0.407632 0.913146i \(-0.366355\pi\)
0.407632 + 0.913146i \(0.366355\pi\)
\(182\) 0 0
\(183\) 8.02776 8.02776i 0.593429 0.593429i
\(184\) 0 0
\(185\) −21.0564 0.671111i −1.54809 0.0493411i
\(186\) 0 0
\(187\) 1.26287 + 1.26287i 0.0923506 + 0.0923506i
\(188\) 0 0
\(189\) 0.799559 + 0.799559i 0.0581593 + 0.0581593i
\(190\) 0 0
\(191\) 12.7044 + 12.7044i 0.919255 + 0.919255i 0.996975 0.0777199i \(-0.0247640\pi\)
−0.0777199 + 0.996975i \(0.524764\pi\)
\(192\) 0 0
\(193\) 12.2342i 0.880634i −0.897842 0.440317i \(-0.854866\pi\)
0.897842 0.440317i \(-0.145134\pi\)
\(194\) 0 0
\(195\) 2.92483 2.74415i 0.209451 0.196512i
\(196\) 0 0
\(197\) 13.2932 13.2932i 0.947103 0.947103i −0.0515662 0.998670i \(-0.516421\pi\)
0.998670 + 0.0515662i \(0.0164213\pi\)
\(198\) 0 0
\(199\) 21.4311i 1.51921i 0.650384 + 0.759605i \(0.274608\pi\)
−0.650384 + 0.759605i \(0.725392\pi\)
\(200\) 0 0
\(201\) 2.10897 2.10897i 0.148755 0.148755i
\(202\) 0 0
\(203\) −4.40119 4.20816i −0.308903 0.295355i
\(204\) 0 0
\(205\) 11.3157 + 12.0607i 0.790321 + 0.842358i
\(206\) 0 0
\(207\) −0.270640 0.270640i −0.0188108 0.0188108i
\(208\) 0 0
\(209\) −1.76438 −0.122045
\(210\) 0 0
\(211\) −3.60647 + 3.60647i −0.248280 + 0.248280i −0.820264 0.571985i \(-0.806174\pi\)
0.571985 + 0.820264i \(0.306174\pi\)
\(212\) 0 0
\(213\) 4.89291 0.335256
\(214\) 0 0
\(215\) −21.9588 0.699875i −1.49758 0.0477310i
\(216\) 0 0
\(217\) 5.51808 0.374592
\(218\) 0 0
\(219\) 1.74581i 0.117971i
\(220\) 0 0
\(221\) −5.00956 + 5.00956i −0.336979 + 0.336979i
\(222\) 0 0
\(223\) −2.56999 2.56999i −0.172099 0.172099i 0.615802 0.787901i \(-0.288832\pi\)
−0.787901 + 0.615802i \(0.788832\pi\)
\(224\) 0 0
\(225\) 4.98985 + 0.318398i 0.332657 + 0.0212265i
\(226\) 0 0
\(227\) 8.34642 8.34642i 0.553972 0.553972i −0.373613 0.927585i \(-0.621881\pi\)
0.927585 + 0.373613i \(0.121881\pi\)
\(228\) 0 0
\(229\) 19.8418 + 19.8418i 1.31118 + 1.31118i 0.920544 + 0.390639i \(0.127746\pi\)
0.390639 + 0.920544i \(0.372254\pi\)
\(230\) 0 0
\(231\) 0.511271i 0.0336391i
\(232\) 0 0
\(233\) −11.9222 11.9222i −0.781048 0.781048i 0.198960 0.980008i \(-0.436244\pi\)
−0.980008 + 0.198960i \(0.936244\pi\)
\(234\) 0 0
\(235\) −13.2103 0.421039i −0.861742 0.0274656i
\(236\) 0 0
\(237\) 2.41919 + 2.41919i 0.157143 + 0.157143i
\(238\) 0 0
\(239\) 21.6273i 1.39895i −0.714656 0.699476i \(-0.753417\pi\)
0.714656 0.699476i \(-0.246583\pi\)
\(240\) 0 0
\(241\) 3.86423i 0.248917i −0.992225 0.124459i \(-0.960281\pi\)
0.992225 0.124459i \(-0.0397194\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 12.7870 + 0.407548i 0.816930 + 0.0260373i
\(246\) 0 0
\(247\) 6.99892i 0.445331i
\(248\) 0 0
\(249\) 1.43981 1.43981i 0.0912443 0.0912443i
\(250\) 0 0
\(251\) 8.33678 + 8.33678i 0.526213 + 0.526213i 0.919441 0.393228i \(-0.128642\pi\)
−0.393228 + 0.919441i \(0.628642\pi\)
\(252\) 0 0
\(253\) 0.173059i 0.0108801i
\(254\) 0 0
\(255\) −8.82784 0.281362i −0.552820 0.0176196i
\(256\) 0 0
\(257\) −10.2879 + 10.2879i −0.641743 + 0.641743i −0.950984 0.309241i \(-0.899925\pi\)
0.309241 + 0.950984i \(0.399925\pi\)
\(258\) 0 0
\(259\) 7.53302 + 7.53302i 0.468079 + 0.468079i
\(260\) 0 0
\(261\) −0.120713 5.38381i −0.00747193 0.333250i
\(262\) 0 0
\(263\) 19.5161i 1.20341i 0.798717 + 0.601707i \(0.205513\pi\)
−0.798717 + 0.601707i \(0.794487\pi\)
\(264\) 0 0
\(265\) −7.02711 + 6.59301i −0.431672 + 0.405005i
\(266\) 0 0
\(267\) −6.19743 6.19743i −0.379276 0.379276i
\(268\) 0 0
\(269\) 17.7621 + 17.7621i 1.08297 + 1.08297i 0.996231 + 0.0867438i \(0.0276461\pi\)
0.0867438 + 0.996231i \(0.472354\pi\)
\(270\) 0 0
\(271\) −2.04007 + 2.04007i −0.123926 + 0.123926i −0.766350 0.642424i \(-0.777929\pi\)
0.642424 + 0.766350i \(0.277929\pi\)
\(272\) 0 0
\(273\) −2.02810 −0.122746
\(274\) 0 0
\(275\) 1.49356 + 1.69716i 0.0900651 + 0.102342i
\(276\) 0 0
\(277\) −5.33891 + 5.33891i −0.320784 + 0.320784i −0.849068 0.528284i \(-0.822836\pi\)
0.528284 + 0.849068i \(0.322836\pi\)
\(278\) 0 0
\(279\) 3.45071 + 3.45071i 0.206588 + 0.206588i
\(280\) 0 0
\(281\) −7.25552 −0.432828 −0.216414 0.976302i \(-0.569436\pi\)
−0.216414 + 0.976302i \(0.569436\pi\)
\(282\) 0 0
\(283\) −18.8306 + 18.8306i −1.11936 + 1.11936i −0.127528 + 0.991835i \(0.540704\pi\)
−0.991835 + 0.127528i \(0.959296\pi\)
\(284\) 0 0
\(285\) 6.36329 5.97019i 0.376929 0.353644i
\(286\) 0 0
\(287\) 8.36303i 0.493654i
\(288\) 0 0
\(289\) −1.39803 −0.0822372
\(290\) 0 0
\(291\) −3.50657 −0.205559
\(292\) 0 0
\(293\) 18.3897i 1.07434i 0.843475 + 0.537169i \(0.180506\pi\)
−0.843475 + 0.537169i \(0.819494\pi\)
\(294\) 0 0
\(295\) −7.62038 0.242878i −0.443675 0.0141409i
\(296\) 0 0
\(297\) −0.319721 + 0.319721i −0.0185521 + 0.0185521i
\(298\) 0 0
\(299\) 0.686487 0.0397006
\(300\) 0 0
\(301\) 7.85588 + 7.85588i 0.452806 + 0.452806i
\(302\) 0 0
\(303\) −0.515252 + 0.515252i −0.0296005 + 0.0296005i
\(304\) 0 0
\(305\) −18.5133 + 17.3697i −1.06007 + 0.994584i
\(306\) 0 0
\(307\) 4.10807 0.234460 0.117230 0.993105i \(-0.462599\pi\)
0.117230 + 0.993105i \(0.462599\pi\)
\(308\) 0 0
\(309\) 4.50575 4.50575i 0.256323 0.256323i
\(310\) 0 0
\(311\) 13.8583 + 13.8583i 0.785830 + 0.785830i 0.980808 0.194977i \(-0.0624633\pi\)
−0.194977 + 0.980808i \(0.562463\pi\)
\(312\) 0 0
\(313\) −5.08029 5.08029i −0.287155 0.287155i 0.548799 0.835954i \(-0.315085\pi\)
−0.835954 + 0.548799i \(0.815085\pi\)
\(314\) 0 0
\(315\) −1.73001 1.84391i −0.0974748 0.103893i
\(316\) 0 0
\(317\) 24.1177i 1.35459i 0.735713 + 0.677293i \(0.236847\pi\)
−0.735713 + 0.677293i \(0.763153\pi\)
\(318\) 0 0
\(319\) 1.68272 1.75991i 0.0942143 0.0985360i
\(320\) 0 0
\(321\) −2.33805 2.33805i −0.130497 0.130497i
\(322\) 0 0
\(323\) −10.8989 + 10.8989i −0.606428 + 0.606428i
\(324\) 0 0
\(325\) −6.73227 + 5.92464i −0.373439 + 0.328640i
\(326\) 0 0
\(327\) 1.65077i 0.0912875i
\(328\) 0 0
\(329\) 4.72604 + 4.72604i 0.260555 + 0.260555i
\(330\) 0 0
\(331\) 6.36032 6.36032i 0.349595 0.349595i −0.510364 0.859959i \(-0.670489\pi\)
0.859959 + 0.510364i \(0.170489\pi\)
\(332\) 0 0
\(333\) 9.42147i 0.516294i
\(334\) 0 0
\(335\) −4.86364 + 4.56319i −0.265729 + 0.249314i
\(336\) 0 0
\(337\) 5.20906i 0.283755i 0.989884 + 0.141878i \(0.0453140\pi\)
−0.989884 + 0.141878i \(0.954686\pi\)
\(338\) 0 0
\(339\) 0.735489i 0.0399463i
\(340\) 0 0
\(341\) 2.20652i 0.119490i
\(342\) 0 0
\(343\) −10.1715 10.1715i −0.549210 0.549210i
\(344\) 0 0
\(345\) 0.585585 + 0.624141i 0.0315268 + 0.0336026i
\(346\) 0 0
\(347\) −20.9481 20.9481i −1.12455 1.12455i −0.991048 0.133507i \(-0.957376\pi\)
−0.133507 0.991048i \(-0.542624\pi\)
\(348\) 0 0
\(349\) 34.4900i 1.84621i 0.384554 + 0.923103i \(0.374355\pi\)
−0.384554 + 0.923103i \(0.625645\pi\)
\(350\) 0 0
\(351\) −1.26826 1.26826i −0.0676950 0.0676950i
\(352\) 0 0
\(353\) −8.64312 + 8.64312i −0.460027 + 0.460027i −0.898664 0.438637i \(-0.855461\pi\)
0.438637 + 0.898664i \(0.355461\pi\)
\(354\) 0 0
\(355\) −10.9353 0.348532i −0.580386 0.0184981i
\(356\) 0 0
\(357\) 3.15820 + 3.15820i 0.167150 + 0.167150i
\(358\) 0 0
\(359\) 0.355513 0.355513i 0.0187633 0.0187633i −0.697663 0.716426i \(-0.745777\pi\)
0.716426 + 0.697663i \(0.245777\pi\)
\(360\) 0 0
\(361\) 3.77308i 0.198583i
\(362\) 0 0
\(363\) 10.7956 0.566620
\(364\) 0 0
\(365\) 0.124358 3.90176i 0.00650917 0.204228i
\(366\) 0 0
\(367\) 15.6397 0.816387 0.408194 0.912895i \(-0.366159\pi\)
0.408194 + 0.912895i \(0.366159\pi\)
\(368\) 0 0
\(369\) 5.22978 5.22978i 0.272251 0.272251i
\(370\) 0 0
\(371\) 4.87267 0.252976
\(372\) 0 0
\(373\) 2.88049 + 2.88049i 0.149146 + 0.149146i 0.777737 0.628590i \(-0.216368\pi\)
−0.628590 + 0.777737i \(0.716368\pi\)
\(374\) 0 0
\(375\) −11.1293 1.06704i −0.574715 0.0551015i
\(376\) 0 0
\(377\) 6.98119 + 6.67500i 0.359550 + 0.343780i
\(378\) 0 0
\(379\) −4.09126 + 4.09126i −0.210154 + 0.210154i −0.804333 0.594179i \(-0.797477\pi\)
0.594179 + 0.804333i \(0.297477\pi\)
\(380\) 0 0
\(381\) 9.87429i 0.505875i
\(382\) 0 0
\(383\) −7.10435 + 7.10435i −0.363015 + 0.363015i −0.864922 0.501907i \(-0.832632\pi\)
0.501907 + 0.864922i \(0.332632\pi\)
\(384\) 0 0
\(385\) 0.0364189 1.14266i 0.00185608 0.0582351i
\(386\) 0 0
\(387\) 9.82527i 0.499447i
\(388\) 0 0
\(389\) −9.43244 9.43244i −0.478244 0.478244i 0.426326 0.904570i \(-0.359808\pi\)
−0.904570 + 0.426326i \(0.859808\pi\)
\(390\) 0 0
\(391\) −1.06901 1.06901i −0.0540622 0.0540622i
\(392\) 0 0
\(393\) 8.11330 + 8.11330i 0.409262 + 0.409262i
\(394\) 0 0
\(395\) −5.23440 5.57905i −0.263371 0.280713i
\(396\) 0 0
\(397\) 24.3576 24.3576i 1.22247 1.22247i 0.255723 0.966750i \(-0.417686\pi\)
0.966750 0.255723i \(-0.0823136\pi\)
\(398\) 0 0
\(399\) −4.41236 −0.220895
\(400\) 0 0
\(401\) 18.5161 0.924648 0.462324 0.886711i \(-0.347016\pi\)
0.462324 + 0.886711i \(0.347016\pi\)
\(402\) 0 0
\(403\) −8.75282 −0.436009
\(404\) 0 0
\(405\) 0.0712321 2.23493i 0.00353955 0.111055i
\(406\) 0 0
\(407\) −3.01224 + 3.01224i −0.149311 + 0.149311i
\(408\) 0 0
\(409\) 10.7794 10.7794i 0.533005 0.533005i −0.388460 0.921465i \(-0.626993\pi\)
0.921465 + 0.388460i \(0.126993\pi\)
\(410\) 0 0
\(411\) 5.15227i 0.254143i
\(412\) 0 0
\(413\) 2.72623 + 2.72623i 0.134149 + 0.134149i
\(414\) 0 0
\(415\) −3.32044 + 3.11532i −0.162994 + 0.152925i
\(416\) 0 0
\(417\) 2.85059 0.139594
\(418\) 0 0
\(419\) −21.3335 −1.04221 −0.521104 0.853493i \(-0.674480\pi\)
−0.521104 + 0.853493i \(0.674480\pi\)
\(420\) 0 0
\(421\) −0.402781 + 0.402781i −0.0196304 + 0.0196304i −0.716854 0.697223i \(-0.754419\pi\)
0.697223 + 0.716854i \(0.254419\pi\)
\(422\) 0 0
\(423\) 5.91081i 0.287393i
\(424\) 0 0
\(425\) 19.7096 + 1.25765i 0.956055 + 0.0610050i
\(426\) 0 0
\(427\) 12.8373 0.621242
\(428\) 0 0
\(429\) 0.810981i 0.0391545i
\(430\) 0 0
\(431\) 15.2992 0.736937 0.368469 0.929640i \(-0.379882\pi\)
0.368469 + 0.929640i \(0.379882\pi\)
\(432\) 0 0
\(433\) 9.89453 0.475501 0.237750 0.971326i \(-0.423590\pi\)
0.237750 + 0.971326i \(0.423590\pi\)
\(434\) 0 0
\(435\) −0.113715 + 12.0411i −0.00545222 + 0.577325i
\(436\) 0 0
\(437\) 1.49353 0.0714452
\(438\) 0 0
\(439\) −13.6250 −0.650286 −0.325143 0.945665i \(-0.605412\pi\)
−0.325143 + 0.945665i \(0.605412\pi\)
\(440\) 0 0
\(441\) 5.72141i 0.272448i
\(442\) 0 0
\(443\) −39.8001 −1.89096 −0.945481 0.325677i \(-0.894408\pi\)
−0.945481 + 0.325677i \(0.894408\pi\)
\(444\) 0 0
\(445\) 13.4094 + 14.2923i 0.635665 + 0.677519i
\(446\) 0 0
\(447\) 9.66746i 0.457255i
\(448\) 0 0
\(449\) −11.0115 + 11.0115i −0.519666 + 0.519666i −0.917470 0.397804i \(-0.869772\pi\)
0.397804 + 0.917470i \(0.369772\pi\)
\(450\) 0 0
\(451\) 3.34414 0.157469
\(452\) 0 0
\(453\) 1.40564 0.0660429
\(454\) 0 0
\(455\) 4.53268 + 0.144466i 0.212495 + 0.00677267i
\(456\) 0 0
\(457\) 11.4146 + 11.4146i 0.533952 + 0.533952i 0.921746 0.387794i \(-0.126763\pi\)
−0.387794 + 0.921746i \(0.626763\pi\)
\(458\) 0 0
\(459\) 3.94993i 0.184367i
\(460\) 0 0
\(461\) 3.25059 3.25059i 0.151395 0.151395i −0.627346 0.778741i \(-0.715859\pi\)
0.778741 + 0.627346i \(0.215859\pi\)
\(462\) 0 0
\(463\) −5.96400 + 5.96400i −0.277171 + 0.277171i −0.831978 0.554808i \(-0.812792\pi\)
0.554808 + 0.831978i \(0.312792\pi\)
\(464\) 0 0
\(465\) −7.46630 7.95790i −0.346241 0.369039i
\(466\) 0 0
\(467\) 20.5942 0.952987 0.476494 0.879178i \(-0.341908\pi\)
0.476494 + 0.879178i \(0.341908\pi\)
\(468\) 0 0
\(469\) 3.37250 0.155727
\(470\) 0 0
\(471\) 23.2145 1.06967
\(472\) 0 0
\(473\) −3.14134 + 3.14134i −0.144439 + 0.144439i
\(474\) 0 0
\(475\) −14.6468 + 12.8897i −0.672041 + 0.591421i
\(476\) 0 0
\(477\) 3.04710 + 3.04710i 0.139517 + 0.139517i
\(478\) 0 0
\(479\) 17.8014 + 17.8014i 0.813367 + 0.813367i 0.985137 0.171770i \(-0.0549485\pi\)
−0.171770 + 0.985137i \(0.554949\pi\)
\(480\) 0 0
\(481\) −11.9489 11.9489i −0.544824 0.544824i
\(482\) 0 0
\(483\) 0.432786i 0.0196924i
\(484\) 0 0
\(485\) 7.83695 + 0.249780i 0.355858 + 0.0113419i
\(486\) 0 0
\(487\) 27.9540 27.9540i 1.26672 1.26672i 0.318942 0.947774i \(-0.396672\pi\)
0.947774 0.318942i \(-0.103328\pi\)
\(488\) 0 0
\(489\) 21.7935i 0.985537i
\(490\) 0 0
\(491\) 13.7674 13.7674i 0.621316 0.621316i −0.324552 0.945868i \(-0.605213\pi\)
0.945868 + 0.324552i \(0.105213\pi\)
\(492\) 0 0
\(493\) −0.476807 21.2657i −0.0214743 0.957759i
\(494\) 0 0
\(495\) 0.737329 0.691780i 0.0331405 0.0310932i
\(496\) 0 0
\(497\) 3.91216 + 3.91216i 0.175485 + 0.175485i
\(498\) 0 0
\(499\) 23.1909 1.03817 0.519083 0.854724i \(-0.326274\pi\)
0.519083 + 0.854724i \(0.326274\pi\)
\(500\) 0 0
\(501\) 9.52550 9.52550i 0.425568 0.425568i
\(502\) 0 0
\(503\) 23.4763 1.04676 0.523378 0.852101i \(-0.324672\pi\)
0.523378 + 0.852101i \(0.324672\pi\)
\(504\) 0 0
\(505\) 1.18826 1.11485i 0.0528767 0.0496102i
\(506\) 0 0
\(507\) −9.78301 −0.434479
\(508\) 0 0
\(509\) 34.0902i 1.51102i 0.655137 + 0.755510i \(0.272611\pi\)
−0.655137 + 0.755510i \(0.727389\pi\)
\(510\) 0 0
\(511\) −1.39588 + 1.39588i −0.0617499 + 0.0617499i
\(512\) 0 0
\(513\) −2.75925 2.75925i −0.121824 0.121824i
\(514\) 0 0
\(515\) −10.3910 + 9.74909i −0.457882 + 0.429596i
\(516\) 0 0
\(517\) −1.88981 + 1.88981i −0.0831136 + 0.0831136i
\(518\) 0 0
\(519\) −5.60109 5.60109i −0.245861 0.245861i
\(520\) 0 0
\(521\) 28.1656i 1.23396i −0.786979 0.616979i \(-0.788356\pi\)
0.786979 0.616979i \(-0.211644\pi\)
\(522\) 0 0
\(523\) −8.34491 8.34491i −0.364897 0.364897i 0.500715 0.865612i \(-0.333070\pi\)
−0.865612 + 0.500715i \(0.833070\pi\)
\(524\) 0 0
\(525\) 3.73510 + 4.24426i 0.163013 + 0.185235i
\(526\) 0 0
\(527\) 13.6301 + 13.6301i 0.593735 + 0.593735i
\(528\) 0 0
\(529\) 22.8535i 0.993631i
\(530\) 0 0
\(531\) 3.40967i 0.147967i
\(532\) 0 0
\(533\) 13.2655i 0.574592i
\(534\) 0 0
\(535\) 5.05885 + 5.39194i 0.218713 + 0.233114i
\(536\) 0 0
\(537\) 12.3759i 0.534060i
\(538\) 0 0
\(539\) 1.82925 1.82925i 0.0787915 0.0787915i
\(540\) 0 0
\(541\) 15.0381 + 15.0381i 0.646539 + 0.646539i 0.952155 0.305616i \(-0.0988622\pi\)
−0.305616 + 0.952155i \(0.598862\pi\)
\(542\) 0 0
\(543\) 10.9683i 0.470693i
\(544\) 0 0
\(545\) 0.117587 3.68935i 0.00503689 0.158034i
\(546\) 0 0
\(547\) −3.03930 + 3.03930i −0.129951 + 0.129951i −0.769091 0.639140i \(-0.779291\pi\)
0.639140 + 0.769091i \(0.279291\pi\)
\(548\) 0 0
\(549\) 8.02776 + 8.02776i 0.342616 + 0.342616i
\(550\) 0 0
\(551\) 15.1884 + 14.5222i 0.647046 + 0.618667i
\(552\) 0 0
\(553\) 3.86857i 0.164508i
\(554\) 0 0
\(555\) 0.671111 21.0564i 0.0284871 0.893793i
\(556\) 0 0
\(557\) −10.2427 10.2427i −0.433998 0.433998i 0.455988 0.889986i \(-0.349286\pi\)
−0.889986 + 0.455988i \(0.849286\pi\)
\(558\) 0 0
\(559\) −12.4610 12.4610i −0.527046 0.527046i
\(560\) 0 0
\(561\) −1.26287 + 1.26287i −0.0533186 + 0.0533186i
\(562\) 0 0
\(563\) −9.62449 −0.405624 −0.202812 0.979218i \(-0.565008\pi\)
−0.202812 + 0.979218i \(0.565008\pi\)
\(564\) 0 0
\(565\) −0.0523904 + 1.64377i −0.00220408 + 0.0691538i
\(566\) 0 0
\(567\) −0.799559 + 0.799559i −0.0335783 + 0.0335783i
\(568\) 0 0
\(569\) 17.2953 + 17.2953i 0.725056 + 0.725056i 0.969631 0.244574i \(-0.0786482\pi\)
−0.244574 + 0.969631i \(0.578648\pi\)
\(570\) 0 0
\(571\) 13.6134 0.569704 0.284852 0.958571i \(-0.408055\pi\)
0.284852 + 0.958571i \(0.408055\pi\)
\(572\) 0 0
\(573\) −12.7044 + 12.7044i −0.530732 + 0.530732i
\(574\) 0 0
\(575\) −1.26428 1.43663i −0.0527243 0.0599115i
\(576\) 0 0
\(577\) 2.34439i 0.0975983i 0.998809 + 0.0487992i \(0.0155394\pi\)
−0.998809 + 0.0487992i \(0.984461\pi\)
\(578\) 0 0
\(579\) 12.2342 0.508434
\(580\) 0 0
\(581\) 2.30243 0.0955208
\(582\) 0 0
\(583\) 1.94844i 0.0806962i
\(584\) 0 0
\(585\) 2.74415 + 2.92483i 0.113456 + 0.120927i
\(586\) 0 0
\(587\) 5.57123 5.57123i 0.229949 0.229949i −0.582722 0.812671i \(-0.698012\pi\)
0.812671 + 0.582722i \(0.198012\pi\)
\(588\) 0 0
\(589\) −19.0427 −0.784642
\(590\) 0 0
\(591\) 13.2932 + 13.2932i 0.546810 + 0.546810i
\(592\) 0 0
\(593\) 12.1678 12.1678i 0.499671 0.499671i −0.411665 0.911335i \(-0.635053\pi\)
0.911335 + 0.411665i \(0.135053\pi\)
\(594\) 0 0
\(595\) −6.83341 7.28334i −0.280142 0.298588i
\(596\) 0 0
\(597\) −21.4311 −0.877117
\(598\) 0 0
\(599\) 31.6977 31.6977i 1.29513 1.29513i 0.363563 0.931570i \(-0.381560\pi\)
0.931570 0.363563i \(-0.118440\pi\)
\(600\) 0 0
\(601\) −32.4464 32.4464i −1.32351 1.32351i −0.910910 0.412605i \(-0.864619\pi\)
−0.412605 0.910910i \(-0.635381\pi\)
\(602\) 0 0
\(603\) 2.10897 + 2.10897i 0.0858840 + 0.0858840i
\(604\) 0 0
\(605\) −24.1273 0.768990i −0.980916 0.0312639i
\(606\) 0 0
\(607\) 17.9409i 0.728199i −0.931360 0.364100i \(-0.881377\pi\)
0.931360 0.364100i \(-0.118623\pi\)
\(608\) 0 0
\(609\) 4.20816 4.40119i 0.170523 0.178345i
\(610\) 0 0
\(611\) −7.49647 7.49647i −0.303275 0.303275i
\(612\) 0 0
\(613\) −13.6298 + 13.6298i −0.550503 + 0.550503i −0.926586 0.376083i \(-0.877271\pi\)
0.376083 + 0.926586i \(0.377271\pi\)
\(614\) 0 0
\(615\) −12.0607 + 11.3157i −0.486336 + 0.456292i
\(616\) 0 0
\(617\) 21.0513i 0.847493i −0.905781 0.423747i \(-0.860715\pi\)
0.905781 0.423747i \(-0.139285\pi\)
\(618\) 0 0
\(619\) 27.5175 + 27.5175i 1.10602 + 1.10602i 0.993668 + 0.112355i \(0.0358393\pi\)
0.112355 + 0.993668i \(0.464161\pi\)
\(620\) 0 0
\(621\) 0.270640 0.270640i 0.0108604 0.0108604i
\(622\) 0 0
\(623\) 9.91041i 0.397052i
\(624\) 0 0
\(625\) 24.7972 + 3.17752i 0.991890 + 0.127101i
\(626\) 0 0
\(627\) 1.76438i 0.0704625i
\(628\) 0 0
\(629\) 37.2142i 1.48383i
\(630\) 0 0
\(631\) 0.557679i 0.0222008i −0.999938 0.0111004i \(-0.996467\pi\)
0.999938 0.0111004i \(-0.00353345\pi\)
\(632\) 0 0
\(633\) −3.60647 3.60647i −0.143344 0.143344i
\(634\) 0 0
\(635\) 0.703366 22.0684i 0.0279122 0.875757i
\(636\) 0 0
\(637\) 7.25626 + 7.25626i 0.287504 + 0.287504i
\(638\) 0 0
\(639\) 4.89291i 0.193560i
\(640\) 0 0
\(641\) −22.2190 22.2190i −0.877598 0.877598i 0.115687 0.993286i \(-0.463093\pi\)
−0.993286 + 0.115687i \(0.963093\pi\)
\(642\) 0 0
\(643\) −2.34708 + 2.34708i −0.0925597 + 0.0925597i −0.751871 0.659311i \(-0.770848\pi\)
0.659311 + 0.751871i \(0.270848\pi\)
\(644\) 0 0
\(645\) 0.699875 21.9588i 0.0275575 0.864628i
\(646\) 0 0
\(647\) −19.1106 19.1106i −0.751315 0.751315i 0.223410 0.974725i \(-0.428281\pi\)
−0.974725 + 0.223410i \(0.928281\pi\)
\(648\) 0 0
\(649\) −1.09014 + 1.09014i −0.0427918 + 0.0427918i
\(650\) 0 0
\(651\) 5.51808i 0.216271i
\(652\) 0 0
\(653\) 6.37219 0.249363 0.124682 0.992197i \(-0.460209\pi\)
0.124682 + 0.992197i \(0.460209\pi\)
\(654\) 0 0
\(655\) −17.5548 18.7106i −0.685921 0.731084i
\(656\) 0 0
\(657\) −1.74581 −0.0681105
\(658\) 0 0
\(659\) 24.5536 24.5536i 0.956473 0.956473i −0.0426185 0.999091i \(-0.513570\pi\)
0.999091 + 0.0426185i \(0.0135700\pi\)
\(660\) 0 0
\(661\) −13.1422 −0.511173 −0.255587 0.966786i \(-0.582269\pi\)
−0.255587 + 0.966786i \(0.582269\pi\)
\(662\) 0 0
\(663\) −5.00956 5.00956i −0.194555 0.194555i
\(664\) 0 0
\(665\) 9.86134 + 0.314302i 0.382406 + 0.0121881i
\(666\) 0 0
\(667\) −1.42441 + 1.48975i −0.0551533 + 0.0576832i
\(668\) 0 0
\(669\) 2.56999 2.56999i 0.0993615 0.0993615i
\(670\) 0 0
\(671\) 5.13328i 0.198168i
\(672\) 0 0
\(673\) 12.2134 12.2134i 0.470793 0.470793i −0.431378 0.902171i \(-0.641973\pi\)
0.902171 + 0.431378i \(0.141973\pi\)
\(674\) 0 0
\(675\) −0.318398 + 4.98985i −0.0122551 + 0.192059i
\(676\) 0 0
\(677\) 9.75729i 0.375003i 0.982264 + 0.187502i \(0.0600390\pi\)
−0.982264 + 0.187502i \(0.939961\pi\)
\(678\) 0 0
\(679\) −2.80371 2.80371i −0.107596 0.107596i
\(680\) 0 0
\(681\) 8.34642 + 8.34642i 0.319836 + 0.319836i
\(682\) 0 0
\(683\) −4.92297 4.92297i −0.188372 0.188372i 0.606620 0.794992i \(-0.292525\pi\)
−0.794992 + 0.606620i \(0.792525\pi\)
\(684\) 0 0
\(685\) −0.367007 + 11.5150i −0.0140226 + 0.439965i
\(686\) 0 0
\(687\) −19.8418 + 19.8418i −0.757012 + 0.757012i
\(688\) 0 0
\(689\) −7.72906 −0.294454
\(690\) 0 0
\(691\) −27.5673 −1.04871 −0.524355 0.851500i \(-0.675693\pi\)
−0.524355 + 0.851500i \(0.675693\pi\)
\(692\) 0 0
\(693\) −0.511271 −0.0194216
\(694\) 0 0
\(695\) −6.37087 0.203053i −0.241661 0.00770224i
\(696\) 0 0
\(697\) 20.6573 20.6573i 0.782450 0.782450i
\(698\) 0 0
\(699\) 11.9222 11.9222i 0.450938 0.450938i
\(700\) 0 0
\(701\) 24.0535i 0.908490i 0.890877 + 0.454245i \(0.150091\pi\)
−0.890877 + 0.454245i \(0.849909\pi\)
\(702\) 0 0
\(703\) −25.9962 25.9962i −0.980465 0.980465i
\(704\) 0 0
\(705\) 0.421039 13.2103i 0.0158572 0.497527i
\(706\) 0 0
\(707\) −0.823949 −0.0309878
\(708\) 0 0
\(709\) −10.5712 −0.397010 −0.198505 0.980100i \(-0.563609\pi\)
−0.198505 + 0.980100i \(0.563609\pi\)
\(710\) 0 0
\(711\) −2.41919 + 2.41919i −0.0907267 + 0.0907267i
\(712\) 0 0
\(713\) 1.86780i 0.0699497i
\(714\) 0 0
\(715\) −0.0577678 + 1.81249i −0.00216039 + 0.0677832i
\(716\) 0 0
\(717\) 21.6273 0.807685
\(718\) 0 0
\(719\) 22.5309i 0.840260i −0.907464 0.420130i \(-0.861984\pi\)
0.907464 0.420130i \(-0.138016\pi\)
\(720\) 0 0
\(721\) 7.20522 0.268336
\(722\) 0 0
\(723\) 3.86423 0.143712
\(724\) 0 0
\(725\) 1.11185 26.9029i 0.0412933 0.999147i
\(726\) 0 0
\(727\) −46.0258 −1.70700 −0.853502 0.521090i \(-0.825525\pi\)
−0.853502 + 0.521090i \(0.825525\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 38.8092i 1.43541i
\(732\) 0 0
\(733\) −14.4383 −0.533290 −0.266645 0.963795i \(-0.585915\pi\)
−0.266645 + 0.963795i \(0.585915\pi\)
\(734\) 0 0
\(735\) −0.407548 + 12.7870i −0.0150326 + 0.471655i
\(736\) 0 0
\(737\) 1.34856i 0.0496750i
\(738\) 0 0
\(739\) −18.0856 + 18.0856i −0.665290 + 0.665290i −0.956622 0.291332i \(-0.905902\pi\)
0.291332 + 0.956622i \(0.405902\pi\)
\(740\) 0 0
\(741\) 6.99892 0.257112
\(742\) 0 0
\(743\) 27.5892 1.01215 0.506074 0.862490i \(-0.331096\pi\)
0.506074 + 0.862490i \(0.331096\pi\)
\(744\) 0 0
\(745\) −0.688633 + 21.6061i −0.0252296 + 0.791588i
\(746\) 0 0
\(747\) 1.43981 + 1.43981i 0.0526799 + 0.0526799i
\(748\) 0 0
\(749\) 3.73882i 0.136614i
\(750\) 0 0
\(751\) −9.86541 + 9.86541i −0.359994 + 0.359994i −0.863811 0.503817i \(-0.831929\pi\)
0.503817 + 0.863811i \(0.331929\pi\)
\(752\) 0 0
\(753\) −8.33678 + 8.33678i −0.303809 + 0.303809i
\(754\) 0 0
\(755\) −3.14152 0.100127i −0.114332 0.00364399i
\(756\) 0 0
\(757\) 41.1678 1.49627 0.748135 0.663547i \(-0.230950\pi\)
0.748135 + 0.663547i \(0.230950\pi\)
\(758\) 0 0
\(759\) 0.173059 0.00628163
\(760\) 0 0
\(761\) −16.6734 −0.604410 −0.302205 0.953243i \(-0.597723\pi\)
−0.302205 + 0.953243i \(0.597723\pi\)
\(762\) 0 0
\(763\) −1.31988 + 1.31988i −0.0477830 + 0.0477830i
\(764\) 0 0
\(765\) 0.281362 8.82784i 0.0101727 0.319171i
\(766\) 0 0
\(767\) −4.32436 4.32436i −0.156144 0.156144i
\(768\) 0 0
\(769\) 14.6466 + 14.6466i 0.528171 + 0.528171i 0.920027 0.391856i \(-0.128167\pi\)
−0.391856 + 0.920027i \(0.628167\pi\)
\(770\) 0 0
\(771\) −10.2879 10.2879i −0.370510 0.370510i
\(772\) 0 0
\(773\) 29.5846i 1.06408i 0.846718 + 0.532041i \(0.178575\pi\)
−0.846718 + 0.532041i \(0.821425\pi\)
\(774\) 0 0
\(775\) 16.1198 + 18.3172i 0.579041 + 0.657974i
\(776\) 0 0
\(777\) −7.53302 + 7.53302i −0.270246 + 0.270246i
\(778\) 0 0
\(779\) 28.8605i 1.03404i
\(780\) 0 0
\(781\) −1.56436 + 1.56436i −0.0559773 + 0.0559773i
\(782\) 0 0
\(783\) 5.38381 0.120713i 0.192402 0.00431392i
\(784\) 0 0
\(785\) −51.8829 1.65362i −1.85178 0.0590201i
\(786\) 0 0
\(787\) −13.3986 13.3986i −0.477609 0.477609i 0.426757 0.904366i \(-0.359656\pi\)
−0.904366 + 0.426757i \(0.859656\pi\)
\(788\) 0 0
\(789\) −19.5161 −0.694792
\(790\) 0 0
\(791\) 0.588066 0.588066i 0.0209092 0.0209092i
\(792\) 0 0
\(793\) −20.3626 −0.723099
\(794\) 0 0
\(795\) −6.59301 7.02711i −0.233830 0.249226i
\(796\) 0 0
\(797\) −36.0176 −1.27581 −0.637905 0.770115i \(-0.720199\pi\)
−0.637905 + 0.770115i \(0.720199\pi\)
\(798\) 0 0
\(799\) 23.3473i 0.825968i
\(800\) 0 0
\(801\) 6.19743 6.19743i 0.218975 0.218975i
\(802\) 0 0
\(803\) −0.558171 0.558171i −0.0196974 0.0196974i
\(804\) 0 0
\(805\) −0.0308282 + 0.967247i −0.00108655 + 0.0340910i
\(806\) 0 0
\(807\) −17.7621 + 17.7621i −0.625256 + 0.625256i
\(808\) 0 0
\(809\) 3.79355 + 3.79355i 0.133374 + 0.133374i 0.770642 0.637268i \(-0.219936\pi\)
−0.637268 + 0.770642i \(0.719936\pi\)
\(810\) 0 0
\(811\) 32.2348i 1.13192i −0.824433 0.565959i \(-0.808506\pi\)
0.824433 0.565959i \(-0.191494\pi\)
\(812\) 0 0
\(813\) −2.04007 2.04007i −0.0715485 0.0715485i
\(814\) 0 0
\(815\) 1.55240 48.7071i 0.0543781 1.70613i
\(816\) 0 0
\(817\) −27.1104 27.1104i −0.948473 0.948473i
\(818\) 0 0
\(819\) 2.02810i 0.0708677i
\(820\) 0 0
\(821\) 29.9060i 1.04373i −0.853029 0.521863i \(-0.825237\pi\)
0.853029 0.521863i \(-0.174763\pi\)
\(822\) 0 0
\(823\) 54.0680i 1.88469i −0.334642 0.942345i \(-0.608616\pi\)
0.334642 0.942345i \(-0.391384\pi\)
\(824\) 0 0
\(825\) −1.69716 + 1.49356i −0.0590874 + 0.0519991i
\(826\) 0 0
\(827\) 10.6012i 0.368641i 0.982866 + 0.184321i \(0.0590085\pi\)
−0.982866 + 0.184321i \(0.940991\pi\)
\(828\) 0 0
\(829\) 8.11064 8.11064i 0.281694 0.281694i −0.552090 0.833784i \(-0.686170\pi\)
0.833784 + 0.552090i \(0.186170\pi\)
\(830\) 0 0
\(831\) −5.33891 5.33891i −0.185205 0.185205i
\(832\) 0 0
\(833\) 22.5992i 0.783016i
\(834\) 0 0
\(835\) −21.9674 + 20.6103i −0.760213 + 0.713250i
\(836\) 0 0
\(837\) −3.45071 + 3.45071i −0.119274 + 0.119274i
\(838\) 0 0
\(839\) 31.1036 + 31.1036i 1.07381 + 1.07381i 0.997049 + 0.0767646i \(0.0244590\pi\)
0.0767646 + 0.997049i \(0.475541\pi\)
\(840\) 0 0
\(841\) −28.9709 + 1.29979i −0.998995 + 0.0448203i
\(842\) 0 0
\(843\) 7.25552i 0.249893i
\(844\) 0 0
\(845\) 21.8644 + 0.696864i 0.752157 + 0.0239728i
\(846\) 0 0
\(847\) 8.63168 + 8.63168i 0.296588 + 0.296588i
\(848\) 0 0
\(849\) −18.8306 18.8306i −0.646264 0.646264i
\(850\) 0 0
\(851\) 2.54983 2.54983i 0.0874071 0.0874071i
\(852\) 0 0
\(853\) −41.3002 −1.41409 −0.707046 0.707167i \(-0.749973\pi\)
−0.707046 + 0.707167i \(0.749973\pi\)
\(854\) 0 0
\(855\) 5.97019 + 6.36329i 0.204176 + 0.217620i
\(856\) 0 0
\(857\) −17.7684 + 17.7684i −0.606956 + 0.606956i −0.942149 0.335193i \(-0.891198\pi\)
0.335193 + 0.942149i \(0.391198\pi\)
\(858\) 0 0
\(859\) 9.41771 + 9.41771i 0.321328 + 0.321328i 0.849277 0.527948i \(-0.177039\pi\)
−0.527948 + 0.849277i \(0.677039\pi\)
\(860\) 0 0
\(861\) 8.36303 0.285011
\(862\) 0 0
\(863\) 29.5635 29.5635i 1.00635 1.00635i 0.00637359 0.999980i \(-0.497971\pi\)
0.999980 0.00637359i \(-0.00202879\pi\)
\(864\) 0 0
\(865\) 12.1191 + 12.9170i 0.412062 + 0.439193i
\(866\) 0 0
\(867\) 1.39803i 0.0474796i
\(868\) 0 0
\(869\) −1.54693 −0.0524760
\(870\) 0 0
\(871\) −5.34947 −0.181260
\(872\) 0 0
\(873\) 3.50657i 0.118679i
\(874\) 0 0
\(875\) −8.04537 9.75169i −0.271983 0.329667i
\(876\) 0 0
\(877\) 23.5657 23.5657i 0.795756 0.795756i −0.186667 0.982423i \(-0.559769\pi\)
0.982423 + 0.186667i \(0.0597686\pi\)
\(878\) 0 0
\(879\) −18.3897 −0.620269
\(880\) 0 0
\(881\) −33.1762 33.1762i −1.11773 1.11773i −0.992073 0.125661i \(-0.959895\pi\)
−0.125661 0.992073i \(-0.540105\pi\)
\(882\) 0 0
\(883\) 4.98092 4.98092i 0.167621 0.167621i −0.618312 0.785933i \(-0.712183\pi\)
0.785933 + 0.618312i \(0.212183\pi\)
\(884\) 0 0
\(885\) 0.242878 7.62038i 0.00816424 0.256156i
\(886\) 0 0
\(887\) −0.354658 −0.0119082 −0.00595412 0.999982i \(-0.501895\pi\)
−0.00595412 + 0.999982i \(0.501895\pi\)
\(888\) 0 0
\(889\) −7.89507 + 7.89507i −0.264792 + 0.264792i
\(890\) 0 0
\(891\) −0.319721 0.319721i −0.0107110 0.0107110i
\(892\) 0 0
\(893\) −16.3094 16.3094i −0.545773 0.545773i
\(894\) 0 0
\(895\) −0.881561 + 27.6593i −0.0294673 + 0.924549i
\(896\) 0 0
\(897\) 0.686487i 0.0229211i
\(898\) 0 0
\(899\) 18.1614 18.9945i 0.605717 0.633502i
\(900\) 0 0
\(901\) 12.0358 + 12.0358i 0.400972 + 0.400972i
\(902\) 0 0
\(903\) −7.85588 + 7.85588i −0.261427 + 0.261427i
\(904\) 0 0
\(905\) 0.781292 24.5133i 0.0259710 0.814851i
\(906\) 0 0
\(907\) 36.9971i 1.22847i −0.789124 0.614234i \(-0.789465\pi\)
0.789124 0.614234i \(-0.210535\pi\)
\(908\) 0 0
\(909\) −0.515252 0.515252i −0.0170898 0.0170898i
\(910\) 0 0
\(911\) 26.4234 26.4234i 0.875446 0.875446i −0.117614 0.993059i \(-0.537524\pi\)
0.993059 + 0.117614i \(0.0375244\pi\)
\(912\) 0 0
\(913\) 0.920675i 0.0304699i
\(914\) 0 0
\(915\) −17.3697 18.5133i −0.574223 0.612032i
\(916\) 0 0
\(917\) 12.9741i 0.428443i
\(918\) 0 0
\(919\) 18.3476i 0.605232i −0.953112 0.302616i \(-0.902140\pi\)
0.953112 0.302616i \(-0.0978600\pi\)
\(920\) 0 0
\(921\) 4.10807i 0.135366i
\(922\) 0 0
\(923\) −6.20550 6.20550i −0.204257 0.204257i
\(924\) 0 0
\(925\) −2.99978 + 47.0118i −0.0986320 + 1.54574i
\(926\) 0 0
\(927\) 4.50575 + 4.50575i 0.147988 + 0.147988i
\(928\) 0 0
\(929\) 54.9661i 1.80338i −0.432384 0.901690i \(-0.642327\pi\)
0.432384 0.901690i \(-0.357673\pi\)
\(930\) 0 0
\(931\) 15.7868 + 15.7868i 0.517392 + 0.517392i
\(932\) 0 0
\(933\) −13.8583 + 13.8583i −0.453699 + 0.453699i
\(934\) 0 0
\(935\) 2.91240 2.73248i 0.0952456 0.0893618i
\(936\) 0 0
\(937\) 21.8749 + 21.8749i 0.714621 + 0.714621i 0.967498 0.252877i \(-0.0813769\pi\)
−0.252877 + 0.967498i \(0.581377\pi\)
\(938\) 0 0
\(939\) 5.08029 5.08029i 0.165789 0.165789i
\(940\) 0 0
\(941\) 44.7740i 1.45959i −0.683666 0.729795i \(-0.739616\pi\)
0.683666 0.729795i \(-0.260384\pi\)
\(942\) 0 0
\(943\) −2.83078 −0.0921828
\(944\) 0 0
\(945\) 1.84391 1.73001i 0.0599825 0.0562771i
\(946\) 0 0
\(947\) −7.60318 −0.247070 −0.123535 0.992340i \(-0.539423\pi\)
−0.123535 + 0.992340i \(0.539423\pi\)
\(948\) 0 0
\(949\) 2.21415 2.21415i 0.0718742 0.0718742i
\(950\) 0 0
\(951\) −24.1177 −0.782071
\(952\) 0 0
\(953\) 12.5972 + 12.5972i 0.408063 + 0.408063i 0.881063 0.473000i \(-0.156829\pi\)
−0.473000 + 0.881063i \(0.656829\pi\)
\(954\) 0 0
\(955\) 29.2984 27.4884i 0.948073 0.889505i
\(956\) 0 0
\(957\) 1.75991 + 1.68272i 0.0568898 + 0.0543947i
\(958\) 0 0
\(959\) 4.11954 4.11954i 0.133027 0.133027i
\(960\) 0 0
\(961\) 7.18526i 0.231783i
\(962\) 0 0
\(963\) 2.33805 2.33805i 0.0753427 0.0753427i
\(964\) 0 0
\(965\) −27.3425 0.871464i −0.880187 0.0280534i
\(966\) 0 0
\(967\) 28.9276i 0.930248i 0.885246 + 0.465124i \(0.153990\pi\)
−0.885246 + 0.465124i \(0.846010\pi\)
\(968\) 0 0
\(969\) −10.8989 10.8989i −0.350122 0.350122i
\(970\) 0 0
\(971\) 23.2900 + 23.2900i 0.747412 + 0.747412i 0.973992 0.226581i \(-0.0727547\pi\)
−0.226581 + 0.973992i \(0.572755\pi\)
\(972\) 0 0
\(973\) 2.27921 + 2.27921i 0.0730681 + 0.0730681i
\(974\) 0 0
\(975\) −5.92464 6.73227i −0.189740 0.215605i
\(976\) 0 0
\(977\) −15.6423 + 15.6423i −0.500440 + 0.500440i −0.911575 0.411134i \(-0.865133\pi\)
0.411134 + 0.911575i \(0.365133\pi\)
\(978\) 0 0
\(979\) 3.96289 0.126654
\(980\) 0 0
\(981\) −1.65077 −0.0527049
\(982\) 0 0
\(983\) 58.8696 1.87765 0.938825 0.344394i \(-0.111916\pi\)
0.938825 + 0.344394i \(0.111916\pi\)
\(984\) 0 0
\(985\) −28.7626 30.6564i −0.916452 0.976794i
\(986\) 0 0
\(987\) −4.72604 + 4.72604i −0.150431 + 0.150431i
\(988\) 0 0
\(989\) 2.65912 2.65912i 0.0845550 0.0845550i
\(990\) 0 0
\(991\) 29.2034i 0.927676i −0.885920 0.463838i \(-0.846472\pi\)
0.885920 0.463838i \(-0.153528\pi\)
\(992\) 0 0
\(993\) 6.36032 + 6.36032i 0.201839 + 0.201839i
\(994\) 0 0
\(995\) 47.8971 + 1.52658i 1.51844 + 0.0483959i
\(996\) 0 0
\(997\) 1.66761 0.0528137 0.0264069 0.999651i \(-0.491593\pi\)
0.0264069 + 0.999651i \(0.491593\pi\)
\(998\) 0 0
\(999\) −9.42147 −0.298082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.2.bc.c.853.7 yes 30
5.2 odd 4 1740.2.bb.c.157.9 yes 30
29.17 odd 4 1740.2.bb.c.133.9 30
145.17 even 4 inner 1740.2.bc.c.1177.7 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.bb.c.133.9 30 29.17 odd 4
1740.2.bb.c.157.9 yes 30 5.2 odd 4
1740.2.bc.c.853.7 yes 30 1.1 even 1 trivial
1740.2.bc.c.1177.7 yes 30 145.17 even 4 inner