Properties

Label 1740.2.bc.c.1177.3
Level $1740$
Weight $2$
Character 1740.1177
Analytic conductor $13.894$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1740,2,Mod(853,1740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1740.853"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8939699517\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1177.3
Character \(\chi\) \(=\) 1740.1177
Dual form 1740.2.bc.c.853.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-1.98303 - 1.03325i) q^{5} +(0.377598 + 0.377598i) q^{7} -1.00000 q^{9} +(-2.83974 + 2.83974i) q^{11} +(-2.93352 - 2.93352i) q^{13} +(-1.03325 + 1.98303i) q^{15} +5.42233 q^{17} +(0.918660 + 0.918660i) q^{19} +(0.377598 - 0.377598i) q^{21} +(-3.74121 + 3.74121i) q^{23} +(2.86479 + 4.09792i) q^{25} +1.00000i q^{27} +(-4.56656 - 2.85422i) q^{29} +(4.45954 - 4.45954i) q^{31} +(2.83974 + 2.83974i) q^{33} +(-0.358634 - 1.13894i) q^{35} +6.53912i q^{37} +(-2.93352 + 2.93352i) q^{39} +(6.74376 + 6.74376i) q^{41} +11.5800i q^{43} +(1.98303 + 1.03325i) q^{45} +5.10275i q^{47} -6.71484i q^{49} -5.42233i q^{51} +(-3.29698 + 3.29698i) q^{53} +(8.56545 - 2.69712i) q^{55} +(0.918660 - 0.918660i) q^{57} +1.80738i q^{59} +(6.15238 - 6.15238i) q^{61} +(-0.377598 - 0.377598i) q^{63} +(2.78618 + 8.84830i) q^{65} +(2.31042 - 2.31042i) q^{67} +(3.74121 + 3.74121i) q^{69} +5.50267i q^{71} +1.79039 q^{73} +(4.09792 - 2.86479i) q^{75} -2.14456 q^{77} +(-0.178306 - 0.178306i) q^{79} +1.00000 q^{81} +(1.51709 - 1.51709i) q^{83} +(-10.7526 - 5.60263i) q^{85} +(-2.85422 + 4.56656i) q^{87} +(10.0729 + 10.0729i) q^{89} -2.21538i q^{91} +(-4.45954 - 4.45954i) q^{93} +(-0.872522 - 2.77093i) q^{95} +3.31231i q^{97} +(2.83974 - 2.83974i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 30 q^{9} + 4 q^{11} - 6 q^{13} - 6 q^{15} + 8 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{33} - 16 q^{35} - 6 q^{39} - 10 q^{41} - 6 q^{53} + 4 q^{55} + 8 q^{57} + 30 q^{61} - 2 q^{65} + 4 q^{67} + 12 q^{73}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.98303 1.03325i −0.886836 0.462083i
\(6\) 0 0
\(7\) 0.377598 + 0.377598i 0.142719 + 0.142719i 0.774856 0.632138i \(-0.217822\pi\)
−0.632138 + 0.774856i \(0.717822\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.83974 + 2.83974i −0.856214 + 0.856214i −0.990890 0.134675i \(-0.957001\pi\)
0.134675 + 0.990890i \(0.457001\pi\)
\(12\) 0 0
\(13\) −2.93352 2.93352i −0.813611 0.813611i 0.171562 0.985173i \(-0.445119\pi\)
−0.985173 + 0.171562i \(0.945119\pi\)
\(14\) 0 0
\(15\) −1.03325 + 1.98303i −0.266784 + 0.512015i
\(16\) 0 0
\(17\) 5.42233 1.31511 0.657555 0.753407i \(-0.271591\pi\)
0.657555 + 0.753407i \(0.271591\pi\)
\(18\) 0 0
\(19\) 0.918660 + 0.918660i 0.210755 + 0.210755i 0.804588 0.593833i \(-0.202386\pi\)
−0.593833 + 0.804588i \(0.702386\pi\)
\(20\) 0 0
\(21\) 0.377598 0.377598i 0.0823987 0.0823987i
\(22\) 0 0
\(23\) −3.74121 + 3.74121i −0.780095 + 0.780095i −0.979847 0.199751i \(-0.935987\pi\)
0.199751 + 0.979847i \(0.435987\pi\)
\(24\) 0 0
\(25\) 2.86479 + 4.09792i 0.572958 + 0.819585i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −4.56656 2.85422i −0.847988 0.530015i
\(30\) 0 0
\(31\) 4.45954 4.45954i 0.800957 0.800957i −0.182288 0.983245i \(-0.558350\pi\)
0.983245 + 0.182288i \(0.0583504\pi\)
\(32\) 0 0
\(33\) 2.83974 + 2.83974i 0.494336 + 0.494336i
\(34\) 0 0
\(35\) −0.358634 1.13894i −0.0606202 0.192516i
\(36\) 0 0
\(37\) 6.53912i 1.07502i 0.843256 + 0.537512i \(0.180636\pi\)
−0.843256 + 0.537512i \(0.819364\pi\)
\(38\) 0 0
\(39\) −2.93352 + 2.93352i −0.469739 + 0.469739i
\(40\) 0 0
\(41\) 6.74376 + 6.74376i 1.05320 + 1.05320i 0.998503 + 0.0546952i \(0.0174187\pi\)
0.0546952 + 0.998503i \(0.482581\pi\)
\(42\) 0 0
\(43\) 11.5800i 1.76593i 0.469435 + 0.882967i \(0.344458\pi\)
−0.469435 + 0.882967i \(0.655542\pi\)
\(44\) 0 0
\(45\) 1.98303 + 1.03325i 0.295612 + 0.154028i
\(46\) 0 0
\(47\) 5.10275i 0.744313i 0.928170 + 0.372156i \(0.121382\pi\)
−0.928170 + 0.372156i \(0.878618\pi\)
\(48\) 0 0
\(49\) 6.71484i 0.959263i
\(50\) 0 0
\(51\) 5.42233i 0.759279i
\(52\) 0 0
\(53\) −3.29698 + 3.29698i −0.452875 + 0.452875i −0.896308 0.443433i \(-0.853760\pi\)
0.443433 + 0.896308i \(0.353760\pi\)
\(54\) 0 0
\(55\) 8.56545 2.69712i 1.15496 0.363680i
\(56\) 0 0
\(57\) 0.918660 0.918660i 0.121679 0.121679i
\(58\) 0 0
\(59\) 1.80738i 0.235301i 0.993055 + 0.117650i \(0.0375362\pi\)
−0.993055 + 0.117650i \(0.962464\pi\)
\(60\) 0 0
\(61\) 6.15238 6.15238i 0.787732 0.787732i −0.193390 0.981122i \(-0.561948\pi\)
0.981122 + 0.193390i \(0.0619483\pi\)
\(62\) 0 0
\(63\) −0.377598 0.377598i −0.0475729 0.0475729i
\(64\) 0 0
\(65\) 2.78618 + 8.84830i 0.345584 + 1.09750i
\(66\) 0 0
\(67\) 2.31042 2.31042i 0.282263 0.282263i −0.551748 0.834011i \(-0.686039\pi\)
0.834011 + 0.551748i \(0.186039\pi\)
\(68\) 0 0
\(69\) 3.74121 + 3.74121i 0.450388 + 0.450388i
\(70\) 0 0
\(71\) 5.50267i 0.653047i 0.945189 + 0.326524i \(0.105877\pi\)
−0.945189 + 0.326524i \(0.894123\pi\)
\(72\) 0 0
\(73\) 1.79039 0.209549 0.104775 0.994496i \(-0.466588\pi\)
0.104775 + 0.994496i \(0.466588\pi\)
\(74\) 0 0
\(75\) 4.09792 2.86479i 0.473188 0.330797i
\(76\) 0 0
\(77\) −2.14456 −0.244396
\(78\) 0 0
\(79\) −0.178306 0.178306i −0.0200609 0.0200609i 0.697005 0.717066i \(-0.254515\pi\)
−0.717066 + 0.697005i \(0.754515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.51709 1.51709i 0.166522 0.166522i −0.618926 0.785449i \(-0.712432\pi\)
0.785449 + 0.618926i \(0.212432\pi\)
\(84\) 0 0
\(85\) −10.7526 5.60263i −1.16629 0.607690i
\(86\) 0 0
\(87\) −2.85422 + 4.56656i −0.306004 + 0.489586i
\(88\) 0 0
\(89\) 10.0729 + 10.0729i 1.06772 + 1.06772i 0.997534 + 0.0701904i \(0.0223607\pi\)
0.0701904 + 0.997534i \(0.477639\pi\)
\(90\) 0 0
\(91\) 2.21538i 0.232235i
\(92\) 0 0
\(93\) −4.45954 4.45954i −0.462433 0.462433i
\(94\) 0 0
\(95\) −0.872522 2.77093i −0.0895188 0.284292i
\(96\) 0 0
\(97\) 3.31231i 0.336314i 0.985760 + 0.168157i \(0.0537816\pi\)
−0.985760 + 0.168157i \(0.946218\pi\)
\(98\) 0 0
\(99\) 2.83974 2.83974i 0.285405 0.285405i
\(100\) 0 0
\(101\) −12.1037 + 12.1037i −1.20436 + 1.20436i −0.231534 + 0.972827i \(0.574374\pi\)
−0.972827 + 0.231534i \(0.925626\pi\)
\(102\) 0 0
\(103\) 7.65353 7.65353i 0.754125 0.754125i −0.221122 0.975246i \(-0.570972\pi\)
0.975246 + 0.221122i \(0.0709717\pi\)
\(104\) 0 0
\(105\) −1.13894 + 0.358634i −0.111149 + 0.0349991i
\(106\) 0 0
\(107\) −1.35592 1.35592i −0.131082 0.131082i 0.638522 0.769604i \(-0.279546\pi\)
−0.769604 + 0.638522i \(0.779546\pi\)
\(108\) 0 0
\(109\) 6.07140 0.581535 0.290768 0.956794i \(-0.406089\pi\)
0.290768 + 0.956794i \(0.406089\pi\)
\(110\) 0 0
\(111\) 6.53912 0.620666
\(112\) 0 0
\(113\) 2.65569 0.249826 0.124913 0.992168i \(-0.460135\pi\)
0.124913 + 0.992168i \(0.460135\pi\)
\(114\) 0 0
\(115\) 11.2845 3.55331i 1.05229 0.331348i
\(116\) 0 0
\(117\) 2.93352 + 2.93352i 0.271204 + 0.271204i
\(118\) 0 0
\(119\) 2.04746 + 2.04746i 0.187691 + 0.187691i
\(120\) 0 0
\(121\) 5.12827i 0.466207i
\(122\) 0 0
\(123\) 6.74376 6.74376i 0.608064 0.608064i
\(124\) 0 0
\(125\) −1.44677 11.0863i −0.129403 0.991592i
\(126\) 0 0
\(127\) 8.63377 0.766123 0.383062 0.923723i \(-0.374870\pi\)
0.383062 + 0.923723i \(0.374870\pi\)
\(128\) 0 0
\(129\) 11.5800 1.01956
\(130\) 0 0
\(131\) 12.3756 + 12.3756i 1.08126 + 1.08126i 0.996392 + 0.0848723i \(0.0270482\pi\)
0.0848723 + 0.996392i \(0.472952\pi\)
\(132\) 0 0
\(133\) 0.693769i 0.0601574i
\(134\) 0 0
\(135\) 1.03325 1.98303i 0.0889280 0.170672i
\(136\) 0 0
\(137\) −17.2500 −1.47376 −0.736882 0.676021i \(-0.763703\pi\)
−0.736882 + 0.676021i \(0.763703\pi\)
\(138\) 0 0
\(139\) 11.5651i 0.980938i 0.871459 + 0.490469i \(0.163175\pi\)
−0.871459 + 0.490469i \(0.836825\pi\)
\(140\) 0 0
\(141\) 5.10275 0.429729
\(142\) 0 0
\(143\) 16.6609 1.39325
\(144\) 0 0
\(145\) 6.10648 + 10.3784i 0.507116 + 0.861878i
\(146\) 0 0
\(147\) −6.71484 −0.553831
\(148\) 0 0
\(149\) −12.2553 −1.00400 −0.501998 0.864869i \(-0.667402\pi\)
−0.501998 + 0.864869i \(0.667402\pi\)
\(150\) 0 0
\(151\) 3.80918i 0.309986i 0.987916 + 0.154993i \(0.0495356\pi\)
−0.987916 + 0.154993i \(0.950464\pi\)
\(152\) 0 0
\(153\) −5.42233 −0.438370
\(154\) 0 0
\(155\) −13.4512 + 4.23556i −1.08043 + 0.340209i
\(156\) 0 0
\(157\) 16.9707i 1.35441i 0.735794 + 0.677206i \(0.236809\pi\)
−0.735794 + 0.677206i \(0.763191\pi\)
\(158\) 0 0
\(159\) 3.29698 + 3.29698i 0.261467 + 0.261467i
\(160\) 0 0
\(161\) −2.82534 −0.222668
\(162\) 0 0
\(163\) −18.1900 −1.42475 −0.712374 0.701800i \(-0.752380\pi\)
−0.712374 + 0.701800i \(0.752380\pi\)
\(164\) 0 0
\(165\) −2.69712 8.56545i −0.209971 0.666819i
\(166\) 0 0
\(167\) −3.83817 + 3.83817i −0.297007 + 0.297007i −0.839840 0.542834i \(-0.817351\pi\)
0.542834 + 0.839840i \(0.317351\pi\)
\(168\) 0 0
\(169\) 4.21103i 0.323926i
\(170\) 0 0
\(171\) −0.918660 0.918660i −0.0702517 0.0702517i
\(172\) 0 0
\(173\) −0.514323 0.514323i −0.0391033 0.0391033i 0.687285 0.726388i \(-0.258802\pi\)
−0.726388 + 0.687285i \(0.758802\pi\)
\(174\) 0 0
\(175\) −0.465630 + 2.62911i −0.0351983 + 0.198742i
\(176\) 0 0
\(177\) 1.80738 0.135851
\(178\) 0 0
\(179\) 19.1223 1.42927 0.714635 0.699498i \(-0.246593\pi\)
0.714635 + 0.699498i \(0.246593\pi\)
\(180\) 0 0
\(181\) −17.5134 −1.30176 −0.650881 0.759179i \(-0.725600\pi\)
−0.650881 + 0.759179i \(0.725600\pi\)
\(182\) 0 0
\(183\) −6.15238 6.15238i −0.454797 0.454797i
\(184\) 0 0
\(185\) 6.75654 12.9672i 0.496751 0.953371i
\(186\) 0 0
\(187\) −15.3980 + 15.3980i −1.12602 + 1.12602i
\(188\) 0 0
\(189\) −0.377598 + 0.377598i −0.0274662 + 0.0274662i
\(190\) 0 0
\(191\) −0.499842 + 0.499842i −0.0361673 + 0.0361673i −0.724959 0.688792i \(-0.758141\pi\)
0.688792 + 0.724959i \(0.258141\pi\)
\(192\) 0 0
\(193\) 21.3077i 1.53376i −0.641790 0.766880i \(-0.721808\pi\)
0.641790 0.766880i \(-0.278192\pi\)
\(194\) 0 0
\(195\) 8.84830 2.78618i 0.633640 0.199523i
\(196\) 0 0
\(197\) −8.94004 8.94004i −0.636951 0.636951i 0.312851 0.949802i \(-0.398716\pi\)
−0.949802 + 0.312851i \(0.898716\pi\)
\(198\) 0 0
\(199\) 0.350184i 0.0248239i −0.999923 0.0124119i \(-0.996049\pi\)
0.999923 0.0124119i \(-0.00395094\pi\)
\(200\) 0 0
\(201\) −2.31042 2.31042i −0.162965 0.162965i
\(202\) 0 0
\(203\) −0.646576 2.80207i −0.0453807 0.196667i
\(204\) 0 0
\(205\) −6.40506 20.3410i −0.447349 1.42068i
\(206\) 0 0
\(207\) 3.74121 3.74121i 0.260032 0.260032i
\(208\) 0 0
\(209\) −5.21751 −0.360903
\(210\) 0 0
\(211\) 14.0873 + 14.0873i 0.969811 + 0.969811i 0.999557 0.0297464i \(-0.00946996\pi\)
−0.0297464 + 0.999557i \(0.509470\pi\)
\(212\) 0 0
\(213\) 5.50267 0.377037
\(214\) 0 0
\(215\) 11.9650 22.9635i 0.816009 1.56609i
\(216\) 0 0
\(217\) 3.36783 0.228623
\(218\) 0 0
\(219\) 1.79039i 0.120983i
\(220\) 0 0
\(221\) −15.9065 15.9065i −1.06999 1.06999i
\(222\) 0 0
\(223\) −18.0388 + 18.0388i −1.20797 + 1.20797i −0.236285 + 0.971684i \(0.575930\pi\)
−0.971684 + 0.236285i \(0.924070\pi\)
\(224\) 0 0
\(225\) −2.86479 4.09792i −0.190986 0.273195i
\(226\) 0 0
\(227\) −8.97456 8.97456i −0.595663 0.595663i 0.343493 0.939155i \(-0.388390\pi\)
−0.939155 + 0.343493i \(0.888390\pi\)
\(228\) 0 0
\(229\) 13.3171 13.3171i 0.880021 0.880021i −0.113515 0.993536i \(-0.536211\pi\)
0.993536 + 0.113515i \(0.0362110\pi\)
\(230\) 0 0
\(231\) 2.14456i 0.141102i
\(232\) 0 0
\(233\) −16.7342 + 16.7342i −1.09629 + 1.09629i −0.101451 + 0.994841i \(0.532349\pi\)
−0.994841 + 0.101451i \(0.967651\pi\)
\(234\) 0 0
\(235\) 5.27242 10.1189i 0.343935 0.660084i
\(236\) 0 0
\(237\) −0.178306 + 0.178306i −0.0115822 + 0.0115822i
\(238\) 0 0
\(239\) 3.53427i 0.228613i −0.993446 0.114306i \(-0.963535\pi\)
0.993446 0.114306i \(-0.0364646\pi\)
\(240\) 0 0
\(241\) 10.4423i 0.672647i −0.941747 0.336323i \(-0.890817\pi\)
0.941747 0.336323i \(-0.109183\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −6.93811 + 13.3157i −0.443259 + 0.850709i
\(246\) 0 0
\(247\) 5.38981i 0.342945i
\(248\) 0 0
\(249\) −1.51709 1.51709i −0.0961418 0.0961418i
\(250\) 0 0
\(251\) −20.1681 + 20.1681i −1.27300 + 1.27300i −0.328495 + 0.944506i \(0.606542\pi\)
−0.944506 + 0.328495i \(0.893458\pi\)
\(252\) 0 0
\(253\) 21.2481i 1.33586i
\(254\) 0 0
\(255\) −5.60263 + 10.7526i −0.350850 + 0.673356i
\(256\) 0 0
\(257\) −19.2203 19.2203i −1.19893 1.19893i −0.974487 0.224444i \(-0.927943\pi\)
−0.224444 0.974487i \(-0.572057\pi\)
\(258\) 0 0
\(259\) −2.46916 + 2.46916i −0.153426 + 0.153426i
\(260\) 0 0
\(261\) 4.56656 + 2.85422i 0.282663 + 0.176672i
\(262\) 0 0
\(263\) 29.0825i 1.79330i 0.442735 + 0.896652i \(0.354008\pi\)
−0.442735 + 0.896652i \(0.645992\pi\)
\(264\) 0 0
\(265\) 9.94460 3.13139i 0.610892 0.192360i
\(266\) 0 0
\(267\) 10.0729 10.0729i 0.616451 0.616451i
\(268\) 0 0
\(269\) 6.53556 6.53556i 0.398480 0.398480i −0.479217 0.877697i \(-0.659079\pi\)
0.877697 + 0.479217i \(0.159079\pi\)
\(270\) 0 0
\(271\) 20.6798 + 20.6798i 1.25621 + 1.25621i 0.952889 + 0.303319i \(0.0980946\pi\)
0.303319 + 0.952889i \(0.401905\pi\)
\(272\) 0 0
\(273\) −2.21538 −0.134081
\(274\) 0 0
\(275\) −19.7723 3.50179i −1.19232 0.211166i
\(276\) 0 0
\(277\) 14.0705 + 14.0705i 0.845412 + 0.845412i 0.989557 0.144144i \(-0.0460429\pi\)
−0.144144 + 0.989557i \(0.546043\pi\)
\(278\) 0 0
\(279\) −4.45954 + 4.45954i −0.266986 + 0.266986i
\(280\) 0 0
\(281\) −14.3473 −0.855889 −0.427944 0.903805i \(-0.640762\pi\)
−0.427944 + 0.903805i \(0.640762\pi\)
\(282\) 0 0
\(283\) −7.32276 7.32276i −0.435293 0.435293i 0.455131 0.890424i \(-0.349592\pi\)
−0.890424 + 0.455131i \(0.849592\pi\)
\(284\) 0 0
\(285\) −2.77093 + 0.872522i −0.164136 + 0.0516837i
\(286\) 0 0
\(287\) 5.09286i 0.300622i
\(288\) 0 0
\(289\) 12.4017 0.729512
\(290\) 0 0
\(291\) 3.31231 0.194171
\(292\) 0 0
\(293\) 6.12781i 0.357990i −0.983850 0.178995i \(-0.942715\pi\)
0.983850 0.178995i \(-0.0572847\pi\)
\(294\) 0 0
\(295\) 1.86747 3.58408i 0.108729 0.208673i
\(296\) 0 0
\(297\) −2.83974 2.83974i −0.164779 0.164779i
\(298\) 0 0
\(299\) 21.9498 1.26939
\(300\) 0 0
\(301\) −4.37259 + 4.37259i −0.252032 + 0.252032i
\(302\) 0 0
\(303\) 12.1037 + 12.1037i 0.695338 + 0.695338i
\(304\) 0 0
\(305\) −18.5573 + 5.84339i −1.06259 + 0.334591i
\(306\) 0 0
\(307\) −16.0771 −0.917571 −0.458785 0.888547i \(-0.651715\pi\)
−0.458785 + 0.888547i \(0.651715\pi\)
\(308\) 0 0
\(309\) −7.65353 7.65353i −0.435394 0.435394i
\(310\) 0 0
\(311\) 18.0492 18.0492i 1.02348 1.02348i 0.0237608 0.999718i \(-0.492436\pi\)
0.999718 0.0237608i \(-0.00756402\pi\)
\(312\) 0 0
\(313\) −5.01014 + 5.01014i −0.283190 + 0.283190i −0.834380 0.551190i \(-0.814174\pi\)
0.551190 + 0.834380i \(0.314174\pi\)
\(314\) 0 0
\(315\) 0.358634 + 1.13894i 0.0202067 + 0.0641720i
\(316\) 0 0
\(317\) 23.0626i 1.29533i 0.761926 + 0.647664i \(0.224254\pi\)
−0.761926 + 0.647664i \(0.775746\pi\)
\(318\) 0 0
\(319\) 21.0731 4.86260i 1.17987 0.272253i
\(320\) 0 0
\(321\) −1.35592 + 1.35592i −0.0756803 + 0.0756803i
\(322\) 0 0
\(323\) 4.98128 + 4.98128i 0.277166 + 0.277166i
\(324\) 0 0
\(325\) 3.61742 20.4252i 0.200659 1.13299i
\(326\) 0 0
\(327\) 6.07140i 0.335749i
\(328\) 0 0
\(329\) −1.92679 + 1.92679i −0.106227 + 0.106227i
\(330\) 0 0
\(331\) 3.42940 + 3.42940i 0.188497 + 0.188497i 0.795046 0.606549i \(-0.207447\pi\)
−0.606549 + 0.795046i \(0.707447\pi\)
\(332\) 0 0
\(333\) 6.53912i 0.358341i
\(334\) 0 0
\(335\) −6.96888 + 2.19439i −0.380751 + 0.119892i
\(336\) 0 0
\(337\) 11.8940i 0.647909i 0.946073 + 0.323954i \(0.105012\pi\)
−0.946073 + 0.323954i \(0.894988\pi\)
\(338\) 0 0
\(339\) 2.65569i 0.144237i
\(340\) 0 0
\(341\) 25.3279i 1.37158i
\(342\) 0 0
\(343\) 5.17870 5.17870i 0.279623 0.279623i
\(344\) 0 0
\(345\) −3.55331 11.2845i −0.191304 0.607538i
\(346\) 0 0
\(347\) 1.11414 1.11414i 0.0598104 0.0598104i −0.676569 0.736379i \(-0.736534\pi\)
0.736379 + 0.676569i \(0.236534\pi\)
\(348\) 0 0
\(349\) 22.8551i 1.22341i −0.791088 0.611703i \(-0.790485\pi\)
0.791088 0.611703i \(-0.209515\pi\)
\(350\) 0 0
\(351\) 2.93352 2.93352i 0.156580 0.156580i
\(352\) 0 0
\(353\) 6.88262 + 6.88262i 0.366325 + 0.366325i 0.866135 0.499810i \(-0.166597\pi\)
−0.499810 + 0.866135i \(0.666597\pi\)
\(354\) 0 0
\(355\) 5.68564 10.9119i 0.301762 0.579146i
\(356\) 0 0
\(357\) 2.04746 2.04746i 0.108363 0.108363i
\(358\) 0 0
\(359\) −17.2924 17.2924i −0.912656 0.912656i 0.0838245 0.996481i \(-0.473286\pi\)
−0.996481 + 0.0838245i \(0.973286\pi\)
\(360\) 0 0
\(361\) 17.3121i 0.911165i
\(362\) 0 0
\(363\) −5.12827 −0.269164
\(364\) 0 0
\(365\) −3.55039 1.84992i −0.185836 0.0968292i
\(366\) 0 0
\(367\) −27.0221 −1.41054 −0.705270 0.708938i \(-0.749174\pi\)
−0.705270 + 0.708938i \(0.749174\pi\)
\(368\) 0 0
\(369\) −6.74376 6.74376i −0.351066 0.351066i
\(370\) 0 0
\(371\) −2.48987 −0.129267
\(372\) 0 0
\(373\) −6.05510 + 6.05510i −0.313521 + 0.313521i −0.846272 0.532751i \(-0.821158\pi\)
0.532751 + 0.846272i \(0.321158\pi\)
\(374\) 0 0
\(375\) −11.0863 + 1.44677i −0.572496 + 0.0747109i
\(376\) 0 0
\(377\) 5.02317 + 21.7690i 0.258706 + 1.12116i
\(378\) 0 0
\(379\) 12.9917 + 12.9917i 0.667338 + 0.667338i 0.957099 0.289761i \(-0.0935759\pi\)
−0.289761 + 0.957099i \(0.593576\pi\)
\(380\) 0 0
\(381\) 8.63377i 0.442322i
\(382\) 0 0
\(383\) −3.08675 3.08675i −0.157726 0.157726i 0.623833 0.781558i \(-0.285575\pi\)
−0.781558 + 0.623833i \(0.785575\pi\)
\(384\) 0 0
\(385\) 4.25273 + 2.21587i 0.216739 + 0.112931i
\(386\) 0 0
\(387\) 11.5800i 0.588645i
\(388\) 0 0
\(389\) 3.88481 3.88481i 0.196968 0.196968i −0.601731 0.798699i \(-0.705522\pi\)
0.798699 + 0.601731i \(0.205522\pi\)
\(390\) 0 0
\(391\) −20.2861 + 20.2861i −1.02591 + 1.02591i
\(392\) 0 0
\(393\) 12.3756 12.3756i 0.624268 0.624268i
\(394\) 0 0
\(395\) 0.169350 + 0.537819i 0.00852094 + 0.0270606i
\(396\) 0 0
\(397\) −15.2769 15.2769i −0.766725 0.766725i 0.210803 0.977529i \(-0.432392\pi\)
−0.977529 + 0.210803i \(0.932392\pi\)
\(398\) 0 0
\(399\) 0.693769 0.0347319
\(400\) 0 0
\(401\) −5.96579 −0.297917 −0.148959 0.988843i \(-0.547592\pi\)
−0.148959 + 0.988843i \(0.547592\pi\)
\(402\) 0 0
\(403\) −26.1643 −1.30333
\(404\) 0 0
\(405\) −1.98303 1.03325i −0.0985374 0.0513426i
\(406\) 0 0
\(407\) −18.5694 18.5694i −0.920451 0.920451i
\(408\) 0 0
\(409\) −0.930088 0.930088i −0.0459899 0.0459899i 0.683738 0.729728i \(-0.260353\pi\)
−0.729728 + 0.683738i \(0.760353\pi\)
\(410\) 0 0
\(411\) 17.2500i 0.850878i
\(412\) 0 0
\(413\) −0.682463 + 0.682463i −0.0335818 + 0.0335818i
\(414\) 0 0
\(415\) −4.57597 + 1.44090i −0.224625 + 0.0707309i
\(416\) 0 0
\(417\) 11.5651 0.566345
\(418\) 0 0
\(419\) 10.0262 0.489812 0.244906 0.969547i \(-0.421243\pi\)
0.244906 + 0.969547i \(0.421243\pi\)
\(420\) 0 0
\(421\) −19.0296 19.0296i −0.927448 0.927448i 0.0700926 0.997540i \(-0.477671\pi\)
−0.997540 + 0.0700926i \(0.977671\pi\)
\(422\) 0 0
\(423\) 5.10275i 0.248104i
\(424\) 0 0
\(425\) 15.5338 + 22.2203i 0.753502 + 1.07784i
\(426\) 0 0
\(427\) 4.64626 0.224848
\(428\) 0 0
\(429\) 16.6609i 0.804394i
\(430\) 0 0
\(431\) 6.29777 0.303353 0.151676 0.988430i \(-0.451533\pi\)
0.151676 + 0.988430i \(0.451533\pi\)
\(432\) 0 0
\(433\) 7.41338 0.356265 0.178132 0.984007i \(-0.442995\pi\)
0.178132 + 0.984007i \(0.442995\pi\)
\(434\) 0 0
\(435\) 10.3784 6.10648i 0.497605 0.292783i
\(436\) 0 0
\(437\) −6.87379 −0.328818
\(438\) 0 0
\(439\) 11.1214 0.530797 0.265398 0.964139i \(-0.414497\pi\)
0.265398 + 0.964139i \(0.414497\pi\)
\(440\) 0 0
\(441\) 6.71484i 0.319754i
\(442\) 0 0
\(443\) 21.3327 1.01355 0.506774 0.862079i \(-0.330838\pi\)
0.506774 + 0.862079i \(0.330838\pi\)
\(444\) 0 0
\(445\) −9.56699 30.3826i −0.453519 1.44027i
\(446\) 0 0
\(447\) 12.2553i 0.579658i
\(448\) 0 0
\(449\) −11.1407 11.1407i −0.525764 0.525764i 0.393542 0.919307i \(-0.371250\pi\)
−0.919307 + 0.393542i \(0.871250\pi\)
\(450\) 0 0
\(451\) −38.3011 −1.80353
\(452\) 0 0
\(453\) 3.80918 0.178971
\(454\) 0 0
\(455\) −2.28904 + 4.39316i −0.107312 + 0.205954i
\(456\) 0 0
\(457\) −0.0768017 + 0.0768017i −0.00359263 + 0.00359263i −0.708901 0.705308i \(-0.750809\pi\)
0.705308 + 0.708901i \(0.250809\pi\)
\(458\) 0 0
\(459\) 5.42233i 0.253093i
\(460\) 0 0
\(461\) −15.0059 15.0059i −0.698896 0.698896i 0.265276 0.964172i \(-0.414537\pi\)
−0.964172 + 0.265276i \(0.914537\pi\)
\(462\) 0 0
\(463\) 6.43617 + 6.43617i 0.299114 + 0.299114i 0.840667 0.541553i \(-0.182163\pi\)
−0.541553 + 0.840667i \(0.682163\pi\)
\(464\) 0 0
\(465\) 4.23556 + 13.4512i 0.196420 + 0.623785i
\(466\) 0 0
\(467\) −33.7415 −1.56137 −0.780686 0.624924i \(-0.785130\pi\)
−0.780686 + 0.624924i \(0.785130\pi\)
\(468\) 0 0
\(469\) 1.74482 0.0805685
\(470\) 0 0
\(471\) 16.9707 0.781970
\(472\) 0 0
\(473\) −32.8842 32.8842i −1.51202 1.51202i
\(474\) 0 0
\(475\) −1.13283 + 6.39637i −0.0519779 + 0.293485i
\(476\) 0 0
\(477\) 3.29698 3.29698i 0.150958 0.150958i
\(478\) 0 0
\(479\) 21.3015 21.3015i 0.973289 0.973289i −0.0263632 0.999652i \(-0.508393\pi\)
0.999652 + 0.0263632i \(0.00839263\pi\)
\(480\) 0 0
\(481\) 19.1826 19.1826i 0.874651 0.874651i
\(482\) 0 0
\(483\) 2.82534i 0.128558i
\(484\) 0 0
\(485\) 3.42244 6.56840i 0.155405 0.298256i
\(486\) 0 0
\(487\) −13.6094 13.6094i −0.616701 0.616701i 0.327983 0.944684i \(-0.393631\pi\)
−0.944684 + 0.327983i \(0.893631\pi\)
\(488\) 0 0
\(489\) 18.1900i 0.822579i
\(490\) 0 0
\(491\) 11.1100 + 11.1100i 0.501389 + 0.501389i 0.911869 0.410481i \(-0.134639\pi\)
−0.410481 + 0.911869i \(0.634639\pi\)
\(492\) 0 0
\(493\) −24.7614 15.4765i −1.11520 0.697028i
\(494\) 0 0
\(495\) −8.56545 + 2.69712i −0.384988 + 0.121227i
\(496\) 0 0
\(497\) −2.07780 + 2.07780i −0.0932021 + 0.0932021i
\(498\) 0 0
\(499\) −0.102509 −0.00458894 −0.00229447 0.999997i \(-0.500730\pi\)
−0.00229447 + 0.999997i \(0.500730\pi\)
\(500\) 0 0
\(501\) 3.83817 + 3.83817i 0.171477 + 0.171477i
\(502\) 0 0
\(503\) 13.0576 0.582212 0.291106 0.956691i \(-0.405977\pi\)
0.291106 + 0.956691i \(0.405977\pi\)
\(504\) 0 0
\(505\) 36.5080 11.4958i 1.62459 0.511556i
\(506\) 0 0
\(507\) 4.21103 0.187019
\(508\) 0 0
\(509\) 24.9607i 1.10636i 0.833061 + 0.553182i \(0.186587\pi\)
−0.833061 + 0.553182i \(0.813413\pi\)
\(510\) 0 0
\(511\) 0.676048 + 0.676048i 0.0299066 + 0.0299066i
\(512\) 0 0
\(513\) −0.918660 + 0.918660i −0.0405598 + 0.0405598i
\(514\) 0 0
\(515\) −23.0852 + 7.26914i −1.01725 + 0.320317i
\(516\) 0 0
\(517\) −14.4905 14.4905i −0.637292 0.637292i
\(518\) 0 0
\(519\) −0.514323 + 0.514323i −0.0225763 + 0.0225763i
\(520\) 0 0
\(521\) 32.7477i 1.43470i 0.696712 + 0.717351i \(0.254646\pi\)
−0.696712 + 0.717351i \(0.745354\pi\)
\(522\) 0 0
\(523\) 25.1643 25.1643i 1.10036 1.10036i 0.105990 0.994367i \(-0.466199\pi\)
0.994367 0.105990i \(-0.0338011\pi\)
\(524\) 0 0
\(525\) 2.62911 + 0.465630i 0.114744 + 0.0203218i
\(526\) 0 0
\(527\) 24.1811 24.1811i 1.05335 1.05335i
\(528\) 0 0
\(529\) 4.99323i 0.217097i
\(530\) 0 0
\(531\) 1.80738i 0.0784336i
\(532\) 0 0
\(533\) 39.5659i 1.71379i
\(534\) 0 0
\(535\) 1.28783 + 4.08984i 0.0556775 + 0.176819i
\(536\) 0 0
\(537\) 19.1223i 0.825189i
\(538\) 0 0
\(539\) 19.0684 + 19.0684i 0.821335 + 0.821335i
\(540\) 0 0
\(541\) −22.1178 + 22.1178i −0.950916 + 0.950916i −0.998851 0.0479340i \(-0.984736\pi\)
0.0479340 + 0.998851i \(0.484736\pi\)
\(542\) 0 0
\(543\) 17.5134i 0.751573i
\(544\) 0 0
\(545\) −12.0398 6.27328i −0.515726 0.268718i
\(546\) 0 0
\(547\) 30.3510 + 30.3510i 1.29772 + 1.29772i 0.929898 + 0.367817i \(0.119895\pi\)
0.367817 + 0.929898i \(0.380105\pi\)
\(548\) 0 0
\(549\) −6.15238 + 6.15238i −0.262577 + 0.262577i
\(550\) 0 0
\(551\) −1.57306 6.81717i −0.0670145 0.290421i
\(552\) 0 0
\(553\) 0.134656i 0.00572614i
\(554\) 0 0
\(555\) −12.9672 6.75654i −0.550429 0.286799i
\(556\) 0 0
\(557\) 5.56912 5.56912i 0.235971 0.235971i −0.579208 0.815180i \(-0.696638\pi\)
0.815180 + 0.579208i \(0.196638\pi\)
\(558\) 0 0
\(559\) 33.9701 33.9701i 1.43678 1.43678i
\(560\) 0 0
\(561\) 15.3980 + 15.3980i 0.650105 + 0.650105i
\(562\) 0 0
\(563\) 3.30354 0.139227 0.0696137 0.997574i \(-0.477823\pi\)
0.0696137 + 0.997574i \(0.477823\pi\)
\(564\) 0 0
\(565\) −5.26630 2.74399i −0.221555 0.115440i
\(566\) 0 0
\(567\) 0.377598 + 0.377598i 0.0158576 + 0.0158576i
\(568\) 0 0
\(569\) 25.5065 25.5065i 1.06929 1.06929i 0.0718735 0.997414i \(-0.477102\pi\)
0.997414 0.0718735i \(-0.0228978\pi\)
\(570\) 0 0
\(571\) −14.7988 −0.619309 −0.309654 0.950849i \(-0.600213\pi\)
−0.309654 + 0.950849i \(0.600213\pi\)
\(572\) 0 0
\(573\) 0.499842 + 0.499842i 0.0208812 + 0.0208812i
\(574\) 0 0
\(575\) −26.0489 4.61342i −1.08632 0.192393i
\(576\) 0 0
\(577\) 16.0430i 0.667878i 0.942595 + 0.333939i \(0.108378\pi\)
−0.942595 + 0.333939i \(0.891622\pi\)
\(578\) 0 0
\(579\) −21.3077 −0.885517
\(580\) 0 0
\(581\) 1.14570 0.0475317
\(582\) 0 0
\(583\) 18.7251i 0.775516i
\(584\) 0 0
\(585\) −2.78618 8.84830i −0.115195 0.365832i
\(586\) 0 0
\(587\) 6.86906 + 6.86906i 0.283516 + 0.283516i 0.834510 0.550993i \(-0.185751\pi\)
−0.550993 + 0.834510i \(0.685751\pi\)
\(588\) 0 0
\(589\) 8.19360 0.337611
\(590\) 0 0
\(591\) −8.94004 + 8.94004i −0.367744 + 0.367744i
\(592\) 0 0
\(593\) −33.7607 33.7607i −1.38638 1.38638i −0.832779 0.553605i \(-0.813252\pi\)
−0.553605 0.832779i \(-0.686748\pi\)
\(594\) 0 0
\(595\) −1.94463 6.17572i −0.0797222 0.253180i
\(596\) 0 0
\(597\) −0.350184 −0.0143321
\(598\) 0 0
\(599\) 0.0378029 + 0.0378029i 0.00154458 + 0.00154458i 0.707879 0.706334i \(-0.249652\pi\)
−0.706334 + 0.707879i \(0.749652\pi\)
\(600\) 0 0
\(601\) −1.35035 + 1.35035i −0.0550820 + 0.0550820i −0.734111 0.679029i \(-0.762401\pi\)
0.679029 + 0.734111i \(0.262401\pi\)
\(602\) 0 0
\(603\) −2.31042 + 2.31042i −0.0940878 + 0.0940878i
\(604\) 0 0
\(605\) −5.29879 + 10.1695i −0.215426 + 0.413449i
\(606\) 0 0
\(607\) 12.0660i 0.489743i 0.969555 + 0.244872i \(0.0787459\pi\)
−0.969555 + 0.244872i \(0.921254\pi\)
\(608\) 0 0
\(609\) −2.80207 + 0.646576i −0.113546 + 0.0262006i
\(610\) 0 0
\(611\) 14.9690 14.9690i 0.605581 0.605581i
\(612\) 0 0
\(613\) 16.1190 + 16.1190i 0.651040 + 0.651040i 0.953243 0.302204i \(-0.0977223\pi\)
−0.302204 + 0.953243i \(0.597722\pi\)
\(614\) 0 0
\(615\) −20.3410 + 6.40506i −0.820230 + 0.258277i
\(616\) 0 0
\(617\) 40.3881i 1.62596i 0.582289 + 0.812982i \(0.302157\pi\)
−0.582289 + 0.812982i \(0.697843\pi\)
\(618\) 0 0
\(619\) −27.1814 + 27.1814i −1.09251 + 1.09251i −0.0972529 + 0.995260i \(0.531006\pi\)
−0.995260 + 0.0972529i \(0.968994\pi\)
\(620\) 0 0
\(621\) −3.74121 3.74121i −0.150129 0.150129i
\(622\) 0 0
\(623\) 7.60701i 0.304768i
\(624\) 0 0
\(625\) −8.58597 + 23.4794i −0.343439 + 0.939175i
\(626\) 0 0
\(627\) 5.21751i 0.208367i
\(628\) 0 0
\(629\) 35.4573i 1.41377i
\(630\) 0 0
\(631\) 17.9369i 0.714056i −0.934094 0.357028i \(-0.883790\pi\)
0.934094 0.357028i \(-0.116210\pi\)
\(632\) 0 0
\(633\) 14.0873 14.0873i 0.559921 0.559921i
\(634\) 0 0
\(635\) −17.1210 8.92085i −0.679426 0.354013i
\(636\) 0 0
\(637\) −19.6981 + 19.6981i −0.780467 + 0.780467i
\(638\) 0 0
\(639\) 5.50267i 0.217682i
\(640\) 0 0
\(641\) 20.4023 20.4023i 0.805843 0.805843i −0.178159 0.984002i \(-0.557014\pi\)
0.984002 + 0.178159i \(0.0570140\pi\)
\(642\) 0 0
\(643\) −23.2686 23.2686i −0.917625 0.917625i 0.0792314 0.996856i \(-0.474753\pi\)
−0.996856 + 0.0792314i \(0.974753\pi\)
\(644\) 0 0
\(645\) −22.9635 11.9650i −0.904185 0.471123i
\(646\) 0 0
\(647\) 3.40335 3.40335i 0.133799 0.133799i −0.637035 0.770835i \(-0.719839\pi\)
0.770835 + 0.637035i \(0.219839\pi\)
\(648\) 0 0
\(649\) −5.13249 5.13249i −0.201468 0.201468i
\(650\) 0 0
\(651\) 3.36783i 0.131996i
\(652\) 0 0
\(653\) 0.0401133 0.00156975 0.000784877 1.00000i \(-0.499750\pi\)
0.000784877 1.00000i \(0.499750\pi\)
\(654\) 0 0
\(655\) −11.7541 37.3283i −0.459270 1.45854i
\(656\) 0 0
\(657\) −1.79039 −0.0698497
\(658\) 0 0
\(659\) 5.57800 + 5.57800i 0.217288 + 0.217288i 0.807355 0.590066i \(-0.200898\pi\)
−0.590066 + 0.807355i \(0.700898\pi\)
\(660\) 0 0
\(661\) −15.7049 −0.610848 −0.305424 0.952216i \(-0.598798\pi\)
−0.305424 + 0.952216i \(0.598798\pi\)
\(662\) 0 0
\(663\) −15.9065 + 15.9065i −0.617757 + 0.617757i
\(664\) 0 0
\(665\) 0.716837 1.37576i 0.0277977 0.0533498i
\(666\) 0 0
\(667\) 27.7626 6.40621i 1.07497 0.248049i
\(668\) 0 0
\(669\) 18.0388 + 18.0388i 0.697421 + 0.697421i
\(670\) 0 0
\(671\) 34.9424i 1.34893i
\(672\) 0 0
\(673\) 19.2758 + 19.2758i 0.743028 + 0.743028i 0.973160 0.230132i \(-0.0739156\pi\)
−0.230132 + 0.973160i \(0.573916\pi\)
\(674\) 0 0
\(675\) −4.09792 + 2.86479i −0.157729 + 0.110266i
\(676\) 0 0
\(677\) 19.8901i 0.764438i −0.924072 0.382219i \(-0.875160\pi\)
0.924072 0.382219i \(-0.124840\pi\)
\(678\) 0 0
\(679\) −1.25072 + 1.25072i −0.0479983 + 0.0479983i
\(680\) 0 0
\(681\) −8.97456 + 8.97456i −0.343906 + 0.343906i
\(682\) 0 0
\(683\) 4.00643 4.00643i 0.153302 0.153302i −0.626289 0.779591i \(-0.715427\pi\)
0.779591 + 0.626289i \(0.215427\pi\)
\(684\) 0 0
\(685\) 34.2071 + 17.8235i 1.30699 + 0.681002i
\(686\) 0 0
\(687\) −13.3171 13.3171i −0.508081 0.508081i
\(688\) 0 0
\(689\) 19.3435 0.736928
\(690\) 0 0
\(691\) 35.0459 1.33321 0.666605 0.745411i \(-0.267747\pi\)
0.666605 + 0.745411i \(0.267747\pi\)
\(692\) 0 0
\(693\) 2.14456 0.0814652
\(694\) 0 0
\(695\) 11.9496 22.9339i 0.453275 0.869932i
\(696\) 0 0
\(697\) 36.5669 + 36.5669i 1.38507 + 1.38507i
\(698\) 0 0
\(699\) 16.7342 + 16.7342i 0.632944 + 0.632944i
\(700\) 0 0
\(701\) 8.32138i 0.314294i 0.987575 + 0.157147i \(0.0502297\pi\)
−0.987575 + 0.157147i \(0.949770\pi\)
\(702\) 0 0
\(703\) −6.00722 + 6.00722i −0.226567 + 0.226567i
\(704\) 0 0
\(705\) −10.1189 5.27242i −0.381100 0.198571i
\(706\) 0 0
\(707\) −9.14065 −0.343770
\(708\) 0 0
\(709\) 49.8400 1.87178 0.935891 0.352290i \(-0.114597\pi\)
0.935891 + 0.352290i \(0.114597\pi\)
\(710\) 0 0
\(711\) 0.178306 + 0.178306i 0.00668698 + 0.00668698i
\(712\) 0 0
\(713\) 33.3681i 1.24965i
\(714\) 0 0
\(715\) −33.0389 17.2148i −1.23559 0.643798i
\(716\) 0 0
\(717\) −3.53427 −0.131990
\(718\) 0 0
\(719\) 3.66305i 0.136609i −0.997665 0.0683043i \(-0.978241\pi\)
0.997665 0.0683043i \(-0.0217589\pi\)
\(720\) 0 0
\(721\) 5.77992 0.215255
\(722\) 0 0
\(723\) −10.4423 −0.388353
\(724\) 0 0
\(725\) −1.38585 26.8901i −0.0514691 0.998675i
\(726\) 0 0
\(727\) 11.7765 0.436767 0.218384 0.975863i \(-0.429922\pi\)
0.218384 + 0.975863i \(0.429922\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 62.7906i 2.32240i
\(732\) 0 0
\(733\) 44.8890 1.65801 0.829007 0.559239i \(-0.188907\pi\)
0.829007 + 0.559239i \(0.188907\pi\)
\(734\) 0 0
\(735\) 13.3157 + 6.93811i 0.491157 + 0.255916i
\(736\) 0 0
\(737\) 13.1220i 0.483356i
\(738\) 0 0
\(739\) 29.0735 + 29.0735i 1.06949 + 1.06949i 0.997398 + 0.0720891i \(0.0229666\pi\)
0.0720891 + 0.997398i \(0.477033\pi\)
\(740\) 0 0
\(741\) −5.38981 −0.197999
\(742\) 0 0
\(743\) 33.7767 1.23915 0.619574 0.784939i \(-0.287306\pi\)
0.619574 + 0.784939i \(0.287306\pi\)
\(744\) 0 0
\(745\) 24.3027 + 12.6628i 0.890381 + 0.463930i
\(746\) 0 0
\(747\) −1.51709 + 1.51709i −0.0555075 + 0.0555075i
\(748\) 0 0
\(749\) 1.02399i 0.0374158i
\(750\) 0 0
\(751\) −25.4756 25.4756i −0.929618 0.929618i 0.0680628 0.997681i \(-0.478318\pi\)
−0.997681 + 0.0680628i \(0.978318\pi\)
\(752\) 0 0
\(753\) 20.1681 + 20.1681i 0.734967 + 0.734967i
\(754\) 0 0
\(755\) 3.93583 7.55370i 0.143240 0.274907i
\(756\) 0 0
\(757\) −10.0465 −0.365146 −0.182573 0.983192i \(-0.558443\pi\)
−0.182573 + 0.983192i \(0.558443\pi\)
\(758\) 0 0
\(759\) −21.2481 −0.771258
\(760\) 0 0
\(761\) 25.0662 0.908648 0.454324 0.890837i \(-0.349881\pi\)
0.454324 + 0.890837i \(0.349881\pi\)
\(762\) 0 0
\(763\) 2.29255 + 2.29255i 0.0829959 + 0.0829959i
\(764\) 0 0
\(765\) 10.7526 + 5.60263i 0.388762 + 0.202563i
\(766\) 0 0
\(767\) 5.30198 5.30198i 0.191443 0.191443i
\(768\) 0 0
\(769\) −11.5564 + 11.5564i −0.416733 + 0.416733i −0.884076 0.467343i \(-0.845211\pi\)
0.467343 + 0.884076i \(0.345211\pi\)
\(770\) 0 0
\(771\) −19.2203 + 19.2203i −0.692203 + 0.692203i
\(772\) 0 0
\(773\) 21.8837i 0.787101i −0.919303 0.393550i \(-0.871247\pi\)
0.919303 0.393550i \(-0.128753\pi\)
\(774\) 0 0
\(775\) 31.0505 + 5.49922i 1.11537 + 0.197538i
\(776\) 0 0
\(777\) 2.46916 + 2.46916i 0.0885806 + 0.0885806i
\(778\) 0 0
\(779\) 12.3904i 0.443934i
\(780\) 0 0
\(781\) −15.6262 15.6262i −0.559149 0.559149i
\(782\) 0 0
\(783\) 2.85422 4.56656i 0.102001 0.163195i
\(784\) 0 0
\(785\) 17.5350 33.6534i 0.625851 1.20114i
\(786\) 0 0
\(787\) −10.8294 + 10.8294i −0.386027 + 0.386027i −0.873268 0.487241i \(-0.838003\pi\)
0.487241 + 0.873268i \(0.338003\pi\)
\(788\) 0 0
\(789\) 29.0825 1.03536
\(790\) 0 0
\(791\) 1.00278 + 1.00278i 0.0356548 + 0.0356548i
\(792\) 0 0
\(793\) −36.0962 −1.28181
\(794\) 0 0
\(795\) −3.13139 9.94460i −0.111059 0.352698i
\(796\) 0 0
\(797\) 19.8698 0.703824 0.351912 0.936033i \(-0.385532\pi\)
0.351912 + 0.936033i \(0.385532\pi\)
\(798\) 0 0
\(799\) 27.6688i 0.978853i
\(800\) 0 0
\(801\) −10.0729 10.0729i −0.355908 0.355908i
\(802\) 0 0
\(803\) −5.08424 + 5.08424i −0.179419 + 0.179419i
\(804\) 0 0
\(805\) 5.60273 + 2.91929i 0.197470 + 0.102891i
\(806\) 0 0
\(807\) −6.53556 6.53556i −0.230062 0.230062i
\(808\) 0 0
\(809\) −28.3698 + 28.3698i −0.997430 + 0.997430i −0.999997 0.00256626i \(-0.999183\pi\)
0.00256626 + 0.999997i \(0.499183\pi\)
\(810\) 0 0
\(811\) 37.7726i 1.32638i 0.748453 + 0.663188i \(0.230797\pi\)
−0.748453 + 0.663188i \(0.769203\pi\)
\(812\) 0 0
\(813\) 20.6798 20.6798i 0.725272 0.725272i
\(814\) 0 0
\(815\) 36.0712 + 18.7948i 1.26352 + 0.658353i
\(816\) 0 0
\(817\) −10.6381 + 10.6381i −0.372179 + 0.372179i
\(818\) 0 0
\(819\) 2.21538i 0.0774117i
\(820\) 0 0
\(821\) 19.0162i 0.663671i −0.943337 0.331836i \(-0.892332\pi\)
0.943337 0.331836i \(-0.107668\pi\)
\(822\) 0 0
\(823\) 41.3158i 1.44018i 0.693881 + 0.720090i \(0.255899\pi\)
−0.693881 + 0.720090i \(0.744101\pi\)
\(824\) 0 0
\(825\) −3.50179 + 19.7723i −0.121917 + 0.688384i
\(826\) 0 0
\(827\) 30.9484i 1.07618i −0.842887 0.538091i \(-0.819146\pi\)
0.842887 0.538091i \(-0.180854\pi\)
\(828\) 0 0
\(829\) −21.3285 21.3285i −0.740769 0.740769i 0.231957 0.972726i \(-0.425487\pi\)
−0.972726 + 0.231957i \(0.925487\pi\)
\(830\) 0 0
\(831\) 14.0705 14.0705i 0.488099 0.488099i
\(832\) 0 0
\(833\) 36.4101i 1.26154i
\(834\) 0 0
\(835\) 11.5770 3.64541i 0.400638 0.126154i
\(836\) 0 0
\(837\) 4.45954 + 4.45954i 0.154144 + 0.154144i
\(838\) 0 0
\(839\) −29.4872 + 29.4872i −1.01801 + 1.01801i −0.0181779 + 0.999835i \(0.505787\pi\)
−0.999835 + 0.0181779i \(0.994213\pi\)
\(840\) 0 0
\(841\) 12.7069 + 26.0679i 0.438168 + 0.898893i
\(842\) 0 0
\(843\) 14.3473i 0.494148i
\(844\) 0 0
\(845\) 4.35105 8.35059i 0.149681 0.287269i
\(846\) 0 0
\(847\) 1.93643 1.93643i 0.0665364 0.0665364i
\(848\) 0 0
\(849\) −7.32276 + 7.32276i −0.251316 + 0.251316i
\(850\) 0 0
\(851\) −24.4642 24.4642i −0.838621 0.838621i
\(852\) 0 0
\(853\) −34.6831 −1.18753 −0.593763 0.804640i \(-0.702358\pi\)
−0.593763 + 0.804640i \(0.702358\pi\)
\(854\) 0 0
\(855\) 0.872522 + 2.77093i 0.0298396 + 0.0947639i
\(856\) 0 0
\(857\) 23.8368 + 23.8368i 0.814249 + 0.814249i 0.985268 0.171019i \(-0.0547060\pi\)
−0.171019 + 0.985268i \(0.554706\pi\)
\(858\) 0 0
\(859\) 21.5103 21.5103i 0.733922 0.733922i −0.237472 0.971394i \(-0.576319\pi\)
0.971394 + 0.237472i \(0.0763188\pi\)
\(860\) 0 0
\(861\) 5.09286 0.173564
\(862\) 0 0
\(863\) −1.46109 1.46109i −0.0497360 0.0497360i 0.681801 0.731537i \(-0.261197\pi\)
−0.731537 + 0.681801i \(0.761197\pi\)
\(864\) 0 0
\(865\) 0.488492 + 1.55134i 0.0166092 + 0.0527472i
\(866\) 0 0
\(867\) 12.4017i 0.421184i
\(868\) 0 0
\(869\) 1.01268 0.0343529
\(870\) 0 0
\(871\) −13.5553 −0.459305
\(872\) 0 0
\(873\) 3.31231i 0.112105i
\(874\) 0 0
\(875\) 3.63988 4.73248i 0.123051 0.159987i
\(876\) 0 0
\(877\) 14.7667 + 14.7667i 0.498637 + 0.498637i 0.911013 0.412377i \(-0.135301\pi\)
−0.412377 + 0.911013i \(0.635301\pi\)
\(878\) 0 0
\(879\) −6.12781 −0.206686
\(880\) 0 0
\(881\) 39.9760 39.9760i 1.34683 1.34683i 0.457740 0.889086i \(-0.348659\pi\)
0.889086 0.457740i \(-0.151341\pi\)
\(882\) 0 0
\(883\) −6.56378 6.56378i −0.220889 0.220889i 0.587984 0.808873i \(-0.299922\pi\)
−0.808873 + 0.587984i \(0.799922\pi\)
\(884\) 0 0
\(885\) −3.58408 1.86747i −0.120478 0.0627745i
\(886\) 0 0
\(887\) 28.4365 0.954805 0.477402 0.878685i \(-0.341578\pi\)
0.477402 + 0.878685i \(0.341578\pi\)
\(888\) 0 0
\(889\) 3.26010 + 3.26010i 0.109340 + 0.109340i
\(890\) 0 0
\(891\) −2.83974 + 2.83974i −0.0951349 + 0.0951349i
\(892\) 0 0
\(893\) −4.68769 + 4.68769i −0.156868 + 0.156868i
\(894\) 0 0
\(895\) −37.9201 19.7581i −1.26753 0.660442i
\(896\) 0 0
\(897\) 21.9498i 0.732882i
\(898\) 0 0
\(899\) −33.0932 + 7.63624i −1.10372 + 0.254683i
\(900\) 0 0
\(901\) −17.8773 + 17.8773i −0.595580 + 0.595580i
\(902\) 0 0
\(903\) 4.37259 + 4.37259i 0.145511 + 0.145511i
\(904\) 0 0
\(905\) 34.7296 + 18.0957i 1.15445 + 0.601523i
\(906\) 0 0
\(907\) 31.4844i 1.04542i 0.852510 + 0.522711i \(0.175079\pi\)
−0.852510 + 0.522711i \(0.824921\pi\)
\(908\) 0 0
\(909\) 12.1037 12.1037i 0.401454 0.401454i
\(910\) 0 0
\(911\) 16.4040 + 16.4040i 0.543488 + 0.543488i 0.924550 0.381062i \(-0.124441\pi\)
−0.381062 + 0.924550i \(0.624441\pi\)
\(912\) 0 0
\(913\) 8.61630i 0.285158i
\(914\) 0 0
\(915\) 5.84339 + 18.5573i 0.193176 + 0.613485i
\(916\) 0 0
\(917\) 9.34603i 0.308633i
\(918\) 0 0
\(919\) 13.3908i 0.441721i −0.975305 0.220861i \(-0.929113\pi\)
0.975305 0.220861i \(-0.0708866\pi\)
\(920\) 0 0
\(921\) 16.0771i 0.529760i
\(922\) 0 0
\(923\) 16.1422 16.1422i 0.531326 0.531326i
\(924\) 0 0
\(925\) −26.7968 + 18.7332i −0.881074 + 0.615943i
\(926\) 0 0
\(927\) −7.65353 + 7.65353i −0.251375 + 0.251375i
\(928\) 0 0
\(929\) 48.8551i 1.60289i 0.598072 + 0.801443i \(0.295934\pi\)
−0.598072 + 0.801443i \(0.704066\pi\)
\(930\) 0 0
\(931\) 6.16865 6.16865i 0.202169 0.202169i
\(932\) 0 0
\(933\) −18.0492 18.0492i −0.590906 0.590906i
\(934\) 0 0
\(935\) 46.4447 14.6247i 1.51890 0.478278i
\(936\) 0 0
\(937\) −6.57870 + 6.57870i −0.214917 + 0.214917i −0.806352 0.591435i \(-0.798561\pi\)
0.591435 + 0.806352i \(0.298561\pi\)
\(938\) 0 0
\(939\) 5.01014 + 5.01014i 0.163500 + 0.163500i
\(940\) 0 0
\(941\) 33.8776i 1.10438i 0.833719 + 0.552189i \(0.186207\pi\)
−0.833719 + 0.552189i \(0.813793\pi\)
\(942\) 0 0
\(943\) −50.4596 −1.64319
\(944\) 0 0
\(945\) 1.13894 0.358634i 0.0370497 0.0116664i
\(946\) 0 0
\(947\) 5.74167 0.186579 0.0932896 0.995639i \(-0.470262\pi\)
0.0932896 + 0.995639i \(0.470262\pi\)
\(948\) 0 0
\(949\) −5.25214 5.25214i −0.170492 0.170492i
\(950\) 0 0
\(951\) 23.0626 0.747857
\(952\) 0 0
\(953\) −31.5203 + 31.5203i −1.02104 + 1.02104i −0.0212679 + 0.999774i \(0.506770\pi\)
−0.999774 + 0.0212679i \(0.993230\pi\)
\(954\) 0 0
\(955\) 1.50766 0.474738i 0.0487868 0.0153622i
\(956\) 0 0
\(957\) −4.86260 21.0731i −0.157186 0.681196i
\(958\) 0 0
\(959\) −6.51356 6.51356i −0.210334 0.210334i
\(960\) 0 0
\(961\) 8.77497i 0.283064i
\(962\) 0 0
\(963\) 1.35592 + 1.35592i 0.0436941 + 0.0436941i
\(964\) 0 0
\(965\) −22.0162 + 42.2537i −0.708725 + 1.36019i
\(966\) 0 0
\(967\) 49.5135i 1.59225i 0.605135 + 0.796123i \(0.293119\pi\)
−0.605135 + 0.796123i \(0.706881\pi\)
\(968\) 0 0
\(969\) 4.98128 4.98128i 0.160022 0.160022i
\(970\) 0 0
\(971\) 40.6556 40.6556i 1.30470 1.30470i 0.379517 0.925185i \(-0.376090\pi\)
0.925185 0.379517i \(-0.123910\pi\)
\(972\) 0 0
\(973\) −4.36696 + 4.36696i −0.139998 + 0.139998i
\(974\) 0 0
\(975\) −20.4252 3.61742i −0.654131 0.115850i
\(976\) 0 0
\(977\) 24.0951 + 24.0951i 0.770872 + 0.770872i 0.978259 0.207387i \(-0.0664960\pi\)
−0.207387 + 0.978259i \(0.566496\pi\)
\(978\) 0 0
\(979\) −57.2088 −1.82840
\(980\) 0 0
\(981\) −6.07140 −0.193845
\(982\) 0 0
\(983\) −33.2209 −1.05958 −0.529790 0.848129i \(-0.677729\pi\)
−0.529790 + 0.848129i \(0.677729\pi\)
\(984\) 0 0
\(985\) 8.49104 + 26.9656i 0.270547 + 0.859196i
\(986\) 0 0
\(987\) 1.92679 + 1.92679i 0.0613304 + 0.0613304i
\(988\) 0 0
\(989\) −43.3232 43.3232i −1.37760 1.37760i
\(990\) 0 0
\(991\) 24.7495i 0.786194i −0.919497 0.393097i \(-0.871404\pi\)
0.919497 0.393097i \(-0.128596\pi\)
\(992\) 0 0
\(993\) 3.42940 3.42940i 0.108829 0.108829i
\(994\) 0 0
\(995\) −0.361827 + 0.694424i −0.0114707 + 0.0220147i
\(996\) 0 0
\(997\) −17.8353 −0.564850 −0.282425 0.959289i \(-0.591139\pi\)
−0.282425 + 0.959289i \(0.591139\pi\)
\(998\) 0 0
\(999\) −6.53912 −0.206889
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.2.bc.c.1177.3 yes 30
5.3 odd 4 1740.2.bb.c.133.13 30
29.12 odd 4 1740.2.bb.c.157.13 yes 30
145.128 even 4 inner 1740.2.bc.c.853.3 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.bb.c.133.13 30 5.3 odd 4
1740.2.bb.c.157.13 yes 30 29.12 odd 4
1740.2.bc.c.853.3 yes 30 145.128 even 4 inner
1740.2.bc.c.1177.3 yes 30 1.1 even 1 trivial