Properties

Label 1728.2.z.a.1583.7
Level $1728$
Weight $2$
Character 1728.1583
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1583.7
Character \(\chi\) \(=\) 1728.1583
Dual form 1728.2.z.a.143.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20583 + 0.323102i) q^{5} +(-0.140266 - 0.242948i) q^{7} +(-3.07444 - 0.823794i) q^{11} +(2.76539 - 0.740984i) q^{13} +3.72031i q^{17} +(4.10860 - 4.10860i) q^{19} +(-1.57595 - 0.909876i) q^{23} +(-2.98049 + 1.72078i) q^{25} +(3.83006 + 1.02626i) q^{29} +(-8.81101 - 5.08704i) q^{31} +(0.247635 + 0.247635i) q^{35} +(1.76964 - 1.76964i) q^{37} +(-2.66819 + 4.62144i) q^{41} +(1.84748 - 6.89490i) q^{43} +(-5.48486 - 9.50006i) q^{47} +(3.46065 - 5.99402i) q^{49} +(-8.58403 - 8.58403i) q^{53} +3.97344 q^{55} +(1.44299 + 5.38532i) q^{59} +(1.66977 - 6.23168i) q^{61} +(-3.09519 + 1.78701i) q^{65} +(1.00652 + 3.75640i) q^{67} -10.6808i q^{71} -9.30419i q^{73} +(0.231101 + 0.862479i) q^{77} +(-8.70990 + 5.02866i) q^{79} +(0.588691 - 2.19703i) q^{83} +(-1.20204 - 4.48608i) q^{85} +1.87637 q^{89} +(-0.567911 - 0.567911i) q^{91} +(-3.62679 + 6.28179i) q^{95} +(9.19070 + 15.9188i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.20583 + 0.323102i −0.539266 + 0.144496i −0.518164 0.855282i \(-0.673384\pi\)
−0.0211020 + 0.999777i \(0.506717\pi\)
\(6\) 0 0
\(7\) −0.140266 0.242948i −0.0530156 0.0918256i 0.838300 0.545210i \(-0.183550\pi\)
−0.891315 + 0.453384i \(0.850217\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.07444 0.823794i −0.926979 0.248383i −0.236413 0.971653i \(-0.575972\pi\)
−0.690566 + 0.723269i \(0.742639\pi\)
\(12\) 0 0
\(13\) 2.76539 0.740984i 0.766982 0.205512i 0.145944 0.989293i \(-0.453378\pi\)
0.621038 + 0.783781i \(0.286711\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.72031i 0.902309i 0.892446 + 0.451154i \(0.148988\pi\)
−0.892446 + 0.451154i \(0.851012\pi\)
\(18\) 0 0
\(19\) 4.10860 4.10860i 0.942577 0.942577i −0.0558614 0.998439i \(-0.517791\pi\)
0.998439 + 0.0558614i \(0.0177905\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.57595 0.909876i −0.328609 0.189722i 0.326615 0.945158i \(-0.394092\pi\)
−0.655223 + 0.755435i \(0.727425\pi\)
\(24\) 0 0
\(25\) −2.98049 + 1.72078i −0.596097 + 0.344157i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.83006 + 1.02626i 0.711224 + 0.190572i 0.596253 0.802797i \(-0.296656\pi\)
0.114972 + 0.993369i \(0.463322\pi\)
\(30\) 0 0
\(31\) −8.81101 5.08704i −1.58250 0.913659i −0.994493 0.104807i \(-0.966578\pi\)
−0.588012 0.808852i \(-0.700089\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.247635 + 0.247635i 0.0418579 + 0.0418579i
\(36\) 0 0
\(37\) 1.76964 1.76964i 0.290928 0.290928i −0.546519 0.837447i \(-0.684047\pi\)
0.837447 + 0.546519i \(0.184047\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.66819 + 4.62144i −0.416701 + 0.721747i −0.995605 0.0936482i \(-0.970147\pi\)
0.578904 + 0.815395i \(0.303480\pi\)
\(42\) 0 0
\(43\) 1.84748 6.89490i 0.281738 1.05146i −0.669452 0.742856i \(-0.733471\pi\)
0.951190 0.308606i \(-0.0998625\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.48486 9.50006i −0.800049 1.38573i −0.919583 0.392896i \(-0.871473\pi\)
0.119534 0.992830i \(-0.461860\pi\)
\(48\) 0 0
\(49\) 3.46065 5.99402i 0.494379 0.856289i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.58403 8.58403i −1.17911 1.17911i −0.979972 0.199135i \(-0.936187\pi\)
−0.199135 0.979972i \(-0.563813\pi\)
\(54\) 0 0
\(55\) 3.97344 0.535778
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.44299 + 5.38532i 0.187862 + 0.701109i 0.994000 + 0.109382i \(0.0348871\pi\)
−0.806138 + 0.591727i \(0.798446\pi\)
\(60\) 0 0
\(61\) 1.66977 6.23168i 0.213793 0.797885i −0.772796 0.634655i \(-0.781142\pi\)
0.986588 0.163230i \(-0.0521911\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.09519 + 1.78701i −0.383911 + 0.221651i
\(66\) 0 0
\(67\) 1.00652 + 3.75640i 0.122967 + 0.458918i 0.999759 0.0219514i \(-0.00698792\pi\)
−0.876792 + 0.480869i \(0.840321\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.6808i 1.26758i −0.773506 0.633789i \(-0.781499\pi\)
0.773506 0.633789i \(-0.218501\pi\)
\(72\) 0 0
\(73\) 9.30419i 1.08897i −0.838770 0.544487i \(-0.816725\pi\)
0.838770 0.544487i \(-0.183275\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.231101 + 0.862479i 0.0263364 + 0.0982886i
\(78\) 0 0
\(79\) −8.70990 + 5.02866i −0.979940 + 0.565769i −0.902252 0.431209i \(-0.858087\pi\)
−0.0776882 + 0.996978i \(0.524754\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.588691 2.19703i 0.0646173 0.241155i −0.926062 0.377372i \(-0.876828\pi\)
0.990679 + 0.136217i \(0.0434945\pi\)
\(84\) 0 0
\(85\) −1.20204 4.48608i −0.130380 0.486584i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.87637 0.198895 0.0994475 0.995043i \(-0.468292\pi\)
0.0994475 + 0.995043i \(0.468292\pi\)
\(90\) 0 0
\(91\) −0.567911 0.567911i −0.0595332 0.0595332i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.62679 + 6.28179i −0.372101 + 0.644498i
\(96\) 0 0
\(97\) 9.19070 + 15.9188i 0.933175 + 1.61631i 0.777857 + 0.628441i \(0.216307\pi\)
0.155317 + 0.987865i \(0.450360\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.18566 15.6211i 0.416488 1.55436i −0.365347 0.930871i \(-0.619050\pi\)
0.781836 0.623485i \(-0.214284\pi\)
\(102\) 0 0
\(103\) −0.0611378 + 0.105894i −0.00602409 + 0.0104340i −0.869022 0.494774i \(-0.835251\pi\)
0.862998 + 0.505208i \(0.168584\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.97359 5.97359i 0.577489 0.577489i −0.356722 0.934211i \(-0.616106\pi\)
0.934211 + 0.356722i \(0.116106\pi\)
\(108\) 0 0
\(109\) −3.40913 3.40913i −0.326536 0.326536i 0.524732 0.851268i \(-0.324166\pi\)
−0.851268 + 0.524732i \(0.824166\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.91330 1.10464i −0.179988 0.103916i 0.407299 0.913295i \(-0.366471\pi\)
−0.587287 + 0.809379i \(0.699804\pi\)
\(114\) 0 0
\(115\) 2.19432 + 0.587966i 0.204621 + 0.0548281i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.903842 0.521833i 0.0828551 0.0478364i
\(120\) 0 0
\(121\) −0.752719 0.434583i −0.0684290 0.0395075i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.45164 7.45164i 0.666495 0.666495i
\(126\) 0 0
\(127\) 3.63934i 0.322939i 0.986878 + 0.161470i \(0.0516234\pi\)
−0.986878 + 0.161470i \(0.948377\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.9890 + 4.01630i −1.30960 + 0.350906i −0.845072 0.534653i \(-0.820442\pi\)
−0.464527 + 0.885559i \(0.653776\pi\)
\(132\) 0 0
\(133\) −1.57447 0.421878i −0.136524 0.0365815i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.4065 18.0245i −0.889085 1.53994i −0.840959 0.541099i \(-0.818008\pi\)
−0.0481263 0.998841i \(-0.515325\pi\)
\(138\) 0 0
\(139\) −0.802043 + 0.214907i −0.0680284 + 0.0182282i −0.292673 0.956213i \(-0.594545\pi\)
0.224644 + 0.974441i \(0.427878\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.11246 −0.762022
\(144\) 0 0
\(145\) −4.95000 −0.411076
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.13681 + 1.37640i −0.420824 + 0.112759i −0.463015 0.886350i \(-0.653233\pi\)
0.0421919 + 0.999110i \(0.486566\pi\)
\(150\) 0 0
\(151\) 1.53487 + 2.65847i 0.124906 + 0.216343i 0.921696 0.387913i \(-0.126804\pi\)
−0.796790 + 0.604256i \(0.793471\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.2683 + 3.28727i 0.985410 + 0.264040i
\(156\) 0 0
\(157\) −5.63885 + 1.51093i −0.450029 + 0.120585i −0.476713 0.879059i \(-0.658172\pi\)
0.0266838 + 0.999644i \(0.491505\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.510499i 0.0402329i
\(162\) 0 0
\(163\) 12.5565 12.5565i 0.983500 0.983500i −0.0163656 0.999866i \(-0.505210\pi\)
0.999866 + 0.0163656i \(0.00520958\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0834 + 6.97635i 0.935041 + 0.539846i 0.888402 0.459066i \(-0.151816\pi\)
0.0466388 + 0.998912i \(0.485149\pi\)
\(168\) 0 0
\(169\) −4.16000 + 2.40178i −0.320000 + 0.184752i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.38993 + 0.640380i 0.181703 + 0.0486872i 0.348523 0.937300i \(-0.386683\pi\)
−0.166820 + 0.985987i \(0.553350\pi\)
\(174\) 0 0
\(175\) 0.836121 + 0.482735i 0.0632048 + 0.0364913i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.53870 + 9.53870i 0.712956 + 0.712956i 0.967153 0.254197i \(-0.0818111\pi\)
−0.254197 + 0.967153i \(0.581811\pi\)
\(180\) 0 0
\(181\) −6.83874 + 6.83874i −0.508320 + 0.508320i −0.914010 0.405691i \(-0.867031\pi\)
0.405691 + 0.914010i \(0.367031\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.56212 + 2.70567i −0.114849 + 0.198925i
\(186\) 0 0
\(187\) 3.06477 11.4379i 0.224118 0.836421i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.08629 12.2738i −0.512746 0.888102i −0.999891 0.0147810i \(-0.995295\pi\)
0.487145 0.873321i \(-0.338038\pi\)
\(192\) 0 0
\(193\) −6.47017 + 11.2067i −0.465733 + 0.806673i −0.999234 0.0391263i \(-0.987543\pi\)
0.533501 + 0.845799i \(0.320876\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.02294 + 8.02294i 0.571611 + 0.571611i 0.932578 0.360968i \(-0.117553\pi\)
−0.360968 + 0.932578i \(0.617553\pi\)
\(198\) 0 0
\(199\) −10.9199 −0.774093 −0.387046 0.922060i \(-0.626505\pi\)
−0.387046 + 0.922060i \(0.626505\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.287899 1.07445i −0.0202066 0.0754119i
\(204\) 0 0
\(205\) 1.72420 6.43478i 0.120423 0.449425i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −16.0163 + 9.24701i −1.10787 + 0.639629i
\(210\) 0 0
\(211\) 4.37047 + 16.3108i 0.300875 + 1.12288i 0.936438 + 0.350833i \(0.114101\pi\)
−0.635563 + 0.772049i \(0.719232\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.91103i 0.607727i
\(216\) 0 0
\(217\) 2.85415i 0.193753i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.75669 + 10.2881i 0.185435 + 0.692054i
\(222\) 0 0
\(223\) 12.3586 7.13522i 0.827591 0.477810i −0.0254364 0.999676i \(-0.508098\pi\)
0.853027 + 0.521867i \(0.174764\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.27906 + 8.50557i −0.151267 + 0.564535i 0.848130 + 0.529789i \(0.177729\pi\)
−0.999396 + 0.0347459i \(0.988938\pi\)
\(228\) 0 0
\(229\) −6.45185 24.0786i −0.426350 1.59116i −0.760957 0.648803i \(-0.775270\pi\)
0.334606 0.942358i \(-0.391397\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.51295 0.426678 0.213339 0.976978i \(-0.431566\pi\)
0.213339 + 0.976978i \(0.431566\pi\)
\(234\) 0 0
\(235\) 9.68332 + 9.68332i 0.631670 + 0.631670i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.36907 + 4.10336i −0.153243 + 0.265424i −0.932418 0.361382i \(-0.882305\pi\)
0.779175 + 0.626806i \(0.215638\pi\)
\(240\) 0 0
\(241\) 7.43805 + 12.8831i 0.479127 + 0.829872i 0.999713 0.0239367i \(-0.00762000\pi\)
−0.520586 + 0.853809i \(0.674287\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.23629 + 8.34594i −0.142871 + 0.533203i
\(246\) 0 0
\(247\) 8.31748 14.4063i 0.529228 0.916650i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.89508 6.89508i 0.435213 0.435213i −0.455184 0.890397i \(-0.650427\pi\)
0.890397 + 0.455184i \(0.150427\pi\)
\(252\) 0 0
\(253\) 4.09562 + 4.09562i 0.257489 + 0.257489i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.17437 1.25537i −0.135633 0.0783080i 0.430648 0.902520i \(-0.358285\pi\)
−0.566281 + 0.824212i \(0.691618\pi\)
\(258\) 0 0
\(259\) −0.678152 0.181710i −0.0421383 0.0112909i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.14718 + 1.81703i −0.194064 + 0.112043i −0.593884 0.804551i \(-0.702406\pi\)
0.399820 + 0.916594i \(0.369073\pi\)
\(264\) 0 0
\(265\) 13.1244 + 7.57740i 0.806228 + 0.465476i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.3633 12.3633i 0.753802 0.753802i −0.221384 0.975187i \(-0.571058\pi\)
0.975187 + 0.221384i \(0.0710575\pi\)
\(270\) 0 0
\(271\) 27.2658i 1.65628i 0.560523 + 0.828139i \(0.310600\pi\)
−0.560523 + 0.828139i \(0.689400\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.5809 2.83514i 0.638053 0.170966i
\(276\) 0 0
\(277\) −16.7042 4.47587i −1.00366 0.268929i −0.280680 0.959801i \(-0.590560\pi\)
−0.722977 + 0.690872i \(0.757227\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.04702 + 12.2058i 0.420390 + 0.728137i 0.995978 0.0896034i \(-0.0285600\pi\)
−0.575588 + 0.817740i \(0.695227\pi\)
\(282\) 0 0
\(283\) −0.628767 + 0.168478i −0.0373763 + 0.0100149i −0.277459 0.960738i \(-0.589492\pi\)
0.240082 + 0.970753i \(0.422826\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.49702 0.0883665
\(288\) 0 0
\(289\) 3.15927 0.185839
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.09169 2.16816i 0.472722 0.126665i −0.0145900 0.999894i \(-0.504644\pi\)
0.487312 + 0.873228i \(0.337978\pi\)
\(294\) 0 0
\(295\) −3.48002 6.02757i −0.202615 0.350939i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.03233 1.34841i −0.291027 0.0779804i
\(300\) 0 0
\(301\) −1.93424 + 0.518278i −0.111488 + 0.0298730i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.05388i 0.461164i
\(306\) 0 0
\(307\) −10.1250 + 10.1250i −0.577865 + 0.577865i −0.934315 0.356449i \(-0.883987\pi\)
0.356449 + 0.934315i \(0.383987\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.7848 7.95868i −0.781667 0.451295i 0.0553539 0.998467i \(-0.482371\pi\)
−0.837021 + 0.547171i \(0.815705\pi\)
\(312\) 0 0
\(313\) −9.90266 + 5.71730i −0.559732 + 0.323161i −0.753038 0.657977i \(-0.771412\pi\)
0.193306 + 0.981138i \(0.438079\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.3682 7.06533i −1.48098 0.396828i −0.574302 0.818644i \(-0.694726\pi\)
−0.906682 + 0.421815i \(0.861393\pi\)
\(318\) 0 0
\(319\) −10.9299 6.31036i −0.611955 0.353313i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.2853 + 15.2853i 0.850495 + 0.850495i
\(324\) 0 0
\(325\) −6.96714 + 6.96714i −0.386467 + 0.386467i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.53868 + 2.66507i −0.0848301 + 0.146930i
\(330\) 0 0
\(331\) −2.97493 + 11.1026i −0.163517 + 0.610254i 0.834708 + 0.550693i \(0.185637\pi\)
−0.998225 + 0.0595605i \(0.981030\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.42740 4.20439i −0.132623 0.229710i
\(336\) 0 0
\(337\) 4.37194 7.57242i 0.238155 0.412496i −0.722030 0.691862i \(-0.756791\pi\)
0.960185 + 0.279366i \(0.0901242\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.8983 + 22.8983i 1.24001 + 1.24001i
\(342\) 0 0
\(343\) −3.90537 −0.210870
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.832493 + 3.10690i 0.0446905 + 0.166787i 0.984664 0.174459i \(-0.0558176\pi\)
−0.939974 + 0.341246i \(0.889151\pi\)
\(348\) 0 0
\(349\) 8.57705 32.0100i 0.459119 1.71346i −0.216568 0.976268i \(-0.569486\pi\)
0.675687 0.737188i \(-0.263847\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.18886 4.15049i 0.382624 0.220908i −0.296335 0.955084i \(-0.595765\pi\)
0.678959 + 0.734176i \(0.262431\pi\)
\(354\) 0 0
\(355\) 3.45099 + 12.8793i 0.183160 + 0.683561i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.1616i 0.905754i 0.891573 + 0.452877i \(0.149602\pi\)
−0.891573 + 0.452877i \(0.850398\pi\)
\(360\) 0 0
\(361\) 14.7612i 0.776903i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.00621 + 11.2193i 0.157352 + 0.587246i
\(366\) 0 0
\(367\) 1.27977 0.738875i 0.0668034 0.0385690i −0.466226 0.884666i \(-0.654387\pi\)
0.533030 + 0.846097i \(0.321053\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.881424 + 3.28952i −0.0457612 + 0.170783i
\(372\) 0 0
\(373\) 8.48049 + 31.6496i 0.439103 + 1.63876i 0.731052 + 0.682322i \(0.239030\pi\)
−0.291948 + 0.956434i \(0.594304\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.3521 0.584661
\(378\) 0 0
\(379\) −19.2548 19.2548i −0.989053 0.989053i 0.0108880 0.999941i \(-0.496534\pi\)
−0.999941 + 0.0108880i \(0.996534\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.99635 + 6.92189i −0.204204 + 0.353692i −0.949879 0.312618i \(-0.898794\pi\)
0.745675 + 0.666310i \(0.232127\pi\)
\(384\) 0 0
\(385\) −0.557338 0.965338i −0.0284046 0.0491982i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.21212 8.25574i 0.112159 0.418583i −0.886900 0.461962i \(-0.847146\pi\)
0.999059 + 0.0433793i \(0.0138124\pi\)
\(390\) 0 0
\(391\) 3.38502 5.86303i 0.171188 0.296506i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.87792 8.87792i 0.446697 0.446697i
\(396\) 0 0
\(397\) 21.9949 + 21.9949i 1.10389 + 1.10389i 0.993936 + 0.109957i \(0.0350713\pi\)
0.109957 + 0.993936i \(0.464929\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.4215 + 8.90359i 0.770111 + 0.444624i 0.832914 0.553402i \(-0.186671\pi\)
−0.0628030 + 0.998026i \(0.520004\pi\)
\(402\) 0 0
\(403\) −28.1353 7.53883i −1.40152 0.375536i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.89849 + 3.98284i −0.341945 + 0.197422i
\(408\) 0 0
\(409\) 21.0100 + 12.1301i 1.03888 + 0.599797i 0.919515 0.393054i \(-0.128581\pi\)
0.119363 + 0.992851i \(0.461915\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.10595 1.10595i 0.0544202 0.0544202i
\(414\) 0 0
\(415\) 2.83946i 0.139383i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.0392 2.95796i 0.539302 0.144506i 0.0211217 0.999777i \(-0.493276\pi\)
0.518180 + 0.855271i \(0.326610\pi\)
\(420\) 0 0
\(421\) 16.7104 + 4.47753i 0.814413 + 0.218221i 0.641903 0.766786i \(-0.278145\pi\)
0.172511 + 0.985008i \(0.444812\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.40186 11.0883i −0.310536 0.537864i
\(426\) 0 0
\(427\) −1.74819 + 0.468425i −0.0846006 + 0.0226687i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.7821 1.62723 0.813613 0.581407i \(-0.197498\pi\)
0.813613 + 0.581407i \(0.197498\pi\)
\(432\) 0 0
\(433\) −32.7436 −1.57356 −0.786779 0.617235i \(-0.788253\pi\)
−0.786779 + 0.617235i \(0.788253\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2133 + 2.73664i −0.488567 + 0.130911i
\(438\) 0 0
\(439\) 14.7258 + 25.5058i 0.702824 + 1.21733i 0.967471 + 0.252982i \(0.0814113\pi\)
−0.264647 + 0.964345i \(0.585255\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.80422 2.35908i −0.418301 0.112083i 0.0435282 0.999052i \(-0.486140\pi\)
−0.461830 + 0.886969i \(0.652807\pi\)
\(444\) 0 0
\(445\) −2.26259 + 0.606260i −0.107257 + 0.0287395i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.79179i 0.131753i −0.997828 0.0658765i \(-0.979016\pi\)
0.997828 0.0658765i \(-0.0209843\pi\)
\(450\) 0 0
\(451\) 12.0103 12.0103i 0.565543 0.565543i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.868300 + 0.501313i 0.0407065 + 0.0235019i
\(456\) 0 0
\(457\) 1.90950 1.10245i 0.0893226 0.0515704i −0.454673 0.890658i \(-0.650244\pi\)
0.543996 + 0.839088i \(0.316911\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.1849 + 5.14058i 0.893531 + 0.239421i 0.676236 0.736685i \(-0.263610\pi\)
0.217295 + 0.976106i \(0.430277\pi\)
\(462\) 0 0
\(463\) 1.39347 + 0.804523i 0.0647602 + 0.0373893i 0.532031 0.846725i \(-0.321429\pi\)
−0.467270 + 0.884115i \(0.654762\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.94383 9.94383i −0.460145 0.460145i 0.438558 0.898703i \(-0.355489\pi\)
−0.898703 + 0.438558i \(0.855489\pi\)
\(468\) 0 0
\(469\) 0.771428 0.771428i 0.0356213 0.0356213i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.3600 + 19.6760i −0.522331 + 0.904704i
\(474\) 0 0
\(475\) −5.17561 + 19.3156i −0.237473 + 0.886262i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.3867 + 24.9185i 0.657346 + 1.13856i 0.981300 + 0.192483i \(0.0616542\pi\)
−0.323955 + 0.946073i \(0.605013\pi\)
\(480\) 0 0
\(481\) 3.58248 6.20504i 0.163347 0.282925i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.2259 16.2259i −0.736778 0.736778i
\(486\) 0 0
\(487\) −43.0194 −1.94939 −0.974697 0.223530i \(-0.928242\pi\)
−0.974697 + 0.223530i \(0.928242\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.40962 + 5.26076i 0.0636152 + 0.237415i 0.990411 0.138150i \(-0.0441155\pi\)
−0.926796 + 0.375565i \(0.877449\pi\)
\(492\) 0 0
\(493\) −3.81801 + 14.2490i −0.171955 + 0.641744i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.59488 + 1.49815i −0.116396 + 0.0672013i
\(498\) 0 0
\(499\) 4.61454 + 17.2217i 0.206575 + 0.770950i 0.988964 + 0.148159i \(0.0473347\pi\)
−0.782388 + 0.622791i \(0.785999\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.254767i 0.0113595i −0.999984 0.00567974i \(-0.998192\pi\)
0.999984 0.00567974i \(-0.00180793\pi\)
\(504\) 0 0
\(505\) 20.1888i 0.898391i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.84712 10.6256i −0.126196 0.470971i 0.873683 0.486495i \(-0.161725\pi\)
−0.999879 + 0.0155245i \(0.995058\pi\)
\(510\) 0 0
\(511\) −2.26043 + 1.30506i −0.0999956 + 0.0577325i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.0395075 0.147444i 0.00174091 0.00649716i
\(516\) 0 0
\(517\) 9.03680 + 33.7258i 0.397438 + 1.48326i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.17552 0.358176 0.179088 0.983833i \(-0.442685\pi\)
0.179088 + 0.983833i \(0.442685\pi\)
\(522\) 0 0
\(523\) 11.4305 + 11.4305i 0.499820 + 0.499820i 0.911382 0.411562i \(-0.135017\pi\)
−0.411562 + 0.911382i \(0.635017\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.9254 32.7797i 0.824403 1.42791i
\(528\) 0 0
\(529\) −9.84425 17.0507i −0.428011 0.741337i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.95417 + 14.7572i −0.171274 + 0.639204i
\(534\) 0 0
\(535\) −5.27308 + 9.13325i −0.227975 + 0.394865i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.5774 + 15.5774i −0.670967 + 0.670967i
\(540\) 0 0
\(541\) 9.93863 + 9.93863i 0.427295 + 0.427295i 0.887706 0.460411i \(-0.152298\pi\)
−0.460411 + 0.887706i \(0.652298\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.21235 + 3.00935i 0.223273 + 0.128906i
\(546\) 0 0
\(547\) −2.81747 0.754938i −0.120466 0.0322788i 0.198082 0.980185i \(-0.436529\pi\)
−0.318548 + 0.947907i \(0.603195\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.9527 11.5197i 0.850012 0.490755i
\(552\) 0 0
\(553\) 2.44341 + 1.41070i 0.103904 + 0.0599891i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.5964 + 11.5964i −0.491356 + 0.491356i −0.908733 0.417377i \(-0.862949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(558\) 0 0
\(559\) 20.4360i 0.864352i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.42718 + 1.99011i −0.313018 + 0.0838730i −0.411908 0.911225i \(-0.635138\pi\)
0.0988898 + 0.995098i \(0.468471\pi\)
\(564\) 0 0
\(565\) 2.66403 + 0.713826i 0.112077 + 0.0300309i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.7897 + 20.4204i 0.494250 + 0.856066i 0.999978 0.00662697i \(-0.00210945\pi\)
−0.505728 + 0.862693i \(0.668776\pi\)
\(570\) 0 0
\(571\) 7.46185 1.99940i 0.312269 0.0836722i −0.0992811 0.995059i \(-0.531654\pi\)
0.411550 + 0.911387i \(0.364988\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.26280 0.261177
\(576\) 0 0
\(577\) 16.4238 0.683733 0.341866 0.939749i \(-0.388941\pi\)
0.341866 + 0.939749i \(0.388941\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.616336 + 0.165147i −0.0255699 + 0.00685144i
\(582\) 0 0
\(583\) 19.3196 + 33.4626i 0.800137 + 1.38588i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −44.0249 11.7964i −1.81710 0.486891i −0.820680 0.571388i \(-0.806405\pi\)
−0.996424 + 0.0844969i \(0.973072\pi\)
\(588\) 0 0
\(589\) −57.1015 + 15.3003i −2.35283 + 0.630438i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.66931i 0.397071i −0.980094 0.198535i \(-0.936382\pi\)
0.980094 0.198535i \(-0.0636185\pi\)
\(594\) 0 0
\(595\) −0.921278 + 0.921278i −0.0377687 + 0.0377687i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.99479 5.19314i −0.367517 0.212186i 0.304856 0.952398i \(-0.401392\pi\)
−0.672373 + 0.740212i \(0.734725\pi\)
\(600\) 0 0
\(601\) −16.6353 + 9.60440i −0.678569 + 0.391772i −0.799316 0.600912i \(-0.794804\pi\)
0.120747 + 0.992683i \(0.461471\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.04807 + 0.280829i 0.0426101 + 0.0114173i
\(606\) 0 0
\(607\) 12.1261 + 7.00100i 0.492183 + 0.284162i 0.725480 0.688244i \(-0.241618\pi\)
−0.233297 + 0.972406i \(0.574951\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.2072 22.2072i −0.898406 0.898406i
\(612\) 0 0
\(613\) 17.8303 17.8303i 0.720159 0.720159i −0.248478 0.968637i \(-0.579930\pi\)
0.968637 + 0.248478i \(0.0799304\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.3668 42.2045i 0.980970 1.69909i 0.322340 0.946624i \(-0.395531\pi\)
0.658630 0.752467i \(-0.271136\pi\)
\(618\) 0 0
\(619\) 2.99775 11.1877i 0.120490 0.449673i −0.879149 0.476547i \(-0.841888\pi\)
0.999639 + 0.0268731i \(0.00855501\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.263191 0.455861i −0.0105445 0.0182637i
\(624\) 0 0
\(625\) 2.02612 3.50934i 0.0810447 0.140374i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.58363 + 6.58363i 0.262506 + 0.262506i
\(630\) 0 0
\(631\) −1.63509 −0.0650918 −0.0325459 0.999470i \(-0.510362\pi\)
−0.0325459 + 0.999470i \(0.510362\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.17588 4.38844i −0.0466633 0.174150i
\(636\) 0 0
\(637\) 5.12858 19.1401i 0.203202 0.758359i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.5608 19.3763i 1.32557 0.765319i 0.340960 0.940078i \(-0.389248\pi\)
0.984611 + 0.174759i \(0.0559148\pi\)
\(642\) 0 0
\(643\) −5.22528 19.5010i −0.206065 0.769044i −0.989122 0.147095i \(-0.953008\pi\)
0.783058 0.621949i \(-0.213659\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.2882i 1.11212i −0.831141 0.556062i \(-0.812312\pi\)
0.831141 0.556062i \(-0.187688\pi\)
\(648\) 0 0
\(649\) 17.7456i 0.696575i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.228971 0.854532i −0.00896033 0.0334404i 0.961301 0.275500i \(-0.0888436\pi\)
−0.970261 + 0.242060i \(0.922177\pi\)
\(654\) 0 0
\(655\) 16.7766 9.68599i 0.655517 0.378463i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.0375 48.6567i 0.507869 1.89539i 0.0671656 0.997742i \(-0.478604\pi\)
0.440704 0.897653i \(-0.354729\pi\)
\(660\) 0 0
\(661\) −7.17239 26.7677i −0.278974 1.04114i −0.953131 0.302557i \(-0.902160\pi\)
0.674158 0.738587i \(-0.264507\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.03486 0.0789086
\(666\) 0 0
\(667\) −5.10222 5.10222i −0.197559 0.197559i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.2672 + 17.7834i −0.396363 + 0.686520i
\(672\) 0 0
\(673\) −16.5237 28.6198i −0.636941 1.10321i −0.986100 0.166150i \(-0.946866\pi\)
0.349160 0.937063i \(-0.386467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.69118 + 10.0436i −0.103430 + 0.386007i −0.998162 0.0605961i \(-0.980700\pi\)
0.894732 + 0.446603i \(0.147367\pi\)
\(678\) 0 0
\(679\) 2.57829 4.46572i 0.0989455 0.171379i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −9.18142 + 9.18142i −0.351317 + 0.351317i −0.860600 0.509282i \(-0.829911\pi\)
0.509282 + 0.860600i \(0.329911\pi\)
\(684\) 0 0
\(685\) 18.3723 + 18.3723i 0.701968 + 0.701968i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −30.0988 17.3776i −1.14667 0.662033i
\(690\) 0 0
\(691\) −24.3744 6.53111i −0.927247 0.248455i −0.236567 0.971615i \(-0.576022\pi\)
−0.690680 + 0.723160i \(0.742689\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.897694 0.518284i 0.0340515 0.0196596i
\(696\) 0 0
\(697\) −17.1932 9.92649i −0.651239 0.375993i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32.8695 + 32.8695i −1.24146 + 1.24146i −0.282069 + 0.959394i \(0.591021\pi\)
−0.959394 + 0.282069i \(0.908979\pi\)
\(702\) 0 0
\(703\) 14.5415i 0.548443i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.38221 + 1.17421i −0.164810 + 0.0441607i
\(708\) 0 0
\(709\) 41.1714 + 11.0318i 1.54622 + 0.414310i 0.928271 0.371905i \(-0.121295\pi\)
0.617953 + 0.786215i \(0.287962\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.25715 + 16.0339i 0.346683 + 0.600473i
\(714\) 0 0
\(715\) 10.9881 2.94426i 0.410932 0.110109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.84226 −0.329761 −0.164880 0.986314i \(-0.552724\pi\)
−0.164880 + 0.986314i \(0.552724\pi\)
\(720\) 0 0
\(721\) 0.0343022 0.00127748
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.1814 + 3.53195i −0.489545 + 0.131173i
\(726\) 0 0
\(727\) −11.4146 19.7707i −0.423344 0.733254i 0.572920 0.819611i \(-0.305811\pi\)
−0.996264 + 0.0863576i \(0.972477\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 25.6512 + 6.87321i 0.948743 + 0.254215i
\(732\) 0 0
\(733\) −28.8645 + 7.73423i −1.06614 + 0.285670i −0.748905 0.662678i \(-0.769420\pi\)
−0.317232 + 0.948348i \(0.602753\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.3780i 0.455950i
\(738\) 0 0
\(739\) −6.92568 + 6.92568i −0.254765 + 0.254765i −0.822921 0.568156i \(-0.807657\pi\)
0.568156 + 0.822921i \(0.307657\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.7583 + 16.0262i 1.01835 + 0.587946i 0.913626 0.406555i \(-0.133270\pi\)
0.104726 + 0.994501i \(0.466603\pi\)
\(744\) 0 0
\(745\) 5.74942 3.31943i 0.210642 0.121614i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.28916 0.613380i −0.0836442 0.0224124i
\(750\) 0 0
\(751\) 7.35037 + 4.24374i 0.268219 + 0.154856i 0.628078 0.778151i \(-0.283842\pi\)
−0.359859 + 0.933007i \(0.617175\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.70975 2.70975i −0.0986179 0.0986179i
\(756\) 0 0
\(757\) −15.2511 + 15.2511i −0.554309 + 0.554309i −0.927682 0.373372i \(-0.878201\pi\)
0.373372 + 0.927682i \(0.378201\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.63439 + 2.83084i −0.0592465 + 0.102618i −0.894127 0.447813i \(-0.852203\pi\)
0.834881 + 0.550431i \(0.185536\pi\)
\(762\) 0 0
\(763\) −0.350056 + 1.30643i −0.0126729 + 0.0472959i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.98088 + 13.8233i 0.288173 + 0.499130i
\(768\) 0 0
\(769\) 19.1814 33.2232i 0.691701 1.19806i −0.279580 0.960123i \(-0.590195\pi\)
0.971280 0.237938i \(-0.0764716\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.0548 20.0548i −0.721320 0.721320i 0.247554 0.968874i \(-0.420373\pi\)
−0.968874 + 0.247554i \(0.920373\pi\)
\(774\) 0 0
\(775\) 35.0148 1.25777
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.02512 + 29.9501i 0.287530 + 1.07308i
\(780\) 0 0
\(781\) −8.79878 + 32.8375i −0.314845 + 1.17502i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.31134 3.64385i 0.225261 0.130055i
\(786\) 0 0
\(787\) −2.45116 9.14785i −0.0873744 0.326086i 0.908379 0.418148i \(-0.137321\pi\)
−0.995753 + 0.0920625i \(0.970654\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.619775i 0.0220367i
\(792\) 0 0
\(793\) 18.4703i 0.655900i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.19855 26.8654i −0.254986 0.951620i −0.968098 0.250571i \(-0.919382\pi\)
0.713112 0.701050i \(-0.247285\pi\)
\(798\) 0 0
\(799\) 35.3432 20.4054i 1.25035 0.721891i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.66474 + 28.6052i −0.270483 + 1.00946i
\(804\) 0 0
\(805\) −0.164943 0.615577i −0.00581349 0.0216962i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −48.8492 −1.71745 −0.858724 0.512439i \(-0.828742\pi\)
−0.858724 + 0.512439i \(0.828742\pi\)
\(810\) 0 0
\(811\) 5.86383 + 5.86383i 0.205907 + 0.205907i 0.802525 0.596618i \(-0.203489\pi\)
−0.596618 + 0.802525i \(0.703489\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.0840 + 19.1981i −0.388256 + 0.672480i
\(816\) 0 0
\(817\) −20.7378 35.9189i −0.725524 1.25664i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.828375 3.09154i 0.0289105 0.107895i −0.949963 0.312363i \(-0.898880\pi\)
0.978873 + 0.204467i \(0.0655462\pi\)
\(822\) 0 0
\(823\) 20.9908 36.3572i 0.731695 1.26733i −0.224464 0.974482i \(-0.572063\pi\)
0.956158 0.292850i \(-0.0946037\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.7209 + 12.7209i −0.442348 + 0.442348i −0.892800 0.450453i \(-0.851263\pi\)
0.450453 + 0.892800i \(0.351263\pi\)
\(828\) 0 0
\(829\) −10.4132 10.4132i −0.361665 0.361665i 0.502761 0.864425i \(-0.332318\pi\)
−0.864425 + 0.502761i \(0.832318\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.2996 + 12.8747i 0.772637 + 0.446082i
\(834\) 0 0
\(835\) −16.8246 4.50815i −0.582241 0.156011i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −25.7863 + 14.8877i −0.890241 + 0.513981i −0.874021 0.485888i \(-0.838496\pi\)
−0.0162196 + 0.999868i \(0.505163\pi\)
\(840\) 0 0
\(841\) −11.4986 6.63872i −0.396503 0.228921i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.24025 4.24025i 0.145869 0.145869i
\(846\) 0 0
\(847\) 0.243829i 0.00837805i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.39903 + 1.17872i −0.150797 + 0.0404059i
\(852\) 0 0
\(853\) −28.4092 7.61221i −0.972711 0.260637i −0.262739 0.964867i \(-0.584626\pi\)
−0.709972 + 0.704230i \(0.751292\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.3783 24.9039i −0.491152 0.850700i 0.508796 0.860887i \(-0.330091\pi\)
−0.999948 + 0.0101867i \(0.996757\pi\)
\(858\) 0 0
\(859\) −9.26004 + 2.48122i −0.315949 + 0.0846582i −0.413308 0.910591i \(-0.635627\pi\)
0.0973599 + 0.995249i \(0.468960\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.6895 1.31700 0.658502 0.752579i \(-0.271190\pi\)
0.658502 + 0.752579i \(0.271190\pi\)
\(864\) 0 0
\(865\) −3.08877 −0.105021
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 30.9207 8.28517i 1.04891 0.281055i
\(870\) 0 0
\(871\) 5.56687 + 9.64210i 0.188626 + 0.326710i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.85557 0.765148i −0.0965360 0.0258667i
\(876\) 0 0
\(877\) 33.8645 9.07397i 1.14352 0.306406i 0.363157 0.931728i \(-0.381699\pi\)
0.780367 + 0.625322i \(0.215032\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.5358i 0.523415i −0.965147 0.261708i \(-0.915714\pi\)
0.965147 0.261708i \(-0.0842856\pi\)
\(882\) 0 0
\(883\) 35.3696 35.3696i 1.19028 1.19028i 0.213292 0.976988i \(-0.431581\pi\)
0.976988 0.213292i \(-0.0684187\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.5037 12.9925i −0.755599 0.436246i 0.0721141 0.997396i \(-0.477025\pi\)
−0.827714 + 0.561151i \(0.810359\pi\)
\(888\) 0 0
\(889\) 0.884169 0.510475i 0.0296541 0.0171208i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −61.5670 16.4968i −2.06026 0.552045i
\(894\) 0 0
\(895\) −14.5841 8.42011i −0.487492 0.281453i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −28.5261 28.5261i −0.951398 0.951398i
\(900\) 0 0
\(901\) 31.9353 31.9353i 1.06392 1.06392i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.03678 10.4560i 0.200669 0.347569i
\(906\) 0 0
\(907\) −7.10188 + 26.5046i −0.235814 + 0.880070i 0.741966 + 0.670437i \(0.233894\pi\)
−0.977780 + 0.209633i \(0.932773\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.4177 + 40.5606i 0.775863 + 1.34383i 0.934308 + 0.356466i \(0.116018\pi\)
−0.158445 + 0.987368i \(0.550648\pi\)
\(912\) 0 0
\(913\) −3.61980 + 6.26967i −0.119798 + 0.207496i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.07820 + 3.07820i 0.101651 + 0.101651i
\(918\) 0 0
\(919\) 0.421071 0.0138899 0.00694493 0.999976i \(-0.497789\pi\)
0.00694493 + 0.999976i \(0.497789\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.91430 29.5366i −0.260503 0.972209i
\(924\) 0 0
\(925\) −2.22922 + 8.31957i −0.0732964 + 0.273546i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.41100 3.12404i 0.177529 0.102496i −0.408602 0.912713i \(-0.633984\pi\)
0.586131 + 0.810216i \(0.300650\pi\)
\(930\) 0 0
\(931\) −10.4086 38.8455i −0.341128 1.27311i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.7824i 0.483437i
\(936\) 0 0
\(937\) 41.2133i 1.34638i −0.739470 0.673189i \(-0.764924\pi\)
0.739470 0.673189i \(-0.235076\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.22526 12.0368i −0.105141 0.392390i 0.893221 0.449619i \(-0.148440\pi\)
−0.998361 + 0.0572290i \(0.981773\pi\)
\(942\) 0 0
\(943\) 8.40987 4.85544i 0.273863 0.158115i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.96886 14.8120i 0.128971 0.481325i −0.870979 0.491320i \(-0.836515\pi\)
0.999950 + 0.00999447i \(0.00318139\pi\)
\(948\) 0 0
\(949\) −6.89426 25.7297i −0.223797 0.835222i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.0192 −0.648486 −0.324243 0.945974i \(-0.605110\pi\)
−0.324243 + 0.945974i \(0.605110\pi\)
\(954\) 0 0
\(955\) 12.5106 + 12.5106i 0.404833 + 0.404833i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.91935 + 5.05646i −0.0942707 + 0.163282i
\(960\) 0 0
\(961\) 36.2559 + 62.7971i 1.16955 + 2.02571i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.18105 15.6039i 0.134593 0.502307i
\(966\) 0 0
\(967\) 16.3485 28.3164i 0.525732 0.910594i −0.473819 0.880622i \(-0.657125\pi\)
0.999551 0.0299719i \(-0.00954179\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.2406 + 12.2406i −0.392820 + 0.392820i −0.875691 0.482871i \(-0.839594\pi\)
0.482871 + 0.875691i \(0.339594\pi\)
\(972\) 0 0
\(973\) 0.164710 + 0.164710i 0.00528037 + 0.00528037i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.1771 19.7322i −1.09342 0.631288i −0.158938 0.987289i \(-0.550807\pi\)
−0.934486 + 0.356000i \(0.884140\pi\)
\(978\) 0 0
\(979\) −5.76880 1.54575i −0.184372 0.0494022i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.78032 2.18257i 0.120574 0.0696132i −0.438500 0.898731i \(-0.644490\pi\)
0.559074 + 0.829118i \(0.311157\pi\)
\(984\) 0 0
\(985\) −12.2666 7.08211i −0.390845 0.225655i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.18504 + 9.18504i −0.292067 + 0.292067i
\(990\) 0 0
\(991\) 21.1610i 0.672200i 0.941826 + 0.336100i \(0.109108\pi\)
−0.941826 + 0.336100i \(0.890892\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.1676 3.52825i 0.417441 0.111853i
\(996\) 0 0
\(997\) 12.7473 + 3.41563i 0.403712 + 0.108174i 0.454960 0.890512i \(-0.349653\pi\)
−0.0512486 + 0.998686i \(0.516320\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.1583.7 88
3.2 odd 2 576.2.y.a.239.6 88
4.3 odd 2 432.2.v.a.179.7 88
9.2 odd 6 inner 1728.2.z.a.1007.7 88
9.7 even 3 576.2.y.a.47.17 88
12.11 even 2 144.2.u.a.131.16 yes 88
16.5 even 4 432.2.v.a.395.1 88
16.11 odd 4 inner 1728.2.z.a.719.7 88
36.7 odd 6 144.2.u.a.83.22 yes 88
36.11 even 6 432.2.v.a.35.1 88
48.5 odd 4 144.2.u.a.59.22 yes 88
48.11 even 4 576.2.y.a.527.17 88
144.11 even 12 inner 1728.2.z.a.143.7 88
144.43 odd 12 576.2.y.a.335.6 88
144.101 odd 12 432.2.v.a.251.7 88
144.133 even 12 144.2.u.a.11.16 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.16 88 144.133 even 12
144.2.u.a.59.22 yes 88 48.5 odd 4
144.2.u.a.83.22 yes 88 36.7 odd 6
144.2.u.a.131.16 yes 88 12.11 even 2
432.2.v.a.35.1 88 36.11 even 6
432.2.v.a.179.7 88 4.3 odd 2
432.2.v.a.251.7 88 144.101 odd 12
432.2.v.a.395.1 88 16.5 even 4
576.2.y.a.47.17 88 9.7 even 3
576.2.y.a.239.6 88 3.2 odd 2
576.2.y.a.335.6 88 144.43 odd 12
576.2.y.a.527.17 88 48.11 even 4
1728.2.z.a.143.7 88 144.11 even 12 inner
1728.2.z.a.719.7 88 16.11 odd 4 inner
1728.2.z.a.1007.7 88 9.2 odd 6 inner
1728.2.z.a.1583.7 88 1.1 even 1 trivial