Properties

Label 1740.2.bc.c.853.5
Level $1740$
Weight $2$
Character 1740.853
Analytic conductor $13.894$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1740,2,Mod(853,1740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1740.853"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8939699517\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 853.5
Character \(\chi\) \(=\) 1740.853
Dual form 1740.2.bc.c.1177.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.37520 - 1.76319i) q^{5} +(0.501610 - 0.501610i) q^{7} -1.00000 q^{9} +(2.02083 + 2.02083i) q^{11} +(-4.80618 + 4.80618i) q^{13} +(1.76319 - 1.37520i) q^{15} +3.48181 q^{17} +(1.94489 - 1.94489i) q^{19} +(0.501610 + 0.501610i) q^{21} +(-1.96769 - 1.96769i) q^{23} +(-1.21766 + 4.84947i) q^{25} -1.00000i q^{27} +(-1.42694 - 5.19267i) q^{29} +(-3.14819 - 3.14819i) q^{31} +(-2.02083 + 2.02083i) q^{33} +(-1.57424 - 0.194618i) q^{35} -1.37567i q^{37} +(-4.80618 - 4.80618i) q^{39} +(-6.67274 + 6.67274i) q^{41} +6.60459i q^{43} +(1.37520 + 1.76319i) q^{45} +12.7543i q^{47} +6.49678i q^{49} +3.48181i q^{51} +(8.12769 + 8.12769i) q^{53} +(0.784058 - 6.34215i) q^{55} +(1.94489 + 1.94489i) q^{57} +6.18048i q^{59} +(1.97484 + 1.97484i) q^{61} +(-0.501610 + 0.501610i) q^{63} +(15.0837 + 1.86474i) q^{65} +(-7.83460 - 7.83460i) q^{67} +(1.96769 - 1.96769i) q^{69} -1.63417i q^{71} -11.5370 q^{73} +(-4.84947 - 1.21766i) q^{75} +2.02734 q^{77} +(-8.73698 + 8.73698i) q^{79} +1.00000 q^{81} +(8.37675 + 8.37675i) q^{83} +(-4.78818 - 6.13908i) q^{85} +(5.19267 - 1.42694i) q^{87} +(1.03678 - 1.03678i) q^{89} +4.82166i q^{91} +(3.14819 - 3.14819i) q^{93} +(-6.10382 - 0.754594i) q^{95} +15.3954i q^{97} +(-2.02083 - 2.02083i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 30 q^{9} + 4 q^{11} - 6 q^{13} - 6 q^{15} + 8 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{33} - 16 q^{35} - 6 q^{39} - 10 q^{41} - 6 q^{53} + 4 q^{55} + 8 q^{57} + 30 q^{61} - 2 q^{65} + 4 q^{67} + 12 q^{73}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.37520 1.76319i −0.615008 0.788521i
\(6\) 0 0
\(7\) 0.501610 0.501610i 0.189591 0.189591i −0.605928 0.795519i \(-0.707198\pi\)
0.795519 + 0.605928i \(0.207198\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.02083 + 2.02083i 0.609304 + 0.609304i 0.942764 0.333460i \(-0.108216\pi\)
−0.333460 + 0.942764i \(0.608216\pi\)
\(12\) 0 0
\(13\) −4.80618 + 4.80618i −1.33300 + 1.33300i −0.430318 + 0.902677i \(0.641599\pi\)
−0.902677 + 0.430318i \(0.858401\pi\)
\(14\) 0 0
\(15\) 1.76319 1.37520i 0.455253 0.355075i
\(16\) 0 0
\(17\) 3.48181 0.844463 0.422231 0.906488i \(-0.361247\pi\)
0.422231 + 0.906488i \(0.361247\pi\)
\(18\) 0 0
\(19\) 1.94489 1.94489i 0.446189 0.446189i −0.447897 0.894085i \(-0.647827\pi\)
0.894085 + 0.447897i \(0.147827\pi\)
\(20\) 0 0
\(21\) 0.501610 + 0.501610i 0.109460 + 0.109460i
\(22\) 0 0
\(23\) −1.96769 1.96769i −0.410291 0.410291i 0.471549 0.881840i \(-0.343695\pi\)
−0.881840 + 0.471549i \(0.843695\pi\)
\(24\) 0 0
\(25\) −1.21766 + 4.84947i −0.243531 + 0.969893i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.42694 5.19267i −0.264976 0.964255i
\(30\) 0 0
\(31\) −3.14819 3.14819i −0.565432 0.565432i 0.365413 0.930845i \(-0.380928\pi\)
−0.930845 + 0.365413i \(0.880928\pi\)
\(32\) 0 0
\(33\) −2.02083 + 2.02083i −0.351782 + 0.351782i
\(34\) 0 0
\(35\) −1.57424 0.194618i −0.266096 0.0328965i
\(36\) 0 0
\(37\) 1.37567i 0.226159i −0.993586 0.113080i \(-0.963928\pi\)
0.993586 0.113080i \(-0.0360715\pi\)
\(38\) 0 0
\(39\) −4.80618 4.80618i −0.769605 0.769605i
\(40\) 0 0
\(41\) −6.67274 + 6.67274i −1.04211 + 1.04211i −0.0430338 + 0.999074i \(0.513702\pi\)
−0.999074 + 0.0430338i \(0.986298\pi\)
\(42\) 0 0
\(43\) 6.60459i 1.00719i 0.863940 + 0.503595i \(0.167990\pi\)
−0.863940 + 0.503595i \(0.832010\pi\)
\(44\) 0 0
\(45\) 1.37520 + 1.76319i 0.205003 + 0.262840i
\(46\) 0 0
\(47\) 12.7543i 1.86040i 0.367047 + 0.930202i \(0.380369\pi\)
−0.367047 + 0.930202i \(0.619631\pi\)
\(48\) 0 0
\(49\) 6.49678i 0.928111i
\(50\) 0 0
\(51\) 3.48181i 0.487551i
\(52\) 0 0
\(53\) 8.12769 + 8.12769i 1.11642 + 1.11642i 0.992262 + 0.124162i \(0.0396242\pi\)
0.124162 + 0.992262i \(0.460376\pi\)
\(54\) 0 0
\(55\) 0.784058 6.34215i 0.105722 0.855176i
\(56\) 0 0
\(57\) 1.94489 + 1.94489i 0.257607 + 0.257607i
\(58\) 0 0
\(59\) 6.18048i 0.804629i 0.915501 + 0.402315i \(0.131794\pi\)
−0.915501 + 0.402315i \(0.868206\pi\)
\(60\) 0 0
\(61\) 1.97484 + 1.97484i 0.252853 + 0.252853i 0.822139 0.569286i \(-0.192780\pi\)
−0.569286 + 0.822139i \(0.692780\pi\)
\(62\) 0 0
\(63\) −0.501610 + 0.501610i −0.0631969 + 0.0631969i
\(64\) 0 0
\(65\) 15.0837 + 1.86474i 1.87090 + 0.231293i
\(66\) 0 0
\(67\) −7.83460 7.83460i −0.957149 0.957149i 0.0419697 0.999119i \(-0.486637\pi\)
−0.999119 + 0.0419697i \(0.986637\pi\)
\(68\) 0 0
\(69\) 1.96769 1.96769i 0.236882 0.236882i
\(70\) 0 0
\(71\) 1.63417i 0.193940i −0.995287 0.0969702i \(-0.969085\pi\)
0.995287 0.0969702i \(-0.0309152\pi\)
\(72\) 0 0
\(73\) −11.5370 −1.35031 −0.675153 0.737678i \(-0.735922\pi\)
−0.675153 + 0.737678i \(0.735922\pi\)
\(74\) 0 0
\(75\) −4.84947 1.21766i −0.559968 0.140603i
\(76\) 0 0
\(77\) 2.02734 0.231037
\(78\) 0 0
\(79\) −8.73698 + 8.73698i −0.982987 + 0.982987i −0.999858 0.0168711i \(-0.994630\pi\)
0.0168711 + 0.999858i \(0.494630\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.37675 + 8.37675i 0.919467 + 0.919467i 0.996991 0.0775233i \(-0.0247012\pi\)
−0.0775233 + 0.996991i \(0.524701\pi\)
\(84\) 0 0
\(85\) −4.78818 6.13908i −0.519351 0.665877i
\(86\) 0 0
\(87\) 5.19267 1.42694i 0.556713 0.152984i
\(88\) 0 0
\(89\) 1.03678 1.03678i 0.109898 0.109898i −0.650020 0.759918i \(-0.725239\pi\)
0.759918 + 0.650020i \(0.225239\pi\)
\(90\) 0 0
\(91\) 4.82166i 0.505447i
\(92\) 0 0
\(93\) 3.14819 3.14819i 0.326452 0.326452i
\(94\) 0 0
\(95\) −6.10382 0.754594i −0.626238 0.0774197i
\(96\) 0 0
\(97\) 15.3954i 1.56317i 0.623798 + 0.781585i \(0.285589\pi\)
−0.623798 + 0.781585i \(0.714411\pi\)
\(98\) 0 0
\(99\) −2.02083 2.02083i −0.203101 0.203101i
\(100\) 0 0
\(101\) 4.50842 + 4.50842i 0.448604 + 0.448604i 0.894890 0.446286i \(-0.147254\pi\)
−0.446286 + 0.894890i \(0.647254\pi\)
\(102\) 0 0
\(103\) −3.70204 3.70204i −0.364772 0.364772i 0.500794 0.865566i \(-0.333041\pi\)
−0.865566 + 0.500794i \(0.833041\pi\)
\(104\) 0 0
\(105\) 0.194618 1.57424i 0.0189928 0.153631i
\(106\) 0 0
\(107\) −11.4552 + 11.4552i −1.10741 + 1.10741i −0.113923 + 0.993490i \(0.536342\pi\)
−0.993490 + 0.113923i \(0.963658\pi\)
\(108\) 0 0
\(109\) 2.60487 0.249501 0.124751 0.992188i \(-0.460187\pi\)
0.124751 + 0.992188i \(0.460187\pi\)
\(110\) 0 0
\(111\) 1.37567 0.130573
\(112\) 0 0
\(113\) 1.95279 0.183703 0.0918515 0.995773i \(-0.470722\pi\)
0.0918515 + 0.995773i \(0.470722\pi\)
\(114\) 0 0
\(115\) −0.763439 + 6.17536i −0.0711910 + 0.575856i
\(116\) 0 0
\(117\) 4.80618 4.80618i 0.444332 0.444332i
\(118\) 0 0
\(119\) 1.74651 1.74651i 0.160102 0.160102i
\(120\) 0 0
\(121\) 2.83247i 0.257498i
\(122\) 0 0
\(123\) −6.67274 6.67274i −0.601661 0.601661i
\(124\) 0 0
\(125\) 10.2250 4.52203i 0.914555 0.404462i
\(126\) 0 0
\(127\) −16.0596 −1.42506 −0.712531 0.701641i \(-0.752451\pi\)
−0.712531 + 0.701641i \(0.752451\pi\)
\(128\) 0 0
\(129\) −6.60459 −0.581501
\(130\) 0 0
\(131\) 2.64207 2.64207i 0.230839 0.230839i −0.582204 0.813043i \(-0.697809\pi\)
0.813043 + 0.582204i \(0.197809\pi\)
\(132\) 0 0
\(133\) 1.95115i 0.169186i
\(134\) 0 0
\(135\) −1.76319 + 1.37520i −0.151751 + 0.118358i
\(136\) 0 0
\(137\) −9.24939 −0.790229 −0.395114 0.918632i \(-0.629295\pi\)
−0.395114 + 0.918632i \(0.629295\pi\)
\(138\) 0 0
\(139\) 6.62442i 0.561876i −0.959726 0.280938i \(-0.909354\pi\)
0.959726 0.280938i \(-0.0906456\pi\)
\(140\) 0 0
\(141\) −12.7543 −1.07411
\(142\) 0 0
\(143\) −19.4250 −1.62440
\(144\) 0 0
\(145\) −7.19333 + 9.65692i −0.597373 + 0.801963i
\(146\) 0 0
\(147\) −6.49678 −0.535845
\(148\) 0 0
\(149\) −4.71805 −0.386517 −0.193259 0.981148i \(-0.561906\pi\)
−0.193259 + 0.981148i \(0.561906\pi\)
\(150\) 0 0
\(151\) 3.99628i 0.325213i 0.986691 + 0.162606i \(0.0519901\pi\)
−0.986691 + 0.162606i \(0.948010\pi\)
\(152\) 0 0
\(153\) −3.48181 −0.281488
\(154\) 0 0
\(155\) −1.22146 + 9.88024i −0.0981101 + 0.793600i
\(156\) 0 0
\(157\) 23.2502i 1.85557i −0.373115 0.927785i \(-0.621710\pi\)
0.373115 0.927785i \(-0.378290\pi\)
\(158\) 0 0
\(159\) −8.12769 + 8.12769i −0.644568 + 0.644568i
\(160\) 0 0
\(161\) −1.97402 −0.155575
\(162\) 0 0
\(163\) 4.95520 0.388121 0.194061 0.980990i \(-0.437834\pi\)
0.194061 + 0.980990i \(0.437834\pi\)
\(164\) 0 0
\(165\) 6.34215 + 0.784058i 0.493736 + 0.0610389i
\(166\) 0 0
\(167\) 17.0407 + 17.0407i 1.31865 + 1.31865i 0.914845 + 0.403804i \(0.132312\pi\)
0.403804 + 0.914845i \(0.367688\pi\)
\(168\) 0 0
\(169\) 33.1988i 2.55375i
\(170\) 0 0
\(171\) −1.94489 + 1.94489i −0.148730 + 0.148730i
\(172\) 0 0
\(173\) 17.2301 17.2301i 1.30998 1.30998i 0.388548 0.921428i \(-0.372977\pi\)
0.921428 0.388548i \(-0.127023\pi\)
\(174\) 0 0
\(175\) 1.82175 + 3.04333i 0.137711 + 0.230054i
\(176\) 0 0
\(177\) −6.18048 −0.464553
\(178\) 0 0
\(179\) 4.22671 0.315919 0.157959 0.987446i \(-0.449508\pi\)
0.157959 + 0.987446i \(0.449508\pi\)
\(180\) 0 0
\(181\) −0.375464 −0.0279080 −0.0139540 0.999903i \(-0.504442\pi\)
−0.0139540 + 0.999903i \(0.504442\pi\)
\(182\) 0 0
\(183\) −1.97484 + 1.97484i −0.145985 + 0.145985i
\(184\) 0 0
\(185\) −2.42557 + 1.89182i −0.178331 + 0.139090i
\(186\) 0 0
\(187\) 7.03615 + 7.03615i 0.514534 + 0.514534i
\(188\) 0 0
\(189\) −0.501610 0.501610i −0.0364867 0.0364867i
\(190\) 0 0
\(191\) −18.1023 18.1023i −1.30983 1.30983i −0.921532 0.388301i \(-0.873062\pi\)
−0.388301 0.921532i \(-0.626938\pi\)
\(192\) 0 0
\(193\) 13.9942i 1.00733i 0.863900 + 0.503663i \(0.168015\pi\)
−0.863900 + 0.503663i \(0.831985\pi\)
\(194\) 0 0
\(195\) −1.86474 + 15.0837i −0.133537 + 1.08016i
\(196\) 0 0
\(197\) 15.1397 15.1397i 1.07866 1.07866i 0.0820262 0.996630i \(-0.473861\pi\)
0.996630 0.0820262i \(-0.0261391\pi\)
\(198\) 0 0
\(199\) 1.61172i 0.114252i 0.998367 + 0.0571258i \(0.0181936\pi\)
−0.998367 + 0.0571258i \(0.981806\pi\)
\(200\) 0 0
\(201\) 7.83460 7.83460i 0.552610 0.552610i
\(202\) 0 0
\(203\) −3.32046 1.88893i −0.233051 0.132577i
\(204\) 0 0
\(205\) 20.9416 + 2.58894i 1.46263 + 0.180820i
\(206\) 0 0
\(207\) 1.96769 + 1.96769i 0.136764 + 0.136764i
\(208\) 0 0
\(209\) 7.86060 0.543729
\(210\) 0 0
\(211\) 13.1359 13.1359i 0.904309 0.904309i −0.0914961 0.995805i \(-0.529165\pi\)
0.995805 + 0.0914961i \(0.0291649\pi\)
\(212\) 0 0
\(213\) 1.63417 0.111972
\(214\) 0 0
\(215\) 11.6451 9.08262i 0.794190 0.619429i
\(216\) 0 0
\(217\) −3.15833 −0.214401
\(218\) 0 0
\(219\) 11.5370i 0.779600i
\(220\) 0 0
\(221\) −16.7342 + 16.7342i −1.12566 + 1.12566i
\(222\) 0 0
\(223\) 12.9508 + 12.9508i 0.867251 + 0.867251i 0.992167 0.124916i \(-0.0398662\pi\)
−0.124916 + 0.992167i \(0.539866\pi\)
\(224\) 0 0
\(225\) 1.21766 4.84947i 0.0811770 0.323298i
\(226\) 0 0
\(227\) −6.68951 + 6.68951i −0.443998 + 0.443998i −0.893353 0.449355i \(-0.851654\pi\)
0.449355 + 0.893353i \(0.351654\pi\)
\(228\) 0 0
\(229\) −6.44176 6.44176i −0.425684 0.425684i 0.461471 0.887155i \(-0.347322\pi\)
−0.887155 + 0.461471i \(0.847322\pi\)
\(230\) 0 0
\(231\) 2.02734i 0.133389i
\(232\) 0 0
\(233\) 11.5455 + 11.5455i 0.756369 + 0.756369i 0.975660 0.219290i \(-0.0703742\pi\)
−0.219290 + 0.975660i \(0.570374\pi\)
\(234\) 0 0
\(235\) 22.4882 17.5397i 1.46697 1.14416i
\(236\) 0 0
\(237\) −8.73698 8.73698i −0.567528 0.567528i
\(238\) 0 0
\(239\) 13.9588i 0.902920i −0.892291 0.451460i \(-0.850903\pi\)
0.892291 0.451460i \(-0.149097\pi\)
\(240\) 0 0
\(241\) 7.52970i 0.485030i −0.970148 0.242515i \(-0.922028\pi\)
0.970148 0.242515i \(-0.0779724\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 11.4550 8.93436i 0.731835 0.570795i
\(246\) 0 0
\(247\) 18.6950i 1.18953i
\(248\) 0 0
\(249\) −8.37675 + 8.37675i −0.530855 + 0.530855i
\(250\) 0 0
\(251\) 6.20891 + 6.20891i 0.391903 + 0.391903i 0.875365 0.483462i \(-0.160621\pi\)
−0.483462 + 0.875365i \(0.660621\pi\)
\(252\) 0 0
\(253\) 7.95273i 0.499984i
\(254\) 0 0
\(255\) 6.13908 4.78818i 0.384444 0.299847i
\(256\) 0 0
\(257\) −10.2480 + 10.2480i −0.639254 + 0.639254i −0.950371 0.311118i \(-0.899297\pi\)
0.311118 + 0.950371i \(0.399297\pi\)
\(258\) 0 0
\(259\) −0.690051 0.690051i −0.0428777 0.0428777i
\(260\) 0 0
\(261\) 1.42694 + 5.19267i 0.0883253 + 0.321418i
\(262\) 0 0
\(263\) 9.97094i 0.614835i −0.951575 0.307417i \(-0.900535\pi\)
0.951575 0.307417i \(-0.0994647\pi\)
\(264\) 0 0
\(265\) 3.15344 25.5078i 0.193715 1.56693i
\(266\) 0 0
\(267\) 1.03678 + 1.03678i 0.0634496 + 0.0634496i
\(268\) 0 0
\(269\) 9.63229 + 9.63229i 0.587291 + 0.587291i 0.936897 0.349606i \(-0.113684\pi\)
−0.349606 + 0.936897i \(0.613684\pi\)
\(270\) 0 0
\(271\) −15.5653 + 15.5653i −0.945525 + 0.945525i −0.998591 0.0530663i \(-0.983101\pi\)
0.0530663 + 0.998591i \(0.483101\pi\)
\(272\) 0 0
\(273\) −4.82166 −0.291820
\(274\) 0 0
\(275\) −12.2606 + 7.33928i −0.739344 + 0.442575i
\(276\) 0 0
\(277\) −16.7440 + 16.7440i −1.00605 + 1.00605i −0.00606968 + 0.999982i \(0.501932\pi\)
−0.999982 + 0.00606968i \(0.998068\pi\)
\(278\) 0 0
\(279\) 3.14819 + 3.14819i 0.188477 + 0.188477i
\(280\) 0 0
\(281\) 24.0520 1.43482 0.717411 0.696650i \(-0.245327\pi\)
0.717411 + 0.696650i \(0.245327\pi\)
\(282\) 0 0
\(283\) −9.33420 + 9.33420i −0.554860 + 0.554860i −0.927840 0.372979i \(-0.878336\pi\)
0.372979 + 0.927840i \(0.378336\pi\)
\(284\) 0 0
\(285\) 0.754594 6.10382i 0.0446983 0.361559i
\(286\) 0 0
\(287\) 6.69423i 0.395148i
\(288\) 0 0
\(289\) −4.87701 −0.286883
\(290\) 0 0
\(291\) −15.3954 −0.902497
\(292\) 0 0
\(293\) 3.20784i 0.187404i −0.995600 0.0937020i \(-0.970130\pi\)
0.995600 0.0937020i \(-0.0298701\pi\)
\(294\) 0 0
\(295\) 10.8973 8.49938i 0.634467 0.494853i
\(296\) 0 0
\(297\) 2.02083 2.02083i 0.117261 0.117261i
\(298\) 0 0
\(299\) 18.9141 1.09383
\(300\) 0 0
\(301\) 3.31292 + 3.31292i 0.190954 + 0.190954i
\(302\) 0 0
\(303\) −4.50842 + 4.50842i −0.259002 + 0.259002i
\(304\) 0 0
\(305\) 0.766216 6.19782i 0.0438734 0.354886i
\(306\) 0 0
\(307\) 20.3426 1.16102 0.580508 0.814254i \(-0.302854\pi\)
0.580508 + 0.814254i \(0.302854\pi\)
\(308\) 0 0
\(309\) 3.70204 3.70204i 0.210601 0.210601i
\(310\) 0 0
\(311\) −15.1136 15.1136i −0.857013 0.857013i 0.133972 0.990985i \(-0.457227\pi\)
−0.990985 + 0.133972i \(0.957227\pi\)
\(312\) 0 0
\(313\) 12.6402 + 12.6402i 0.714465 + 0.714465i 0.967466 0.253001i \(-0.0814177\pi\)
−0.253001 + 0.967466i \(0.581418\pi\)
\(314\) 0 0
\(315\) 1.57424 + 0.194618i 0.0886987 + 0.0109655i
\(316\) 0 0
\(317\) 12.2398i 0.687458i 0.939069 + 0.343729i \(0.111690\pi\)
−0.939069 + 0.343729i \(0.888310\pi\)
\(318\) 0 0
\(319\) 7.60991 13.3771i 0.426073 0.748975i
\(320\) 0 0
\(321\) −11.4552 11.4552i −0.639365 0.639365i
\(322\) 0 0
\(323\) 6.77174 6.77174i 0.376790 0.376790i
\(324\) 0 0
\(325\) −17.4551 29.1597i −0.968237 1.61749i
\(326\) 0 0
\(327\) 2.60487i 0.144050i
\(328\) 0 0
\(329\) 6.39768 + 6.39768i 0.352715 + 0.352715i
\(330\) 0 0
\(331\) −7.42276 + 7.42276i −0.407992 + 0.407992i −0.881038 0.473046i \(-0.843154\pi\)
0.473046 + 0.881038i \(0.343154\pi\)
\(332\) 0 0
\(333\) 1.37567i 0.0753864i
\(334\) 0 0
\(335\) −3.03973 + 24.5880i −0.166078 + 1.34339i
\(336\) 0 0
\(337\) 16.8587i 0.918351i −0.888346 0.459176i \(-0.848145\pi\)
0.888346 0.459176i \(-0.151855\pi\)
\(338\) 0 0
\(339\) 1.95279i 0.106061i
\(340\) 0 0
\(341\) 12.7239i 0.689040i
\(342\) 0 0
\(343\) 6.77011 + 6.77011i 0.365552 + 0.365552i
\(344\) 0 0
\(345\) −6.17536 0.763439i −0.332470 0.0411022i
\(346\) 0 0
\(347\) 7.93765 + 7.93765i 0.426115 + 0.426115i 0.887303 0.461187i \(-0.152576\pi\)
−0.461187 + 0.887303i \(0.652576\pi\)
\(348\) 0 0
\(349\) 33.7672i 1.80752i −0.428041 0.903759i \(-0.640796\pi\)
0.428041 0.903759i \(-0.359204\pi\)
\(350\) 0 0
\(351\) 4.80618 + 4.80618i 0.256535 + 0.256535i
\(352\) 0 0
\(353\) 6.26823 6.26823i 0.333624 0.333624i −0.520337 0.853961i \(-0.674194\pi\)
0.853961 + 0.520337i \(0.174194\pi\)
\(354\) 0 0
\(355\) −2.88135 + 2.24731i −0.152926 + 0.119275i
\(356\) 0 0
\(357\) 1.74651 + 1.74651i 0.0924351 + 0.0924351i
\(358\) 0 0
\(359\) 8.79222 8.79222i 0.464036 0.464036i −0.435940 0.899976i \(-0.643584\pi\)
0.899976 + 0.435940i \(0.143584\pi\)
\(360\) 0 0
\(361\) 11.4348i 0.601832i
\(362\) 0 0
\(363\) 2.83247 0.148666
\(364\) 0 0
\(365\) 15.8657 + 20.3419i 0.830449 + 1.06474i
\(366\) 0 0
\(367\) −0.0871643 −0.00454994 −0.00227497 0.999997i \(-0.500724\pi\)
−0.00227497 + 0.999997i \(0.500724\pi\)
\(368\) 0 0
\(369\) 6.67274 6.67274i 0.347369 0.347369i
\(370\) 0 0
\(371\) 8.15386 0.423327
\(372\) 0 0
\(373\) −13.3123 13.3123i −0.689284 0.689284i 0.272790 0.962074i \(-0.412054\pi\)
−0.962074 + 0.272790i \(0.912054\pi\)
\(374\) 0 0
\(375\) 4.52203 + 10.2250i 0.233516 + 0.528018i
\(376\) 0 0
\(377\) 31.8151 + 18.0988i 1.63856 + 0.932136i
\(378\) 0 0
\(379\) −6.06804 + 6.06804i −0.311694 + 0.311694i −0.845566 0.533871i \(-0.820737\pi\)
0.533871 + 0.845566i \(0.320737\pi\)
\(380\) 0 0
\(381\) 16.0596i 0.822760i
\(382\) 0 0
\(383\) 10.3792 10.3792i 0.530354 0.530354i −0.390324 0.920678i \(-0.627637\pi\)
0.920678 + 0.390324i \(0.127637\pi\)
\(384\) 0 0
\(385\) −2.78799 3.57458i −0.142089 0.182177i
\(386\) 0 0
\(387\) 6.60459i 0.335730i
\(388\) 0 0
\(389\) −3.47374 3.47374i −0.176126 0.176126i 0.613539 0.789664i \(-0.289745\pi\)
−0.789664 + 0.613539i \(0.789745\pi\)
\(390\) 0 0
\(391\) −6.85111 6.85111i −0.346476 0.346476i
\(392\) 0 0
\(393\) 2.64207 + 2.64207i 0.133275 + 0.133275i
\(394\) 0 0
\(395\) 27.4200 + 3.38984i 1.37965 + 0.170561i
\(396\) 0 0
\(397\) −20.7555 + 20.7555i −1.04169 + 1.04169i −0.0425988 + 0.999092i \(0.513564\pi\)
−0.999092 + 0.0425988i \(0.986436\pi\)
\(398\) 0 0
\(399\) 1.95115 0.0976798
\(400\) 0 0
\(401\) 9.97648 0.498202 0.249101 0.968478i \(-0.419865\pi\)
0.249101 + 0.968478i \(0.419865\pi\)
\(402\) 0 0
\(403\) 30.2616 1.50744
\(404\) 0 0
\(405\) −1.37520 1.76319i −0.0683342 0.0876135i
\(406\) 0 0
\(407\) 2.78000 2.78000i 0.137800 0.137800i
\(408\) 0 0
\(409\) 21.9619 21.9619i 1.08595 1.08595i 0.0900067 0.995941i \(-0.471311\pi\)
0.995941 0.0900067i \(-0.0286889\pi\)
\(410\) 0 0
\(411\) 9.24939i 0.456239i
\(412\) 0 0
\(413\) 3.10019 + 3.10019i 0.152550 + 0.152550i
\(414\) 0 0
\(415\) 3.25008 26.2895i 0.159540 1.29050i
\(416\) 0 0
\(417\) 6.62442 0.324399
\(418\) 0 0
\(419\) −3.40385 −0.166289 −0.0831444 0.996538i \(-0.526496\pi\)
−0.0831444 + 0.996538i \(0.526496\pi\)
\(420\) 0 0
\(421\) 3.95762 3.95762i 0.192883 0.192883i −0.604058 0.796940i \(-0.706450\pi\)
0.796940 + 0.604058i \(0.206450\pi\)
\(422\) 0 0
\(423\) 12.7543i 0.620135i
\(424\) 0 0
\(425\) −4.23964 + 16.8849i −0.205653 + 0.819038i
\(426\) 0 0
\(427\) 1.98120 0.0958771
\(428\) 0 0
\(429\) 19.4250i 0.937847i
\(430\) 0 0
\(431\) −36.1403 −1.74082 −0.870408 0.492330i \(-0.836145\pi\)
−0.870408 + 0.492330i \(0.836145\pi\)
\(432\) 0 0
\(433\) 32.8987 1.58101 0.790505 0.612456i \(-0.209818\pi\)
0.790505 + 0.612456i \(0.209818\pi\)
\(434\) 0 0
\(435\) −9.65692 7.19333i −0.463014 0.344894i
\(436\) 0 0
\(437\) −7.65387 −0.366134
\(438\) 0 0
\(439\) −37.2286 −1.77682 −0.888412 0.459047i \(-0.848191\pi\)
−0.888412 + 0.459047i \(0.848191\pi\)
\(440\) 0 0
\(441\) 6.49678i 0.309370i
\(442\) 0 0
\(443\) −5.36973 −0.255123 −0.127562 0.991831i \(-0.540715\pi\)
−0.127562 + 0.991831i \(0.540715\pi\)
\(444\) 0 0
\(445\) −3.25380 0.402256i −0.154245 0.0190688i
\(446\) 0 0
\(447\) 4.71805i 0.223156i
\(448\) 0 0
\(449\) 2.19153 2.19153i 0.103425 0.103425i −0.653501 0.756926i \(-0.726700\pi\)
0.756926 + 0.653501i \(0.226700\pi\)
\(450\) 0 0
\(451\) −26.9690 −1.26992
\(452\) 0 0
\(453\) −3.99628 −0.187762
\(454\) 0 0
\(455\) 8.50148 6.63074i 0.398556 0.310854i
\(456\) 0 0
\(457\) −6.08404 6.08404i −0.284599 0.284599i 0.550341 0.834940i \(-0.314498\pi\)
−0.834940 + 0.550341i \(0.814498\pi\)
\(458\) 0 0
\(459\) 3.48181i 0.162517i
\(460\) 0 0
\(461\) 5.42871 5.42871i 0.252840 0.252840i −0.569294 0.822134i \(-0.692783\pi\)
0.822134 + 0.569294i \(0.192783\pi\)
\(462\) 0 0
\(463\) 7.05481 7.05481i 0.327865 0.327865i −0.523909 0.851774i \(-0.675527\pi\)
0.851774 + 0.523909i \(0.175527\pi\)
\(464\) 0 0
\(465\) −9.88024 1.22146i −0.458185 0.0566439i
\(466\) 0 0
\(467\) −15.6186 −0.722744 −0.361372 0.932422i \(-0.617691\pi\)
−0.361372 + 0.932422i \(0.617691\pi\)
\(468\) 0 0
\(469\) −7.85983 −0.362933
\(470\) 0 0
\(471\) 23.2502 1.07131
\(472\) 0 0
\(473\) −13.3468 + 13.3468i −0.613685 + 0.613685i
\(474\) 0 0
\(475\) 7.06347 + 11.7999i 0.324094 + 0.541416i
\(476\) 0 0
\(477\) −8.12769 8.12769i −0.372141 0.372141i
\(478\) 0 0
\(479\) 3.01260 + 3.01260i 0.137649 + 0.137649i 0.772574 0.634925i \(-0.218969\pi\)
−0.634925 + 0.772574i \(0.718969\pi\)
\(480\) 0 0
\(481\) 6.61173 + 6.61173i 0.301469 + 0.301469i
\(482\) 0 0
\(483\) 1.97402i 0.0898211i
\(484\) 0 0
\(485\) 27.1451 21.1718i 1.23259 0.961362i
\(486\) 0 0
\(487\) −29.3293 + 29.3293i −1.32904 + 1.32904i −0.422830 + 0.906209i \(0.638963\pi\)
−0.906209 + 0.422830i \(0.861037\pi\)
\(488\) 0 0
\(489\) 4.95520i 0.224082i
\(490\) 0 0
\(491\) −24.7019 + 24.7019i −1.11478 + 1.11478i −0.122285 + 0.992495i \(0.539022\pi\)
−0.992495 + 0.122285i \(0.960978\pi\)
\(492\) 0 0
\(493\) −4.96833 18.0799i −0.223762 0.814277i
\(494\) 0 0
\(495\) −0.784058 + 6.34215i −0.0352408 + 0.285059i
\(496\) 0 0
\(497\) −0.819716 0.819716i −0.0367693 0.0367693i
\(498\) 0 0
\(499\) 6.46371 0.289355 0.144678 0.989479i \(-0.453785\pi\)
0.144678 + 0.989479i \(0.453785\pi\)
\(500\) 0 0
\(501\) −17.0407 + 17.0407i −0.761323 + 0.761323i
\(502\) 0 0
\(503\) 18.4269 0.821613 0.410806 0.911723i \(-0.365247\pi\)
0.410806 + 0.911723i \(0.365247\pi\)
\(504\) 0 0
\(505\) 1.74921 14.1492i 0.0778389 0.629629i
\(506\) 0 0
\(507\) 33.1988 1.47441
\(508\) 0 0
\(509\) 34.8282i 1.54373i −0.635784 0.771867i \(-0.719323\pi\)
0.635784 0.771867i \(-0.280677\pi\)
\(510\) 0 0
\(511\) −5.78708 + 5.78708i −0.256005 + 0.256005i
\(512\) 0 0
\(513\) −1.94489 1.94489i −0.0858690 0.0858690i
\(514\) 0 0
\(515\) −1.43634 + 11.6184i −0.0632929 + 0.511969i
\(516\) 0 0
\(517\) −25.7743 + 25.7743i −1.13355 + 1.13355i
\(518\) 0 0
\(519\) 17.2301 + 17.2301i 0.756315 + 0.756315i
\(520\) 0 0
\(521\) 1.47444i 0.0645963i 0.999478 + 0.0322982i \(0.0102826\pi\)
−0.999478 + 0.0322982i \(0.989717\pi\)
\(522\) 0 0
\(523\) −5.29825 5.29825i −0.231676 0.231676i 0.581716 0.813392i \(-0.302382\pi\)
−0.813392 + 0.581716i \(0.802382\pi\)
\(524\) 0 0
\(525\) −3.04333 + 1.82175i −0.132822 + 0.0795077i
\(526\) 0 0
\(527\) −10.9614 10.9614i −0.477486 0.477486i
\(528\) 0 0
\(529\) 15.2564i 0.663322i
\(530\) 0 0
\(531\) 6.18048i 0.268210i
\(532\) 0 0
\(533\) 64.1408i 2.77825i
\(534\) 0 0
\(535\) 35.9507 + 4.44447i 1.55429 + 0.192151i
\(536\) 0 0
\(537\) 4.22671i 0.182396i
\(538\) 0 0
\(539\) −13.1289 + 13.1289i −0.565501 + 0.565501i
\(540\) 0 0
\(541\) 18.7558 + 18.7558i 0.806376 + 0.806376i 0.984083 0.177708i \(-0.0568681\pi\)
−0.177708 + 0.984083i \(0.556868\pi\)
\(542\) 0 0
\(543\) 0.375464i 0.0161127i
\(544\) 0 0
\(545\) −3.58222 4.59287i −0.153445 0.196737i
\(546\) 0 0
\(547\) 3.07804 3.07804i 0.131607 0.131607i −0.638235 0.769842i \(-0.720335\pi\)
0.769842 + 0.638235i \(0.220335\pi\)
\(548\) 0 0
\(549\) −1.97484 1.97484i −0.0842843 0.0842843i
\(550\) 0 0
\(551\) −12.8744 7.32394i −0.548469 0.312010i
\(552\) 0 0
\(553\) 8.76510i 0.372730i
\(554\) 0 0
\(555\) −1.89182 2.42557i −0.0803034 0.102960i
\(556\) 0 0
\(557\) −12.6910 12.6910i −0.537737 0.537737i 0.385127 0.922864i \(-0.374158\pi\)
−0.922864 + 0.385127i \(0.874158\pi\)
\(558\) 0 0
\(559\) −31.7428 31.7428i −1.34258 1.34258i
\(560\) 0 0
\(561\) −7.03615 + 7.03615i −0.297067 + 0.297067i
\(562\) 0 0
\(563\) −5.96529 −0.251407 −0.125704 0.992068i \(-0.540119\pi\)
−0.125704 + 0.992068i \(0.540119\pi\)
\(564\) 0 0
\(565\) −2.68547 3.44313i −0.112979 0.144854i
\(566\) 0 0
\(567\) 0.501610 0.501610i 0.0210656 0.0210656i
\(568\) 0 0
\(569\) −6.08615 6.08615i −0.255145 0.255145i 0.567931 0.823076i \(-0.307744\pi\)
−0.823076 + 0.567931i \(0.807744\pi\)
\(570\) 0 0
\(571\) −39.6194 −1.65802 −0.829011 0.559233i \(-0.811096\pi\)
−0.829011 + 0.559233i \(0.811096\pi\)
\(572\) 0 0
\(573\) 18.1023 18.1023i 0.756233 0.756233i
\(574\) 0 0
\(575\) 11.9382 7.14627i 0.497857 0.298020i
\(576\) 0 0
\(577\) 6.06967i 0.252684i 0.991987 + 0.126342i \(0.0403236\pi\)
−0.991987 + 0.126342i \(0.959676\pi\)
\(578\) 0 0
\(579\) −13.9942 −0.581580
\(580\) 0 0
\(581\) 8.40371 0.348645
\(582\) 0 0
\(583\) 32.8494i 1.36048i
\(584\) 0 0
\(585\) −15.0837 1.86474i −0.623632 0.0770975i
\(586\) 0 0
\(587\) 32.0504 32.0504i 1.32286 1.32286i 0.411414 0.911448i \(-0.365035\pi\)
0.911448 0.411414i \(-0.134965\pi\)
\(588\) 0 0
\(589\) −12.2458 −0.504579
\(590\) 0 0
\(591\) 15.1397 + 15.1397i 0.622763 + 0.622763i
\(592\) 0 0
\(593\) −5.65238 + 5.65238i −0.232115 + 0.232115i −0.813575 0.581460i \(-0.802482\pi\)
0.581460 + 0.813575i \(0.302482\pi\)
\(594\) 0 0
\(595\) −5.48122 0.677624i −0.224708 0.0277799i
\(596\) 0 0
\(597\) −1.61172 −0.0659632
\(598\) 0 0
\(599\) 17.0284 17.0284i 0.695763 0.695763i −0.267731 0.963494i \(-0.586274\pi\)
0.963494 + 0.267731i \(0.0862738\pi\)
\(600\) 0 0
\(601\) 31.7974 + 31.7974i 1.29704 + 1.29704i 0.930336 + 0.366707i \(0.119515\pi\)
0.366707 + 0.930336i \(0.380485\pi\)
\(602\) 0 0
\(603\) 7.83460 + 7.83460i 0.319050 + 0.319050i
\(604\) 0 0
\(605\) −4.99418 + 3.89521i −0.203042 + 0.158363i
\(606\) 0 0
\(607\) 17.6894i 0.717993i 0.933339 + 0.358996i \(0.116881\pi\)
−0.933339 + 0.358996i \(0.883119\pi\)
\(608\) 0 0
\(609\) 1.88893 3.32046i 0.0765432 0.134552i
\(610\) 0 0
\(611\) −61.2995 61.2995i −2.47991 2.47991i
\(612\) 0 0
\(613\) 29.2411 29.2411i 1.18104 1.18104i 0.201562 0.979476i \(-0.435398\pi\)
0.979476 0.201562i \(-0.0646017\pi\)
\(614\) 0 0
\(615\) −2.58894 + 20.9416i −0.104396 + 0.844449i
\(616\) 0 0
\(617\) 33.9743i 1.36775i −0.729597 0.683877i \(-0.760292\pi\)
0.729597 0.683877i \(-0.239708\pi\)
\(618\) 0 0
\(619\) −7.50471 7.50471i −0.301640 0.301640i 0.540015 0.841655i \(-0.318418\pi\)
−0.841655 + 0.540015i \(0.818418\pi\)
\(620\) 0 0
\(621\) −1.96769 + 1.96769i −0.0789606 + 0.0789606i
\(622\) 0 0
\(623\) 1.04011i 0.0416713i
\(624\) 0 0
\(625\) −22.0346 11.8100i −0.881385 0.472398i
\(626\) 0 0
\(627\) 7.86060i 0.313922i
\(628\) 0 0
\(629\) 4.78983i 0.190983i
\(630\) 0 0
\(631\) 28.8048i 1.14670i −0.819310 0.573351i \(-0.805643\pi\)
0.819310 0.573351i \(-0.194357\pi\)
\(632\) 0 0
\(633\) 13.1359 + 13.1359i 0.522103 + 0.522103i
\(634\) 0 0
\(635\) 22.0852 + 28.3161i 0.876424 + 1.12369i
\(636\) 0 0
\(637\) −31.2247 31.2247i −1.23717 1.23717i
\(638\) 0 0
\(639\) 1.63417i 0.0646468i
\(640\) 0 0
\(641\) 24.2453 + 24.2453i 0.957630 + 0.957630i 0.999138 0.0415083i \(-0.0132163\pi\)
−0.0415083 + 0.999138i \(0.513216\pi\)
\(642\) 0 0
\(643\) 1.93849 1.93849i 0.0764467 0.0764467i −0.667850 0.744296i \(-0.732785\pi\)
0.744296 + 0.667850i \(0.232785\pi\)
\(644\) 0 0
\(645\) 9.08262 + 11.6451i 0.357628 + 0.458526i
\(646\) 0 0
\(647\) 5.51236 + 5.51236i 0.216713 + 0.216713i 0.807112 0.590399i \(-0.201029\pi\)
−0.590399 + 0.807112i \(0.701029\pi\)
\(648\) 0 0
\(649\) −12.4897 + 12.4897i −0.490264 + 0.490264i
\(650\) 0 0
\(651\) 3.15833i 0.123785i
\(652\) 0 0
\(653\) 24.2573 0.949261 0.474630 0.880185i \(-0.342582\pi\)
0.474630 + 0.880185i \(0.342582\pi\)
\(654\) 0 0
\(655\) −8.29185 1.02509i −0.323989 0.0400537i
\(656\) 0 0
\(657\) 11.5370 0.450102
\(658\) 0 0
\(659\) 10.2321 10.2321i 0.398587 0.398587i −0.479147 0.877735i \(-0.659054\pi\)
0.877735 + 0.479147i \(0.159054\pi\)
\(660\) 0 0
\(661\) 24.0210 0.934310 0.467155 0.884176i \(-0.345279\pi\)
0.467155 + 0.884176i \(0.345279\pi\)
\(662\) 0 0
\(663\) −16.7342 16.7342i −0.649903 0.649903i
\(664\) 0 0
\(665\) −3.44025 + 2.68322i −0.133407 + 0.104051i
\(666\) 0 0
\(667\) −7.40979 + 13.0253i −0.286908 + 0.504343i
\(668\) 0 0
\(669\) −12.9508 + 12.9508i −0.500708 + 0.500708i
\(670\) 0 0
\(671\) 7.98166i 0.308128i
\(672\) 0 0
\(673\) −9.75214 + 9.75214i −0.375917 + 0.375917i −0.869627 0.493710i \(-0.835641\pi\)
0.493710 + 0.869627i \(0.335641\pi\)
\(674\) 0 0
\(675\) 4.84947 + 1.21766i 0.186656 + 0.0468676i
\(676\) 0 0
\(677\) 14.9141i 0.573196i 0.958051 + 0.286598i \(0.0925244\pi\)
−0.958051 + 0.286598i \(0.907476\pi\)
\(678\) 0 0
\(679\) 7.72251 + 7.72251i 0.296363 + 0.296363i
\(680\) 0 0
\(681\) −6.68951 6.68951i −0.256342 0.256342i
\(682\) 0 0
\(683\) −0.412993 0.412993i −0.0158027 0.0158027i 0.699161 0.714964i \(-0.253557\pi\)
−0.714964 + 0.699161i \(0.753557\pi\)
\(684\) 0 0
\(685\) 12.7198 + 16.3084i 0.485997 + 0.623112i
\(686\) 0 0
\(687\) 6.44176 6.44176i 0.245769 0.245769i
\(688\) 0 0
\(689\) −78.1263 −2.97638
\(690\) 0 0
\(691\) 46.2229 1.75840 0.879200 0.476453i \(-0.158078\pi\)
0.879200 + 0.476453i \(0.158078\pi\)
\(692\) 0 0
\(693\) −2.02734 −0.0770122
\(694\) 0 0
\(695\) −11.6801 + 9.10990i −0.443051 + 0.345558i
\(696\) 0 0
\(697\) −23.2332 + 23.2332i −0.880021 + 0.880021i
\(698\) 0 0
\(699\) −11.5455 + 11.5455i −0.436690 + 0.436690i
\(700\) 0 0
\(701\) 40.0544i 1.51283i 0.654091 + 0.756416i \(0.273051\pi\)
−0.654091 + 0.756416i \(0.726949\pi\)
\(702\) 0 0
\(703\) −2.67553 2.67553i −0.100910 0.100910i
\(704\) 0 0
\(705\) 17.5397 + 22.4882i 0.660583 + 0.846954i
\(706\) 0 0
\(707\) 4.52293 0.170102
\(708\) 0 0
\(709\) 27.8875 1.04734 0.523669 0.851922i \(-0.324563\pi\)
0.523669 + 0.851922i \(0.324563\pi\)
\(710\) 0 0
\(711\) 8.73698 8.73698i 0.327662 0.327662i
\(712\) 0 0
\(713\) 12.3893i 0.463984i
\(714\) 0 0
\(715\) 26.7132 + 34.2499i 0.999017 + 1.28087i
\(716\) 0 0
\(717\) 13.9588 0.521301
\(718\) 0 0
\(719\) 25.8847i 0.965336i 0.875803 + 0.482668i \(0.160332\pi\)
−0.875803 + 0.482668i \(0.839668\pi\)
\(720\) 0 0
\(721\) −3.71395 −0.138315
\(722\) 0 0
\(723\) 7.52970 0.280032
\(724\) 0 0
\(725\) 26.9192 0.597007i 0.999754 0.0221723i
\(726\) 0 0
\(727\) 7.52196 0.278974 0.139487 0.990224i \(-0.455455\pi\)
0.139487 + 0.990224i \(0.455455\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 22.9959i 0.850534i
\(732\) 0 0
\(733\) 10.1827 0.376106 0.188053 0.982159i \(-0.439782\pi\)
0.188053 + 0.982159i \(0.439782\pi\)
\(734\) 0 0
\(735\) 8.93436 + 11.4550i 0.329549 + 0.422525i
\(736\) 0 0
\(737\) 31.6648i 1.16639i
\(738\) 0 0
\(739\) −5.18433 + 5.18433i −0.190709 + 0.190709i −0.796002 0.605294i \(-0.793056\pi\)
0.605294 + 0.796002i \(0.293056\pi\)
\(740\) 0 0
\(741\) −18.6950 −0.686778
\(742\) 0 0
\(743\) −13.6079 −0.499226 −0.249613 0.968346i \(-0.580303\pi\)
−0.249613 + 0.968346i \(0.580303\pi\)
\(744\) 0 0
\(745\) 6.48825 + 8.31880i 0.237711 + 0.304777i
\(746\) 0 0
\(747\) −8.37675 8.37675i −0.306489 0.306489i
\(748\) 0 0
\(749\) 11.4920i 0.419910i
\(750\) 0 0
\(751\) −24.7706 + 24.7706i −0.903891 + 0.903891i −0.995770 0.0918794i \(-0.970713\pi\)
0.0918794 + 0.995770i \(0.470713\pi\)
\(752\) 0 0
\(753\) −6.20891 + 6.20891i −0.226265 + 0.226265i
\(754\) 0 0
\(755\) 7.04619 5.49568i 0.256437 0.200008i
\(756\) 0 0
\(757\) −27.2957 −0.992080 −0.496040 0.868300i \(-0.665213\pi\)
−0.496040 + 0.868300i \(0.665213\pi\)
\(758\) 0 0
\(759\) 7.95273 0.288666
\(760\) 0 0
\(761\) −12.5202 −0.453857 −0.226928 0.973911i \(-0.572868\pi\)
−0.226928 + 0.973911i \(0.572868\pi\)
\(762\) 0 0
\(763\) 1.30663 1.30663i 0.0473031 0.0473031i
\(764\) 0 0
\(765\) 4.78818 + 6.13908i 0.173117 + 0.221959i
\(766\) 0 0
\(767\) −29.7045 29.7045i −1.07257 1.07257i
\(768\) 0 0
\(769\) 22.3383 + 22.3383i 0.805539 + 0.805539i 0.983955 0.178416i \(-0.0570974\pi\)
−0.178416 + 0.983955i \(0.557097\pi\)
\(770\) 0 0
\(771\) −10.2480 10.2480i −0.369073 0.369073i
\(772\) 0 0
\(773\) 51.9016i 1.86677i 0.358878 + 0.933385i \(0.383160\pi\)
−0.358878 + 0.933385i \(0.616840\pi\)
\(774\) 0 0
\(775\) 19.1005 11.4336i 0.686109 0.410708i
\(776\) 0 0
\(777\) 0.690051 0.690051i 0.0247554 0.0247554i
\(778\) 0 0
\(779\) 25.9555i 0.929953i
\(780\) 0 0
\(781\) 3.30239 3.30239i 0.118169 0.118169i
\(782\) 0 0
\(783\) −5.19267 + 1.42694i −0.185571 + 0.0509946i
\(784\) 0 0
\(785\) −40.9945 + 31.9737i −1.46316 + 1.14119i
\(786\) 0 0
\(787\) −6.54700 6.54700i −0.233375 0.233375i 0.580725 0.814100i \(-0.302769\pi\)
−0.814100 + 0.580725i \(0.802769\pi\)
\(788\) 0 0
\(789\) 9.97094 0.354975
\(790\) 0 0
\(791\) 0.979538 0.979538i 0.0348284 0.0348284i
\(792\) 0 0
\(793\) −18.9829 −0.674103
\(794\) 0 0
\(795\) 25.5078 + 3.15344i 0.904669 + 0.111841i
\(796\) 0 0
\(797\) 20.9268 0.741267 0.370633 0.928779i \(-0.379141\pi\)
0.370633 + 0.928779i \(0.379141\pi\)
\(798\) 0 0
\(799\) 44.4080i 1.57104i
\(800\) 0 0
\(801\) −1.03678 + 1.03678i −0.0366327 + 0.0366327i
\(802\) 0 0
\(803\) −23.3144 23.3144i −0.822747 0.822747i
\(804\) 0 0
\(805\) 2.71467 + 3.48057i 0.0956797 + 0.122674i
\(806\) 0 0
\(807\) −9.63229 + 9.63229i −0.339073 + 0.339073i
\(808\) 0 0
\(809\) 13.0558 + 13.0558i 0.459018 + 0.459018i 0.898333 0.439315i \(-0.144779\pi\)
−0.439315 + 0.898333i \(0.644779\pi\)
\(810\) 0 0
\(811\) 10.7784i 0.378480i −0.981931 0.189240i \(-0.939398\pi\)
0.981931 0.189240i \(-0.0606025\pi\)
\(812\) 0 0
\(813\) −15.5653 15.5653i −0.545899 0.545899i
\(814\) 0 0
\(815\) −6.81439 8.73695i −0.238698 0.306042i
\(816\) 0 0
\(817\) 12.8452 + 12.8452i 0.449397 + 0.449397i
\(818\) 0 0
\(819\) 4.82166i 0.168482i
\(820\) 0 0
\(821\) 10.9264i 0.381334i 0.981655 + 0.190667i \(0.0610651\pi\)
−0.981655 + 0.190667i \(0.938935\pi\)
\(822\) 0 0
\(823\) 47.5372i 1.65704i 0.559959 + 0.828521i \(0.310817\pi\)
−0.559959 + 0.828521i \(0.689183\pi\)
\(824\) 0 0
\(825\) −7.33928 12.2606i −0.255521 0.426860i
\(826\) 0 0
\(827\) 9.55325i 0.332199i 0.986109 + 0.166099i \(0.0531173\pi\)
−0.986109 + 0.166099i \(0.946883\pi\)
\(828\) 0 0
\(829\) 35.0883 35.0883i 1.21867 1.21867i 0.250570 0.968099i \(-0.419382\pi\)
0.968099 0.250570i \(-0.0806179\pi\)
\(830\) 0 0
\(831\) −16.7440 16.7440i −0.580844 0.580844i
\(832\) 0 0
\(833\) 22.6205i 0.783755i
\(834\) 0 0
\(835\) 6.61159 53.4803i 0.228803 1.85076i
\(836\) 0 0
\(837\) −3.14819 + 3.14819i −0.108817 + 0.108817i
\(838\) 0 0
\(839\) −28.5131 28.5131i −0.984382 0.984382i 0.0154976 0.999880i \(-0.495067\pi\)
−0.999880 + 0.0154976i \(0.995067\pi\)
\(840\) 0 0
\(841\) −24.9277 + 14.8193i −0.859575 + 0.511009i
\(842\) 0 0
\(843\) 24.0520i 0.828395i
\(844\) 0 0
\(845\) −58.5357 + 45.6549i −2.01369 + 1.57058i
\(846\) 0 0
\(847\) −1.42080 1.42080i −0.0488191 0.0488191i
\(848\) 0 0
\(849\) −9.33420 9.33420i −0.320349 0.320349i
\(850\) 0 0
\(851\) −2.70689 + 2.70689i −0.0927911 + 0.0927911i
\(852\) 0 0
\(853\) 2.67881 0.0917207 0.0458604 0.998948i \(-0.485397\pi\)
0.0458604 + 0.998948i \(0.485397\pi\)
\(854\) 0 0
\(855\) 6.10382 + 0.754594i 0.208746 + 0.0258066i
\(856\) 0 0
\(857\) −18.1060 + 18.1060i −0.618490 + 0.618490i −0.945144 0.326654i \(-0.894079\pi\)
0.326654 + 0.945144i \(0.394079\pi\)
\(858\) 0 0
\(859\) 5.09077 + 5.09077i 0.173695 + 0.173695i 0.788601 0.614906i \(-0.210806\pi\)
−0.614906 + 0.788601i \(0.710806\pi\)
\(860\) 0 0
\(861\) −6.69423 −0.228139
\(862\) 0 0
\(863\) −28.1965 + 28.1965i −0.959821 + 0.959821i −0.999223 0.0394021i \(-0.987455\pi\)
0.0394021 + 0.999223i \(0.487455\pi\)
\(864\) 0 0
\(865\) −54.0746 6.68505i −1.83859 0.227299i
\(866\) 0 0
\(867\) 4.87701i 0.165632i
\(868\) 0 0
\(869\) −35.3119 −1.19788
\(870\) 0 0
\(871\) 75.3091 2.55175
\(872\) 0 0
\(873\) 15.3954i 0.521057i
\(874\) 0 0
\(875\) 2.86068 7.39727i 0.0967088 0.250073i
\(876\) 0 0
\(877\) −7.46600 + 7.46600i −0.252109 + 0.252109i −0.821835 0.569726i \(-0.807049\pi\)
0.569726 + 0.821835i \(0.307049\pi\)
\(878\) 0 0
\(879\) 3.20784 0.108198
\(880\) 0 0
\(881\) 10.9206 + 10.9206i 0.367924 + 0.367924i 0.866720 0.498796i \(-0.166224\pi\)
−0.498796 + 0.866720i \(0.666224\pi\)
\(882\) 0 0
\(883\) −34.6279 + 34.6279i −1.16532 + 1.16532i −0.182029 + 0.983293i \(0.558266\pi\)
−0.983293 + 0.182029i \(0.941734\pi\)
\(884\) 0 0
\(885\) 8.49938 + 10.8973i 0.285704 + 0.366310i
\(886\) 0 0
\(887\) 15.4692 0.519406 0.259703 0.965688i \(-0.416375\pi\)
0.259703 + 0.965688i \(0.416375\pi\)
\(888\) 0 0
\(889\) −8.05567 + 8.05567i −0.270178 + 0.270178i
\(890\) 0 0
\(891\) 2.02083 + 2.02083i 0.0677004 + 0.0677004i
\(892\) 0 0
\(893\) 24.8057 + 24.8057i 0.830091 + 0.830091i
\(894\) 0 0
\(895\) −5.81256 7.45248i −0.194293 0.249109i
\(896\) 0 0
\(897\) 18.9141i 0.631524i
\(898\) 0 0
\(899\) −11.8553 + 20.8398i −0.395395 + 0.695047i
\(900\) 0 0
\(901\) 28.2991 + 28.2991i 0.942778 + 0.942778i
\(902\) 0 0
\(903\) −3.31292 + 3.31292i −0.110247 + 0.110247i
\(904\) 0 0
\(905\) 0.516338 + 0.662014i 0.0171637 + 0.0220061i
\(906\) 0 0
\(907\) 53.1165i 1.76371i −0.471525 0.881853i \(-0.656296\pi\)
0.471525 0.881853i \(-0.343704\pi\)
\(908\) 0 0
\(909\) −4.50842 4.50842i −0.149535 0.149535i
\(910\) 0 0
\(911\) 22.8730 22.8730i 0.757818 0.757818i −0.218107 0.975925i \(-0.569988\pi\)
0.975925 + 0.218107i \(0.0699882\pi\)
\(912\) 0 0
\(913\) 33.8560i 1.12047i
\(914\) 0 0
\(915\) 6.19782 + 0.766216i 0.204894 + 0.0253303i
\(916\) 0 0
\(917\) 2.65058i 0.0875299i
\(918\) 0 0
\(919\) 53.4073i 1.76175i −0.473353 0.880873i \(-0.656957\pi\)
0.473353 0.880873i \(-0.343043\pi\)
\(920\) 0 0
\(921\) 20.3426i 0.670313i
\(922\) 0 0
\(923\) 7.85412 + 7.85412i 0.258522 + 0.258522i
\(924\) 0 0
\(925\) 6.67128 + 1.67510i 0.219350 + 0.0550768i
\(926\) 0 0
\(927\) 3.70204 + 3.70204i 0.121591 + 0.121591i
\(928\) 0 0
\(929\) 11.0480i 0.362472i −0.983440 0.181236i \(-0.941990\pi\)
0.983440 0.181236i \(-0.0580098\pi\)
\(930\) 0 0
\(931\) 12.6355 + 12.6355i 0.414112 + 0.414112i
\(932\) 0 0
\(933\) 15.1136 15.1136i 0.494797 0.494797i
\(934\) 0 0
\(935\) 2.72994 22.0822i 0.0892786 0.722164i
\(936\) 0 0
\(937\) 12.7857 + 12.7857i 0.417692 + 0.417692i 0.884407 0.466716i \(-0.154563\pi\)
−0.466716 + 0.884407i \(0.654563\pi\)
\(938\) 0 0
\(939\) −12.6402 + 12.6402i −0.412496 + 0.412496i
\(940\) 0 0
\(941\) 28.7450i 0.937060i −0.883448 0.468530i \(-0.844784\pi\)
0.883448 0.468530i \(-0.155216\pi\)
\(942\) 0 0
\(943\) 26.2597 0.855135
\(944\) 0 0
\(945\) −0.194618 + 1.57424i −0.00633094 + 0.0512102i
\(946\) 0 0
\(947\) 13.6797 0.444530 0.222265 0.974986i \(-0.428655\pi\)
0.222265 + 0.974986i \(0.428655\pi\)
\(948\) 0 0
\(949\) 55.4490 55.4490i 1.79995 1.79995i
\(950\) 0 0
\(951\) −12.2398 −0.396904
\(952\) 0 0
\(953\) −7.34774 7.34774i −0.238017 0.238017i 0.578012 0.816028i \(-0.303829\pi\)
−0.816028 + 0.578012i \(0.803829\pi\)
\(954\) 0 0
\(955\) −7.02346 + 56.8119i −0.227274 + 1.83839i
\(956\) 0 0
\(957\) 13.3771 + 7.60991i 0.432421 + 0.245994i
\(958\) 0 0
\(959\) −4.63958 + 4.63958i −0.149820 + 0.149820i
\(960\) 0 0
\(961\) 11.1778i 0.360573i
\(962\) 0 0
\(963\) 11.4552 11.4552i 0.369138 0.369138i
\(964\) 0 0
\(965\) 24.6744 19.2449i 0.794298 0.619514i
\(966\) 0 0
\(967\) 36.7626i 1.18220i 0.806597 + 0.591102i \(0.201307\pi\)
−0.806597 + 0.591102i \(0.798693\pi\)
\(968\) 0 0
\(969\) 6.77174 + 6.77174i 0.217540 + 0.217540i
\(970\) 0 0
\(971\) −13.6273 13.6273i −0.437322 0.437322i 0.453788 0.891110i \(-0.350072\pi\)
−0.891110 + 0.453788i \(0.850072\pi\)
\(972\) 0 0
\(973\) −3.32288 3.32288i −0.106527 0.106527i
\(974\) 0 0
\(975\) 29.1597 17.4551i 0.933858 0.559012i
\(976\) 0 0
\(977\) 31.0283 31.0283i 0.992682 0.992682i −0.00729114 0.999973i \(-0.502321\pi\)
0.999973 + 0.00729114i \(0.00232086\pi\)
\(978\) 0 0
\(979\) 4.19030 0.133923
\(980\) 0 0
\(981\) −2.60487 −0.0831671
\(982\) 0 0
\(983\) −20.8489 −0.664978 −0.332489 0.943107i \(-0.607888\pi\)
−0.332489 + 0.943107i \(0.607888\pi\)
\(984\) 0 0
\(985\) −47.5141 5.87401i −1.51393 0.187161i
\(986\) 0 0
\(987\) −6.39768 + 6.39768i −0.203640 + 0.203640i
\(988\) 0 0
\(989\) 12.9958 12.9958i 0.413241 0.413241i
\(990\) 0 0
\(991\) 21.4607i 0.681720i −0.940114 0.340860i \(-0.889282\pi\)
0.940114 0.340860i \(-0.110718\pi\)
\(992\) 0 0
\(993\) −7.42276 7.42276i −0.235554 0.235554i
\(994\) 0 0
\(995\) 2.84176 2.21643i 0.0900899 0.0702657i
\(996\) 0 0
\(997\) 17.7245 0.561342 0.280671 0.959804i \(-0.409443\pi\)
0.280671 + 0.959804i \(0.409443\pi\)
\(998\) 0 0
\(999\) −1.37567 −0.0435244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.2.bc.c.853.5 yes 30
5.2 odd 4 1740.2.bb.c.157.11 yes 30
29.17 odd 4 1740.2.bb.c.133.11 30
145.17 even 4 inner 1740.2.bc.c.1177.5 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.bb.c.133.11 30 29.17 odd 4
1740.2.bb.c.157.11 yes 30 5.2 odd 4
1740.2.bc.c.853.5 yes 30 1.1 even 1 trivial
1740.2.bc.c.1177.5 yes 30 145.17 even 4 inner