Properties

Label 576.2.y.a.47.17
Level $576$
Weight $2$
Character 576.47
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.17
Character \(\chi\) \(=\) 576.47
Dual form 576.2.y.a.527.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32549 + 1.11494i) q^{3} +(0.323102 - 1.20583i) q^{5} +(-0.140266 + 0.242948i) q^{7} +(0.513832 + 2.95567i) q^{9} +(0.823794 + 3.07444i) q^{11} +(-0.740984 + 2.76539i) q^{13} +(1.77270 - 1.23808i) q^{15} +3.72031i q^{17} +(4.10860 - 4.10860i) q^{19} +(-0.456792 + 0.165636i) q^{21} +(1.57595 - 0.909876i) q^{23} +(2.98049 + 1.72078i) q^{25} +(-2.61431 + 4.49059i) q^{27} +(-1.02626 - 3.83006i) q^{29} +(8.81101 - 5.08704i) q^{31} +(-2.33588 + 4.99361i) q^{33} +(0.247635 + 0.247635i) q^{35} +(1.76964 - 1.76964i) q^{37} +(-4.06540 + 2.83934i) q^{39} +(-2.66819 - 4.62144i) q^{41} +(-6.89490 + 1.84748i) q^{43} +(3.73007 + 0.335387i) q^{45} +(-5.48486 + 9.50006i) q^{47} +(3.46065 + 5.99402i) q^{49} +(-4.14791 + 4.93123i) q^{51} +(-8.58403 - 8.58403i) q^{53} +3.97344 q^{55} +(10.0267 - 0.865067i) q^{57} +(-5.38532 - 1.44299i) q^{59} +(-6.23168 + 1.66977i) q^{61} +(-0.790146 - 0.289745i) q^{63} +(3.09519 + 1.78701i) q^{65} +(-3.75640 - 1.00652i) q^{67} +(3.10336 + 0.551057i) q^{69} -10.6808i q^{71} -9.30419i q^{73} +(2.03203 + 5.60393i) q^{75} +(-0.862479 - 0.231101i) q^{77} +(8.70990 + 5.02866i) q^{79} +(-8.47195 + 3.03744i) q^{81} +(-2.19703 + 0.588691i) q^{83} +(4.48608 + 1.20204i) q^{85} +(2.90998 - 6.22091i) q^{87} +1.87637 q^{89} +(-0.567911 - 0.567911i) q^{91} +(17.3506 + 3.08091i) q^{93} +(-3.62679 - 6.28179i) q^{95} +(9.19070 - 15.9188i) q^{97} +(-8.66374 + 4.01461i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.32549 + 1.11494i 0.765270 + 0.643709i
\(4\) 0 0
\(5\) 0.323102 1.20583i 0.144496 0.539266i −0.855282 0.518164i \(-0.826616\pi\)
0.999777 0.0211020i \(-0.00671747\pi\)
\(6\) 0 0
\(7\) −0.140266 + 0.242948i −0.0530156 + 0.0918256i −0.891315 0.453384i \(-0.850217\pi\)
0.838300 + 0.545210i \(0.183550\pi\)
\(8\) 0 0
\(9\) 0.513832 + 2.95567i 0.171277 + 0.985223i
\(10\) 0 0
\(11\) 0.823794 + 3.07444i 0.248383 + 0.926979i 0.971653 + 0.236413i \(0.0759719\pi\)
−0.723269 + 0.690566i \(0.757361\pi\)
\(12\) 0 0
\(13\) −0.740984 + 2.76539i −0.205512 + 0.766982i 0.783781 + 0.621038i \(0.213289\pi\)
−0.989293 + 0.145944i \(0.953378\pi\)
\(14\) 0 0
\(15\) 1.77270 1.23808i 0.457708 0.319671i
\(16\) 0 0
\(17\) 3.72031i 0.902309i 0.892446 + 0.451154i \(0.148988\pi\)
−0.892446 + 0.451154i \(0.851012\pi\)
\(18\) 0 0
\(19\) 4.10860 4.10860i 0.942577 0.942577i −0.0558614 0.998439i \(-0.517791\pi\)
0.998439 + 0.0558614i \(0.0177905\pi\)
\(20\) 0 0
\(21\) −0.456792 + 0.165636i −0.0996802 + 0.0361448i
\(22\) 0 0
\(23\) 1.57595 0.909876i 0.328609 0.189722i −0.326615 0.945158i \(-0.605908\pi\)
0.655223 + 0.755435i \(0.272575\pi\)
\(24\) 0 0
\(25\) 2.98049 + 1.72078i 0.596097 + 0.344157i
\(26\) 0 0
\(27\) −2.61431 + 4.49059i −0.503123 + 0.864215i
\(28\) 0 0
\(29\) −1.02626 3.83006i −0.190572 0.711224i −0.993369 0.114972i \(-0.963322\pi\)
0.802797 0.596253i \(-0.203344\pi\)
\(30\) 0 0
\(31\) 8.81101 5.08704i 1.58250 0.913659i 0.588012 0.808852i \(-0.299911\pi\)
0.994493 0.104807i \(-0.0334225\pi\)
\(32\) 0 0
\(33\) −2.33588 + 4.99361i −0.406625 + 0.869276i
\(34\) 0 0
\(35\) 0.247635 + 0.247635i 0.0418579 + 0.0418579i
\(36\) 0 0
\(37\) 1.76964 1.76964i 0.290928 0.290928i −0.546519 0.837447i \(-0.684047\pi\)
0.837447 + 0.546519i \(0.184047\pi\)
\(38\) 0 0
\(39\) −4.06540 + 2.83934i −0.650985 + 0.454658i
\(40\) 0 0
\(41\) −2.66819 4.62144i −0.416701 0.721747i 0.578904 0.815395i \(-0.303480\pi\)
−0.995605 + 0.0936482i \(0.970147\pi\)
\(42\) 0 0
\(43\) −6.89490 + 1.84748i −1.05146 + 0.281738i −0.742856 0.669452i \(-0.766529\pi\)
−0.308606 + 0.951190i \(0.599862\pi\)
\(44\) 0 0
\(45\) 3.73007 + 0.335387i 0.556046 + 0.0499965i
\(46\) 0 0
\(47\) −5.48486 + 9.50006i −0.800049 + 1.38573i 0.119534 + 0.992830i \(0.461860\pi\)
−0.919583 + 0.392896i \(0.871473\pi\)
\(48\) 0 0
\(49\) 3.46065 + 5.99402i 0.494379 + 0.856289i
\(50\) 0 0
\(51\) −4.14791 + 4.93123i −0.580824 + 0.690510i
\(52\) 0 0
\(53\) −8.58403 8.58403i −1.17911 1.17911i −0.979972 0.199135i \(-0.936187\pi\)
−0.199135 0.979972i \(-0.563813\pi\)
\(54\) 0 0
\(55\) 3.97344 0.535778
\(56\) 0 0
\(57\) 10.0267 0.865067i 1.32807 0.114581i
\(58\) 0 0
\(59\) −5.38532 1.44299i −0.701109 0.187862i −0.109382 0.994000i \(-0.534887\pi\)
−0.591727 + 0.806138i \(0.701554\pi\)
\(60\) 0 0
\(61\) −6.23168 + 1.66977i −0.797885 + 0.213793i −0.634655 0.772796i \(-0.718858\pi\)
−0.163230 + 0.986588i \(0.552191\pi\)
\(62\) 0 0
\(63\) −0.790146 0.289745i −0.0995491 0.0365045i
\(64\) 0 0
\(65\) 3.09519 + 1.78701i 0.383911 + 0.221651i
\(66\) 0 0
\(67\) −3.75640 1.00652i −0.458918 0.122967i 0.0219514 0.999759i \(-0.493012\pi\)
−0.480869 + 0.876792i \(0.659679\pi\)
\(68\) 0 0
\(69\) 3.10336 + 0.551057i 0.373600 + 0.0663395i
\(70\) 0 0
\(71\) 10.6808i 1.26758i −0.773506 0.633789i \(-0.781499\pi\)
0.773506 0.633789i \(-0.218501\pi\)
\(72\) 0 0
\(73\) 9.30419i 1.08897i −0.838770 0.544487i \(-0.816725\pi\)
0.838770 0.544487i \(-0.183275\pi\)
\(74\) 0 0
\(75\) 2.03203 + 5.60393i 0.234639 + 0.647086i
\(76\) 0 0
\(77\) −0.862479 0.231101i −0.0982886 0.0263364i
\(78\) 0 0
\(79\) 8.70990 + 5.02866i 0.979940 + 0.565769i 0.902252 0.431209i \(-0.141913\pi\)
0.0776882 + 0.996978i \(0.475246\pi\)
\(80\) 0 0
\(81\) −8.47195 + 3.03744i −0.941328 + 0.337493i
\(82\) 0 0
\(83\) −2.19703 + 0.588691i −0.241155 + 0.0646173i −0.377372 0.926062i \(-0.623172\pi\)
0.136217 + 0.990679i \(0.456506\pi\)
\(84\) 0 0
\(85\) 4.48608 + 1.20204i 0.486584 + 0.130380i
\(86\) 0 0
\(87\) 2.90998 6.22091i 0.311982 0.666952i
\(88\) 0 0
\(89\) 1.87637 0.198895 0.0994475 0.995043i \(-0.468292\pi\)
0.0994475 + 0.995043i \(0.468292\pi\)
\(90\) 0 0
\(91\) −0.567911 0.567911i −0.0595332 0.0595332i
\(92\) 0 0
\(93\) 17.3506 + 3.08091i 1.79917 + 0.319476i
\(94\) 0 0
\(95\) −3.62679 6.28179i −0.372101 0.644498i
\(96\) 0 0
\(97\) 9.19070 15.9188i 0.933175 1.61631i 0.155317 0.987865i \(-0.450360\pi\)
0.777857 0.628441i \(-0.216307\pi\)
\(98\) 0 0
\(99\) −8.66374 + 4.01461i −0.870739 + 0.403484i
\(100\) 0 0
\(101\) −15.6211 + 4.18566i −1.55436 + 0.416488i −0.930871 0.365347i \(-0.880950\pi\)
−0.623485 + 0.781836i \(0.714284\pi\)
\(102\) 0 0
\(103\) −0.0611378 0.105894i −0.00602409 0.0104340i 0.862998 0.505208i \(-0.168584\pi\)
−0.869022 + 0.494774i \(0.835251\pi\)
\(104\) 0 0
\(105\) 0.0521396 + 0.604333i 0.00508830 + 0.0589769i
\(106\) 0 0
\(107\) 5.97359 5.97359i 0.577489 0.577489i −0.356722 0.934211i \(-0.616106\pi\)
0.934211 + 0.356722i \(0.116106\pi\)
\(108\) 0 0
\(109\) −3.40913 3.40913i −0.326536 0.326536i 0.524732 0.851268i \(-0.324166\pi\)
−0.851268 + 0.524732i \(0.824166\pi\)
\(110\) 0 0
\(111\) 4.31868 0.372599i 0.409911 0.0353655i
\(112\) 0 0
\(113\) 1.91330 1.10464i 0.179988 0.103916i −0.407299 0.913295i \(-0.633529\pi\)
0.587287 + 0.809379i \(0.300196\pi\)
\(114\) 0 0
\(115\) −0.587966 2.19432i −0.0548281 0.204621i
\(116\) 0 0
\(117\) −8.55432 0.769157i −0.790847 0.0711086i
\(118\) 0 0
\(119\) −0.903842 0.521833i −0.0828551 0.0478364i
\(120\) 0 0
\(121\) 0.752719 0.434583i 0.0684290 0.0395075i
\(122\) 0 0
\(123\) 1.61596 9.10052i 0.145706 0.820566i
\(124\) 0 0
\(125\) 7.45164 7.45164i 0.666495 0.666495i
\(126\) 0 0
\(127\) 3.63934i 0.322939i 0.986878 + 0.161470i \(0.0516234\pi\)
−0.986878 + 0.161470i \(0.948377\pi\)
\(128\) 0 0
\(129\) −11.1989 5.23856i −0.986010 0.461229i
\(130\) 0 0
\(131\) 4.01630 14.9890i 0.350906 1.30960i −0.534653 0.845072i \(-0.679558\pi\)
0.885559 0.464527i \(-0.153776\pi\)
\(132\) 0 0
\(133\) 0.421878 + 1.57447i 0.0365815 + 0.136524i
\(134\) 0 0
\(135\) 4.57022 + 4.60334i 0.393342 + 0.396192i
\(136\) 0 0
\(137\) −10.4065 + 18.0245i −0.889085 + 1.53994i −0.0481263 + 0.998841i \(0.515325\pi\)
−0.840959 + 0.541099i \(0.818008\pi\)
\(138\) 0 0
\(139\) 0.214907 0.802043i 0.0182282 0.0680284i −0.956213 0.292673i \(-0.905455\pi\)
0.974441 + 0.224644i \(0.0721220\pi\)
\(140\) 0 0
\(141\) −17.8621 + 6.47693i −1.50426 + 0.545456i
\(142\) 0 0
\(143\) −9.11246 −0.762022
\(144\) 0 0
\(145\) −4.95000 −0.411076
\(146\) 0 0
\(147\) −2.09591 + 11.8034i −0.172868 + 0.973529i
\(148\) 0 0
\(149\) 1.37640 5.13681i 0.112759 0.420824i −0.886350 0.463015i \(-0.846767\pi\)
0.999110 + 0.0421919i \(0.0134341\pi\)
\(150\) 0 0
\(151\) 1.53487 2.65847i 0.124906 0.216343i −0.796790 0.604256i \(-0.793471\pi\)
0.921696 + 0.387913i \(0.126804\pi\)
\(152\) 0 0
\(153\) −10.9960 + 1.91162i −0.888975 + 0.154545i
\(154\) 0 0
\(155\) −3.28727 12.2683i −0.264040 0.985410i
\(156\) 0 0
\(157\) 1.51093 5.63885i 0.120585 0.450029i −0.879059 0.476713i \(-0.841828\pi\)
0.999644 + 0.0266838i \(0.00849471\pi\)
\(158\) 0 0
\(159\) −1.80737 20.9487i −0.143334 1.66134i
\(160\) 0 0
\(161\) 0.510499i 0.0402329i
\(162\) 0 0
\(163\) 12.5565 12.5565i 0.983500 0.983500i −0.0163656 0.999866i \(-0.505210\pi\)
0.999866 + 0.0163656i \(0.00520958\pi\)
\(164\) 0 0
\(165\) 5.26674 + 4.43013i 0.410015 + 0.344885i
\(166\) 0 0
\(167\) −12.0834 + 6.97635i −0.935041 + 0.539846i −0.888402 0.459066i \(-0.848184\pi\)
−0.0466388 + 0.998912i \(0.514851\pi\)
\(168\) 0 0
\(169\) 4.16000 + 2.40178i 0.320000 + 0.184752i
\(170\) 0 0
\(171\) 14.2548 + 10.0325i 1.09009 + 0.767206i
\(172\) 0 0
\(173\) −0.640380 2.38993i −0.0486872 0.181703i 0.937300 0.348523i \(-0.113317\pi\)
−0.985987 + 0.166820i \(0.946650\pi\)
\(174\) 0 0
\(175\) −0.836121 + 0.482735i −0.0632048 + 0.0364913i
\(176\) 0 0
\(177\) −5.52933 7.91696i −0.415610 0.595075i
\(178\) 0 0
\(179\) 9.53870 + 9.53870i 0.712956 + 0.712956i 0.967153 0.254197i \(-0.0818111\pi\)
−0.254197 + 0.967153i \(0.581811\pi\)
\(180\) 0 0
\(181\) −6.83874 + 6.83874i −0.508320 + 0.508320i −0.914010 0.405691i \(-0.867031\pi\)
0.405691 + 0.914010i \(0.367031\pi\)
\(182\) 0 0
\(183\) −10.1217 4.73466i −0.748218 0.349996i
\(184\) 0 0
\(185\) −1.56212 2.70567i −0.114849 0.198925i
\(186\) 0 0
\(187\) −11.4379 + 3.06477i −0.836421 + 0.224118i
\(188\) 0 0
\(189\) −0.724281 1.26502i −0.0526837 0.0920164i
\(190\) 0 0
\(191\) −7.08629 + 12.2738i −0.512746 + 0.888102i 0.487145 + 0.873321i \(0.338038\pi\)
−0.999891 + 0.0147810i \(0.995295\pi\)
\(192\) 0 0
\(193\) −6.47017 11.2067i −0.465733 0.806673i 0.533501 0.845799i \(-0.320876\pi\)
−0.999234 + 0.0391263i \(0.987543\pi\)
\(194\) 0 0
\(195\) 2.11023 + 5.81960i 0.151117 + 0.416750i
\(196\) 0 0
\(197\) 8.02294 + 8.02294i 0.571611 + 0.571611i 0.932578 0.360968i \(-0.117553\pi\)
−0.360968 + 0.932578i \(0.617553\pi\)
\(198\) 0 0
\(199\) −10.9199 −0.774093 −0.387046 0.922060i \(-0.626505\pi\)
−0.387046 + 0.922060i \(0.626505\pi\)
\(200\) 0 0
\(201\) −3.85685 5.52229i −0.272041 0.389512i
\(202\) 0 0
\(203\) 1.07445 + 0.287899i 0.0754119 + 0.0202066i
\(204\) 0 0
\(205\) −6.43478 + 1.72420i −0.449425 + 0.120423i
\(206\) 0 0
\(207\) 3.49907 + 4.19047i 0.243202 + 0.291258i
\(208\) 0 0
\(209\) 16.0163 + 9.24701i 1.10787 + 0.639629i
\(210\) 0 0
\(211\) −16.3108 4.37047i −1.12288 0.300875i −0.350833 0.936438i \(-0.614101\pi\)
−0.772049 + 0.635563i \(0.780768\pi\)
\(212\) 0 0
\(213\) 11.9084 14.1573i 0.815951 0.970039i
\(214\) 0 0
\(215\) 8.91103i 0.607727i
\(216\) 0 0
\(217\) 2.85415i 0.193753i
\(218\) 0 0
\(219\) 10.3736 12.3326i 0.700982 0.833359i
\(220\) 0 0
\(221\) −10.2881 2.75669i −0.692054 0.185435i
\(222\) 0 0
\(223\) −12.3586 7.13522i −0.827591 0.477810i 0.0254364 0.999676i \(-0.491902\pi\)
−0.853027 + 0.521867i \(0.825236\pi\)
\(224\) 0 0
\(225\) −3.55460 + 9.69352i −0.236973 + 0.646235i
\(226\) 0 0
\(227\) 8.50557 2.27906i 0.564535 0.151267i 0.0347459 0.999396i \(-0.488938\pi\)
0.529789 + 0.848130i \(0.322271\pi\)
\(228\) 0 0
\(229\) 24.0786 + 6.45185i 1.59116 + 0.426350i 0.942358 0.334606i \(-0.108603\pi\)
0.648803 + 0.760957i \(0.275270\pi\)
\(230\) 0 0
\(231\) −0.885543 1.26793i −0.0582644 0.0834237i
\(232\) 0 0
\(233\) 6.51295 0.426678 0.213339 0.976978i \(-0.431566\pi\)
0.213339 + 0.976978i \(0.431566\pi\)
\(234\) 0 0
\(235\) 9.68332 + 9.68332i 0.631670 + 0.631670i
\(236\) 0 0
\(237\) 5.93822 + 16.3764i 0.385729 + 1.06376i
\(238\) 0 0
\(239\) −2.36907 4.10336i −0.153243 0.265424i 0.779175 0.626806i \(-0.215638\pi\)
−0.932418 + 0.361382i \(0.882305\pi\)
\(240\) 0 0
\(241\) 7.43805 12.8831i 0.479127 0.829872i −0.520586 0.853809i \(-0.674287\pi\)
0.999713 + 0.0239367i \(0.00762000\pi\)
\(242\) 0 0
\(243\) −14.6160 5.41961i −0.937618 0.347668i
\(244\) 0 0
\(245\) 8.34594 2.23629i 0.533203 0.142871i
\(246\) 0 0
\(247\) 8.31748 + 14.4063i 0.529228 + 0.916650i
\(248\) 0 0
\(249\) −3.56848 1.66924i −0.226143 0.105784i
\(250\) 0 0
\(251\) 6.89508 6.89508i 0.435213 0.435213i −0.455184 0.890397i \(-0.650427\pi\)
0.890397 + 0.455184i \(0.150427\pi\)
\(252\) 0 0
\(253\) 4.09562 + 4.09562i 0.257489 + 0.257489i
\(254\) 0 0
\(255\) 4.60604 + 6.59499i 0.288442 + 0.412994i
\(256\) 0 0
\(257\) 2.17437 1.25537i 0.135633 0.0783080i −0.430648 0.902520i \(-0.641715\pi\)
0.566281 + 0.824212i \(0.308382\pi\)
\(258\) 0 0
\(259\) 0.181710 + 0.678152i 0.0112909 + 0.0421383i
\(260\) 0 0
\(261\) 10.7931 5.00130i 0.668074 0.309572i
\(262\) 0 0
\(263\) 3.14718 + 1.81703i 0.194064 + 0.112043i 0.593884 0.804551i \(-0.297594\pi\)
−0.399820 + 0.916594i \(0.630927\pi\)
\(264\) 0 0
\(265\) −13.1244 + 7.57740i −0.806228 + 0.465476i
\(266\) 0 0
\(267\) 2.48711 + 2.09204i 0.152209 + 0.128031i
\(268\) 0 0
\(269\) 12.3633 12.3633i 0.753802 0.753802i −0.221384 0.975187i \(-0.571058\pi\)
0.975187 + 0.221384i \(0.0710575\pi\)
\(270\) 0 0
\(271\) 27.2658i 1.65628i 0.560523 + 0.828139i \(0.310600\pi\)
−0.560523 + 0.828139i \(0.689400\pi\)
\(272\) 0 0
\(273\) −0.119574 1.38594i −0.00723694 0.0838811i
\(274\) 0 0
\(275\) −2.83514 + 10.5809i −0.170966 + 0.638053i
\(276\) 0 0
\(277\) 4.47587 + 16.7042i 0.268929 + 1.00366i 0.959801 + 0.280680i \(0.0905601\pi\)
−0.690872 + 0.722977i \(0.742773\pi\)
\(278\) 0 0
\(279\) 19.5630 + 23.4285i 1.17121 + 1.40263i
\(280\) 0 0
\(281\) 7.04702 12.2058i 0.420390 0.728137i −0.575588 0.817740i \(-0.695227\pi\)
0.995978 + 0.0896034i \(0.0285600\pi\)
\(282\) 0 0
\(283\) 0.168478 0.628767i 0.0100149 0.0373763i −0.960738 0.277459i \(-0.910508\pi\)
0.970753 + 0.240082i \(0.0771745\pi\)
\(284\) 0 0
\(285\) 2.19653 12.3701i 0.130111 0.732740i
\(286\) 0 0
\(287\) 1.49702 0.0883665
\(288\) 0 0
\(289\) 3.15927 0.185839
\(290\) 0 0
\(291\) 29.9306 10.8531i 1.75456 0.636218i
\(292\) 0 0
\(293\) −2.16816 + 8.09169i −0.126665 + 0.472722i −0.999894 0.0145900i \(-0.995356\pi\)
0.873228 + 0.487312i \(0.162022\pi\)
\(294\) 0 0
\(295\) −3.48002 + 6.02757i −0.202615 + 0.350939i
\(296\) 0 0
\(297\) −15.9597 4.33821i −0.926077 0.251728i
\(298\) 0 0
\(299\) 1.34841 + 5.03233i 0.0779804 + 0.291027i
\(300\) 0 0
\(301\) 0.518278 1.93424i 0.0298730 0.111488i
\(302\) 0 0
\(303\) −25.3723 11.8685i −1.45760 0.681827i
\(304\) 0 0
\(305\) 8.05388i 0.461164i
\(306\) 0 0
\(307\) −10.1250 + 10.1250i −0.577865 + 0.577865i −0.934315 0.356449i \(-0.883987\pi\)
0.356449 + 0.934315i \(0.383987\pi\)
\(308\) 0 0
\(309\) 0.0370275 0.208526i 0.00210642 0.0118626i
\(310\) 0 0
\(311\) 13.7848 7.95868i 0.781667 0.451295i −0.0553539 0.998467i \(-0.517629\pi\)
0.837021 + 0.547171i \(0.184295\pi\)
\(312\) 0 0
\(313\) 9.90266 + 5.71730i 0.559732 + 0.323161i 0.753038 0.657977i \(-0.228588\pi\)
−0.193306 + 0.981138i \(0.561921\pi\)
\(314\) 0 0
\(315\) −0.604683 + 0.859168i −0.0340700 + 0.0484086i
\(316\) 0 0
\(317\) 7.06533 + 26.3682i 0.396828 + 1.48098i 0.818644 + 0.574302i \(0.194726\pi\)
−0.421815 + 0.906682i \(0.638607\pi\)
\(318\) 0 0
\(319\) 10.9299 6.31036i 0.611955 0.353313i
\(320\) 0 0
\(321\) 14.5781 1.25774i 0.813670 0.0702004i
\(322\) 0 0
\(323\) 15.2853 + 15.2853i 0.850495 + 0.850495i
\(324\) 0 0
\(325\) −6.96714 + 6.96714i −0.386467 + 0.386467i
\(326\) 0 0
\(327\) −0.717795 8.31973i −0.0396941 0.460082i
\(328\) 0 0
\(329\) −1.53868 2.66507i −0.0848301 0.146930i
\(330\) 0 0
\(331\) 11.1026 2.97493i 0.610254 0.163517i 0.0595605 0.998225i \(-0.481030\pi\)
0.550693 + 0.834708i \(0.314363\pi\)
\(332\) 0 0
\(333\) 6.13978 + 4.32118i 0.336458 + 0.236799i
\(334\) 0 0
\(335\) −2.42740 + 4.20439i −0.132623 + 0.229710i
\(336\) 0 0
\(337\) 4.37194 + 7.57242i 0.238155 + 0.412496i 0.960185 0.279366i \(-0.0901242\pi\)
−0.722030 + 0.691862i \(0.756791\pi\)
\(338\) 0 0
\(339\) 3.76766 + 0.669016i 0.204631 + 0.0363360i
\(340\) 0 0
\(341\) 22.8983 + 22.8983i 1.24001 + 1.24001i
\(342\) 0 0
\(343\) −3.90537 −0.210870
\(344\) 0 0
\(345\) 1.66719 3.56409i 0.0897583 0.191884i
\(346\) 0 0
\(347\) −3.10690 0.832493i −0.166787 0.0446905i 0.174459 0.984664i \(-0.444182\pi\)
−0.341246 + 0.939974i \(0.610849\pi\)
\(348\) 0 0
\(349\) −32.0100 + 8.57705i −1.71346 + 0.459119i −0.976268 0.216568i \(-0.930514\pi\)
−0.737188 + 0.675687i \(0.763847\pi\)
\(350\) 0 0
\(351\) −10.4811 10.5570i −0.559439 0.563493i
\(352\) 0 0
\(353\) −7.18886 4.15049i −0.382624 0.220908i 0.296335 0.955084i \(-0.404235\pi\)
−0.678959 + 0.734176i \(0.737569\pi\)
\(354\) 0 0
\(355\) −12.8793 3.45099i −0.683561 0.183160i
\(356\) 0 0
\(357\) −0.616220 1.69941i −0.0326138 0.0899423i
\(358\) 0 0
\(359\) 17.1616i 0.905754i 0.891573 + 0.452877i \(0.149602\pi\)
−0.891573 + 0.452877i \(0.850398\pi\)
\(360\) 0 0
\(361\) 14.7612i 0.776903i
\(362\) 0 0
\(363\) 1.48225 + 0.263201i 0.0777981 + 0.0138145i
\(364\) 0 0
\(365\) −11.2193 3.00621i −0.587246 0.157352i
\(366\) 0 0
\(367\) −1.27977 0.738875i −0.0668034 0.0385690i 0.466226 0.884666i \(-0.345613\pi\)
−0.533030 + 0.846097i \(0.678947\pi\)
\(368\) 0 0
\(369\) 12.2884 10.2609i 0.639710 0.534162i
\(370\) 0 0
\(371\) 3.28952 0.881424i 0.170783 0.0457612i
\(372\) 0 0
\(373\) −31.6496 8.48049i −1.63876 0.439103i −0.682322 0.731052i \(-0.739030\pi\)
−0.956434 + 0.291948i \(0.905696\pi\)
\(374\) 0 0
\(375\) 18.1852 1.56895i 0.939078 0.0810200i
\(376\) 0 0
\(377\) 11.3521 0.584661
\(378\) 0 0
\(379\) −19.2548 19.2548i −0.989053 0.989053i 0.0108880 0.999941i \(-0.496534\pi\)
−0.999941 + 0.0108880i \(0.996534\pi\)
\(380\) 0 0
\(381\) −4.05763 + 4.82390i −0.207879 + 0.247136i
\(382\) 0 0
\(383\) −3.99635 6.92189i −0.204204 0.353692i 0.745675 0.666310i \(-0.232127\pi\)
−0.949879 + 0.312618i \(0.898794\pi\)
\(384\) 0 0
\(385\) −0.557338 + 0.965338i −0.0284046 + 0.0491982i
\(386\) 0 0
\(387\) −9.00336 19.4297i −0.457667 0.987669i
\(388\) 0 0
\(389\) −8.25574 + 2.21212i −0.418583 + 0.112159i −0.461962 0.886900i \(-0.652854\pi\)
0.0433793 + 0.999059i \(0.486188\pi\)
\(390\) 0 0
\(391\) 3.38502 + 5.86303i 0.171188 + 0.296506i
\(392\) 0 0
\(393\) 22.0354 15.3899i 1.11154 0.776316i
\(394\) 0 0
\(395\) 8.87792 8.87792i 0.446697 0.446697i
\(396\) 0 0
\(397\) 21.9949 + 21.9949i 1.10389 + 1.10389i 0.993936 + 0.109957i \(0.0350713\pi\)
0.109957 + 0.993936i \(0.464929\pi\)
\(398\) 0 0
\(399\) −1.19624 + 2.55731i −0.0598870 + 0.128026i
\(400\) 0 0
\(401\) −15.4215 + 8.90359i −0.770111 + 0.444624i −0.832914 0.553402i \(-0.813329\pi\)
0.0628030 + 0.998026i \(0.479996\pi\)
\(402\) 0 0
\(403\) 7.53883 + 28.1353i 0.375536 + 1.40152i
\(404\) 0 0
\(405\) 0.925337 + 11.1972i 0.0459803 + 0.556392i
\(406\) 0 0
\(407\) 6.89849 + 3.98284i 0.341945 + 0.197422i
\(408\) 0 0
\(409\) −21.0100 + 12.1301i −1.03888 + 0.599797i −0.919515 0.393054i \(-0.871419\pi\)
−0.119363 + 0.992851i \(0.538085\pi\)
\(410\) 0 0
\(411\) −33.8899 + 12.2887i −1.67166 + 0.606159i
\(412\) 0 0
\(413\) 1.10595 1.10595i 0.0544202 0.0544202i
\(414\) 0 0
\(415\) 2.83946i 0.139383i
\(416\) 0 0
\(417\) 1.17908 0.823490i 0.0577399 0.0403265i
\(418\) 0 0
\(419\) −2.95796 + 11.0392i −0.144506 + 0.539302i 0.855271 + 0.518180i \(0.173390\pi\)
−0.999777 + 0.0211217i \(0.993276\pi\)
\(420\) 0 0
\(421\) −4.47753 16.7104i −0.218221 0.814413i −0.985008 0.172511i \(-0.944812\pi\)
0.766786 0.641903i \(-0.221855\pi\)
\(422\) 0 0
\(423\) −30.8973 11.3300i −1.50228 0.550883i
\(424\) 0 0
\(425\) −6.40186 + 11.0883i −0.310536 + 0.537864i
\(426\) 0 0
\(427\) 0.468425 1.74819i 0.0226687 0.0846006i
\(428\) 0 0
\(429\) −12.0784 10.1598i −0.583153 0.490520i
\(430\) 0 0
\(431\) 33.7821 1.62723 0.813613 0.581407i \(-0.197498\pi\)
0.813613 + 0.581407i \(0.197498\pi\)
\(432\) 0 0
\(433\) −32.7436 −1.57356 −0.786779 0.617235i \(-0.788253\pi\)
−0.786779 + 0.617235i \(0.788253\pi\)
\(434\) 0 0
\(435\) −6.56117 5.51894i −0.314584 0.264613i
\(436\) 0 0
\(437\) 2.73664 10.2133i 0.130911 0.488567i
\(438\) 0 0
\(439\) 14.7258 25.5058i 0.702824 1.21733i −0.264647 0.964345i \(-0.585255\pi\)
0.967471 0.252982i \(-0.0814113\pi\)
\(440\) 0 0
\(441\) −15.9382 + 13.3085i −0.758960 + 0.633736i
\(442\) 0 0
\(443\) 2.35908 + 8.80422i 0.112083 + 0.418301i 0.999052 0.0435282i \(-0.0138598\pi\)
−0.886969 + 0.461830i \(0.847193\pi\)
\(444\) 0 0
\(445\) 0.606260 2.26259i 0.0287395 0.107257i
\(446\) 0 0
\(447\) 7.55162 5.27417i 0.357179 0.249460i
\(448\) 0 0
\(449\) 2.79179i 0.131753i −0.997828 0.0658765i \(-0.979016\pi\)
0.997828 0.0658765i \(-0.0209843\pi\)
\(450\) 0 0
\(451\) 12.0103 12.0103i 0.565543 0.565543i
\(452\) 0 0
\(453\) 4.99847 1.81248i 0.234848 0.0851579i
\(454\) 0 0
\(455\) −0.868300 + 0.501313i −0.0407065 + 0.0235019i
\(456\) 0 0
\(457\) −1.90950 1.10245i −0.0893226 0.0515704i 0.454673 0.890658i \(-0.349756\pi\)
−0.543996 + 0.839088i \(0.683089\pi\)
\(458\) 0 0
\(459\) −16.7064 9.72604i −0.779788 0.453972i
\(460\) 0 0
\(461\) −5.14058 19.1849i −0.239421 0.893531i −0.976106 0.217295i \(-0.930277\pi\)
0.736685 0.676236i \(-0.236390\pi\)
\(462\) 0 0
\(463\) −1.39347 + 0.804523i −0.0647602 + 0.0373893i −0.532031 0.846725i \(-0.678571\pi\)
0.467270 + 0.884115i \(0.345238\pi\)
\(464\) 0 0
\(465\) 9.32109 19.9265i 0.432255 0.924070i
\(466\) 0 0
\(467\) −9.94383 9.94383i −0.460145 0.460145i 0.438558 0.898703i \(-0.355489\pi\)
−0.898703 + 0.438558i \(0.855489\pi\)
\(468\) 0 0
\(469\) 0.771428 0.771428i 0.0356213 0.0356213i
\(470\) 0 0
\(471\) 8.28968 5.78964i 0.381968 0.266772i
\(472\) 0 0
\(473\) −11.3600 19.6760i −0.522331 0.904704i
\(474\) 0 0
\(475\) 19.3156 5.17561i 0.886262 0.237473i
\(476\) 0 0
\(477\) 20.9608 29.7823i 0.959729 1.36364i
\(478\) 0 0
\(479\) 14.3867 24.9185i 0.657346 1.13856i −0.323955 0.946073i \(-0.605013\pi\)
0.981300 0.192483i \(-0.0616542\pi\)
\(480\) 0 0
\(481\) 3.58248 + 6.20504i 0.163347 + 0.282925i
\(482\) 0 0
\(483\) −0.569174 + 0.676659i −0.0258983 + 0.0307891i
\(484\) 0 0
\(485\) −16.2259 16.2259i −0.736778 0.736778i
\(486\) 0 0
\(487\) −43.0194 −1.94939 −0.974697 0.223530i \(-0.928242\pi\)
−0.974697 + 0.223530i \(0.928242\pi\)
\(488\) 0 0
\(489\) 30.6432 2.64377i 1.38573 0.119556i
\(490\) 0 0
\(491\) −5.26076 1.40962i −0.237415 0.0636152i 0.138150 0.990411i \(-0.455885\pi\)
−0.375565 + 0.926796i \(0.622551\pi\)
\(492\) 0 0
\(493\) 14.2490 3.81801i 0.641744 0.171955i
\(494\) 0 0
\(495\) 2.04168 + 11.7442i 0.0917667 + 0.527861i
\(496\) 0 0
\(497\) 2.59488 + 1.49815i 0.116396 + 0.0672013i
\(498\) 0 0
\(499\) −17.2217 4.61454i −0.770950 0.206575i −0.148159 0.988964i \(-0.547335\pi\)
−0.622791 + 0.782388i \(0.714001\pi\)
\(500\) 0 0
\(501\) −23.7946 4.22516i −1.06306 0.188766i
\(502\) 0 0
\(503\) 0.254767i 0.0113595i −0.999984 0.00567974i \(-0.998192\pi\)
0.999984 0.00567974i \(-0.00180793\pi\)
\(504\) 0 0
\(505\) 20.1888i 0.898391i
\(506\) 0 0
\(507\) 2.83620 + 7.82166i 0.125960 + 0.347372i
\(508\) 0 0
\(509\) 10.6256 + 2.84712i 0.470971 + 0.126196i 0.486495 0.873683i \(-0.338275\pi\)
−0.0155245 + 0.999879i \(0.504942\pi\)
\(510\) 0 0
\(511\) 2.26043 + 1.30506i 0.0999956 + 0.0577325i
\(512\) 0 0
\(513\) 7.70890 + 29.1912i 0.340356 + 1.28882i
\(514\) 0 0
\(515\) −0.147444 + 0.0395075i −0.00649716 + 0.00174091i
\(516\) 0 0
\(517\) −33.7258 9.03680i −1.48326 0.397438i
\(518\) 0 0
\(519\) 1.81581 3.88180i 0.0797050 0.170392i
\(520\) 0 0
\(521\) 8.17552 0.358176 0.179088 0.983833i \(-0.442685\pi\)
0.179088 + 0.983833i \(0.442685\pi\)
\(522\) 0 0
\(523\) 11.4305 + 11.4305i 0.499820 + 0.499820i 0.911382 0.411562i \(-0.135017\pi\)
−0.411562 + 0.911382i \(0.635017\pi\)
\(524\) 0 0
\(525\) −1.64649 0.292364i −0.0718586 0.0127598i
\(526\) 0 0
\(527\) 18.9254 + 32.7797i 0.824403 + 1.42791i
\(528\) 0 0
\(529\) −9.84425 + 17.0507i −0.428011 + 0.741337i
\(530\) 0 0
\(531\) 1.49786 16.6587i 0.0650014 0.722925i
\(532\) 0 0
\(533\) 14.7572 3.95417i 0.639204 0.171274i
\(534\) 0 0
\(535\) −5.27308 9.13325i −0.227975 0.394865i
\(536\) 0 0
\(537\) 2.00838 + 23.2785i 0.0866679 + 1.00454i
\(538\) 0 0
\(539\) −15.5774 + 15.5774i −0.670967 + 0.670967i
\(540\) 0 0
\(541\) 9.93863 + 9.93863i 0.427295 + 0.427295i 0.887706 0.460411i \(-0.152298\pi\)
−0.460411 + 0.887706i \(0.652298\pi\)
\(542\) 0 0
\(543\) −16.6894 + 1.43990i −0.716212 + 0.0617920i
\(544\) 0 0
\(545\) −5.21235 + 3.00935i −0.223273 + 0.128906i
\(546\) 0 0
\(547\) 0.754938 + 2.81747i 0.0322788 + 0.120466i 0.980185 0.198082i \(-0.0634713\pi\)
−0.947907 + 0.318548i \(0.896805\pi\)
\(548\) 0 0
\(549\) −8.13733 17.5608i −0.347293 0.749476i
\(550\) 0 0
\(551\) −19.9527 11.5197i −0.850012 0.490755i
\(552\) 0 0
\(553\) −2.44341 + 1.41070i −0.103904 + 0.0599891i
\(554\) 0 0
\(555\) 0.946083 5.32800i 0.0401590 0.226161i
\(556\) 0 0
\(557\) −11.5964 + 11.5964i −0.491356 + 0.491356i −0.908733 0.417377i \(-0.862949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(558\) 0 0
\(559\) 20.4360i 0.864352i
\(560\) 0 0
\(561\) −18.5778 8.69021i −0.784356 0.366901i
\(562\) 0 0
\(563\) 1.99011 7.42718i 0.0838730 0.313018i −0.911225 0.411908i \(-0.864862\pi\)
0.995098 + 0.0988898i \(0.0315291\pi\)
\(564\) 0 0
\(565\) −0.713826 2.66403i −0.0300309 0.112077i
\(566\) 0 0
\(567\) 0.450388 2.48429i 0.0189145 0.104330i
\(568\) 0 0
\(569\) 11.7897 20.4204i 0.494250 0.856066i −0.505728 0.862693i \(-0.668776\pi\)
0.999978 + 0.00662697i \(0.00210945\pi\)
\(570\) 0 0
\(571\) −1.99940 + 7.46185i −0.0836722 + 0.312269i −0.995059 0.0992811i \(-0.968346\pi\)
0.911387 + 0.411550i \(0.135012\pi\)
\(572\) 0 0
\(573\) −23.0773 + 8.36802i −0.964069 + 0.349579i
\(574\) 0 0
\(575\) 6.26280 0.261177
\(576\) 0 0
\(577\) 16.4238 0.683733 0.341866 0.939749i \(-0.388941\pi\)
0.341866 + 0.939749i \(0.388941\pi\)
\(578\) 0 0
\(579\) 3.91859 22.0681i 0.162851 0.917119i
\(580\) 0 0
\(581\) 0.165147 0.616336i 0.00685144 0.0255699i
\(582\) 0 0
\(583\) 19.3196 33.4626i 0.800137 1.38588i
\(584\) 0 0
\(585\) −3.69140 + 10.0666i −0.152621 + 0.416202i
\(586\) 0 0
\(587\) 11.7964 + 44.0249i 0.486891 + 1.81710i 0.571388 + 0.820680i \(0.306405\pi\)
−0.0844969 + 0.996424i \(0.526928\pi\)
\(588\) 0 0
\(589\) 15.3003 57.1015i 0.630438 2.35283i
\(590\) 0 0
\(591\) 1.68923 + 19.5794i 0.0694858 + 0.805388i
\(592\) 0 0
\(593\) 9.66931i 0.397071i −0.980094 0.198535i \(-0.936382\pi\)
0.980094 0.198535i \(-0.0636185\pi\)
\(594\) 0 0
\(595\) −0.921278 + 0.921278i −0.0377687 + 0.0377687i
\(596\) 0 0
\(597\) −14.4742 12.1750i −0.592390 0.498290i
\(598\) 0 0
\(599\) 8.99479 5.19314i 0.367517 0.212186i −0.304856 0.952398i \(-0.598608\pi\)
0.672373 + 0.740212i \(0.265275\pi\)
\(600\) 0 0
\(601\) 16.6353 + 9.60440i 0.678569 + 0.391772i 0.799316 0.600912i \(-0.205196\pi\)
−0.120747 + 0.992683i \(0.538529\pi\)
\(602\) 0 0
\(603\) 1.04479 11.6199i 0.0425473 0.473197i
\(604\) 0 0
\(605\) −0.280829 1.04807i −0.0114173 0.0426101i
\(606\) 0 0
\(607\) −12.1261 + 7.00100i −0.492183 + 0.284162i −0.725480 0.688244i \(-0.758382\pi\)
0.233297 + 0.972406i \(0.425049\pi\)
\(608\) 0 0
\(609\) 1.10319 + 1.57955i 0.0447033 + 0.0640068i
\(610\) 0 0
\(611\) −22.2072 22.2072i −0.898406 0.898406i
\(612\) 0 0
\(613\) 17.8303 17.8303i 0.720159 0.720159i −0.248478 0.968637i \(-0.579930\pi\)
0.968637 + 0.248478i \(0.0799304\pi\)
\(614\) 0 0
\(615\) −10.4516 4.88898i −0.421449 0.197143i
\(616\) 0 0
\(617\) 24.3668 + 42.2045i 0.980970 + 1.69909i 0.658630 + 0.752467i \(0.271136\pi\)
0.322340 + 0.946624i \(0.395531\pi\)
\(618\) 0 0
\(619\) −11.1877 + 2.99775i −0.449673 + 0.120490i −0.476547 0.879149i \(-0.658112\pi\)
0.0268731 + 0.999639i \(0.491445\pi\)
\(620\) 0 0
\(621\) −0.0341372 + 9.45565i −0.00136988 + 0.379442i
\(622\) 0 0
\(623\) −0.263191 + 0.455861i −0.0105445 + 0.0182637i
\(624\) 0 0
\(625\) 2.02612 + 3.50934i 0.0810447 + 0.140374i
\(626\) 0 0
\(627\) 10.9196 + 30.1139i 0.436085 + 1.20264i
\(628\) 0 0
\(629\) 6.58363 + 6.58363i 0.262506 + 0.262506i
\(630\) 0 0
\(631\) −1.63509 −0.0650918 −0.0325459 0.999470i \(-0.510362\pi\)
−0.0325459 + 0.999470i \(0.510362\pi\)
\(632\) 0 0
\(633\) −16.7470 23.9785i −0.665632 0.953060i
\(634\) 0 0
\(635\) 4.38844 + 1.17588i 0.174150 + 0.0466633i
\(636\) 0 0
\(637\) −19.1401 + 5.12858i −0.758359 + 0.203202i
\(638\) 0 0
\(639\) 31.5689 5.48814i 1.24885 0.217107i
\(640\) 0 0
\(641\) −33.5608 19.3763i −1.32557 0.765319i −0.340960 0.940078i \(-0.610752\pi\)
−0.984611 + 0.174759i \(0.944085\pi\)
\(642\) 0 0
\(643\) 19.5010 + 5.22528i 0.769044 + 0.206065i 0.621949 0.783058i \(-0.286341\pi\)
0.147095 + 0.989122i \(0.453008\pi\)
\(644\) 0 0
\(645\) −9.93523 + 11.8115i −0.391199 + 0.465076i
\(646\) 0 0
\(647\) 28.2882i 1.11212i −0.831141 0.556062i \(-0.812312\pi\)
0.831141 0.556062i \(-0.187688\pi\)
\(648\) 0 0
\(649\) 17.7456i 0.696575i
\(650\) 0 0
\(651\) −3.18220 + 3.78315i −0.124720 + 0.148273i
\(652\) 0 0
\(653\) 0.854532 + 0.228971i 0.0334404 + 0.00896033i 0.275500 0.961301i \(-0.411156\pi\)
−0.242060 + 0.970261i \(0.577823\pi\)
\(654\) 0 0
\(655\) −16.7766 9.68599i −0.655517 0.378463i
\(656\) 0 0
\(657\) 27.5001 4.78079i 1.07288 0.186517i
\(658\) 0 0
\(659\) −48.6567 + 13.0375i −1.89539 + 0.507869i −0.897653 + 0.440704i \(0.854729\pi\)
−0.997742 + 0.0671656i \(0.978604\pi\)
\(660\) 0 0
\(661\) 26.7677 + 7.17239i 1.04114 + 0.278974i 0.738587 0.674158i \(-0.235493\pi\)
0.302557 + 0.953131i \(0.402160\pi\)
\(662\) 0 0
\(663\) −10.5632 15.1246i −0.410242 0.587390i
\(664\) 0 0
\(665\) 2.03486 0.0789086
\(666\) 0 0
\(667\) −5.10222 5.10222i −0.197559 0.197559i
\(668\) 0 0
\(669\) −8.42580 23.2367i −0.325760 0.898381i
\(670\) 0 0
\(671\) −10.2672 17.7834i −0.396363 0.686520i
\(672\) 0 0
\(673\) −16.5237 + 28.6198i −0.636941 + 1.10321i 0.349160 + 0.937063i \(0.386467\pi\)
−0.986100 + 0.166150i \(0.946866\pi\)
\(674\) 0 0
\(675\) −15.5192 + 8.88549i −0.597336 + 0.342003i
\(676\) 0 0
\(677\) 10.0436 2.69118i 0.386007 0.103430i −0.0605961 0.998162i \(-0.519300\pi\)
0.446603 + 0.894732i \(0.352633\pi\)
\(678\) 0 0
\(679\) 2.57829 + 4.46572i 0.0989455 + 0.171379i
\(680\) 0 0
\(681\) 13.8150 + 6.46231i 0.529393 + 0.247636i
\(682\) 0 0
\(683\) −9.18142 + 9.18142i −0.351317 + 0.351317i −0.860600 0.509282i \(-0.829911\pi\)
0.509282 + 0.860600i \(0.329911\pi\)
\(684\) 0 0
\(685\) 18.3723 + 18.3723i 0.701968 + 0.701968i
\(686\) 0 0
\(687\) 24.7225 + 35.3980i 0.943223 + 1.35052i
\(688\) 0 0
\(689\) 30.0988 17.3776i 1.14667 0.662033i
\(690\) 0 0
\(691\) 6.53111 + 24.3744i 0.248455 + 0.927247i 0.971615 + 0.236567i \(0.0760221\pi\)
−0.723160 + 0.690680i \(0.757311\pi\)
\(692\) 0 0
\(693\) 0.239887 2.66795i 0.00911256 0.101347i
\(694\) 0 0
\(695\) −0.897694 0.518284i −0.0340515 0.0196596i
\(696\) 0 0
\(697\) 17.1932 9.92649i 0.651239 0.375993i
\(698\) 0 0
\(699\) 8.63283 + 7.26153i 0.326524 + 0.274656i
\(700\) 0 0
\(701\) −32.8695 + 32.8695i −1.24146 + 1.24146i −0.282069 + 0.959394i \(0.591021\pi\)
−0.959394 + 0.282069i \(0.908979\pi\)
\(702\) 0 0
\(703\) 14.5415i 0.548443i
\(704\) 0 0
\(705\) 2.03883 + 23.6314i 0.0767867 + 0.890011i
\(706\) 0 0
\(707\) 1.17421 4.38221i 0.0441607 0.164810i
\(708\) 0 0
\(709\) −11.0318 41.1714i −0.414310 1.54622i −0.786215 0.617953i \(-0.787962\pi\)
0.371905 0.928271i \(-0.378705\pi\)
\(710\) 0 0
\(711\) −10.3876 + 28.3275i −0.389567 + 1.06236i
\(712\) 0 0
\(713\) 9.25715 16.0339i 0.346683 0.600473i
\(714\) 0 0
\(715\) −2.94426 + 10.9881i −0.110109 + 0.410932i
\(716\) 0 0
\(717\) 1.43481 8.08031i 0.0535838 0.301765i
\(718\) 0 0
\(719\) −8.84226 −0.329761 −0.164880 0.986314i \(-0.552724\pi\)
−0.164880 + 0.986314i \(0.552724\pi\)
\(720\) 0 0
\(721\) 0.0343022 0.00127748
\(722\) 0 0
\(723\) 24.2229 8.78340i 0.900858 0.326658i
\(724\) 0 0
\(725\) 3.53195 13.1814i 0.131173 0.489545i
\(726\) 0 0
\(727\) −11.4146 + 19.7707i −0.423344 + 0.733254i −0.996264 0.0863576i \(-0.972477\pi\)
0.572920 + 0.819611i \(0.305811\pi\)
\(728\) 0 0
\(729\) −13.3308 23.4796i −0.493734 0.869613i
\(730\) 0 0
\(731\) −6.87321 25.6512i −0.254215 0.948743i
\(732\) 0 0
\(733\) 7.73423 28.8645i 0.285670 1.06614i −0.662678 0.748905i \(-0.730580\pi\)
0.948348 0.317232i \(-0.102753\pi\)
\(734\) 0 0
\(735\) 13.5558 + 6.34103i 0.500012 + 0.233892i
\(736\) 0 0
\(737\) 12.3780i 0.455950i
\(738\) 0 0
\(739\) −6.92568 + 6.92568i −0.254765 + 0.254765i −0.822921 0.568156i \(-0.807657\pi\)
0.568156 + 0.822921i \(0.307657\pi\)
\(740\) 0 0
\(741\) −5.03740 + 28.3688i −0.185053 + 1.04215i
\(742\) 0 0
\(743\) −27.7583 + 16.0262i −1.01835 + 0.587946i −0.913626 0.406555i \(-0.866730\pi\)
−0.104726 + 0.994501i \(0.533397\pi\)
\(744\) 0 0
\(745\) −5.74942 3.31943i −0.210642 0.121614i
\(746\) 0 0
\(747\) −2.86888 6.19119i −0.104967 0.226524i
\(748\) 0 0
\(749\) 0.613380 + 2.28916i 0.0224124 + 0.0836442i
\(750\) 0 0
\(751\) −7.35037 + 4.24374i −0.268219 + 0.154856i −0.628078 0.778151i \(-0.716158\pi\)
0.359859 + 0.933007i \(0.382825\pi\)
\(752\) 0 0
\(753\) 16.8269 1.45176i 0.613207 0.0529051i
\(754\) 0 0
\(755\) −2.70975 2.70975i −0.0986179 0.0986179i
\(756\) 0 0
\(757\) −15.2511 + 15.2511i −0.554309 + 0.554309i −0.927682 0.373372i \(-0.878201\pi\)
0.373372 + 0.927682i \(0.378201\pi\)
\(758\) 0 0
\(759\) 0.862335 + 9.99505i 0.0313008 + 0.362797i
\(760\) 0 0
\(761\) −1.63439 2.83084i −0.0592465 0.102618i 0.834881 0.550431i \(-0.185536\pi\)
−0.894127 + 0.447813i \(0.852203\pi\)
\(762\) 0 0
\(763\) 1.30643 0.350056i 0.0472959 0.0126729i
\(764\) 0 0
\(765\) −1.24774 + 13.8770i −0.0451123 + 0.501725i
\(766\) 0 0
\(767\) 7.98088 13.8233i 0.288173 0.499130i
\(768\) 0 0
\(769\) 19.1814 + 33.2232i 0.691701 + 1.19806i 0.971280 + 0.237938i \(0.0764716\pi\)
−0.279580 + 0.960123i \(0.590195\pi\)
\(770\) 0 0
\(771\) 4.28176 + 0.760304i 0.154204 + 0.0273817i
\(772\) 0 0
\(773\) −20.0548 20.0548i −0.721320 0.721320i 0.247554 0.968874i \(-0.420373\pi\)
−0.968874 + 0.247554i \(0.920373\pi\)
\(774\) 0 0
\(775\) 35.0148 1.25777
\(776\) 0 0
\(777\) −0.515242 + 1.10148i −0.0184842 + 0.0395153i
\(778\) 0 0
\(779\) −29.9501 8.02512i −1.07308 0.287530i
\(780\) 0 0
\(781\) 32.8375 8.79878i 1.17502 0.314845i
\(782\) 0 0
\(783\) 19.8822 + 5.40442i 0.710532 + 0.193138i
\(784\) 0 0
\(785\) −6.31134 3.64385i −0.225261 0.130055i
\(786\) 0 0
\(787\) 9.14785 + 2.45116i 0.326086 + 0.0873744i 0.418148 0.908379i \(-0.362679\pi\)
−0.0920625 + 0.995753i \(0.529346\pi\)
\(788\) 0 0
\(789\) 2.14568 + 5.91736i 0.0763883 + 0.210664i
\(790\) 0 0
\(791\) 0.619775i 0.0220367i
\(792\) 0 0
\(793\) 18.4703i 0.655900i
\(794\) 0 0
\(795\) −25.8446 4.58917i −0.916613 0.162761i
\(796\) 0 0
\(797\) 26.8654 + 7.19855i 0.951620 + 0.254986i 0.701050 0.713112i \(-0.252715\pi\)
0.250571 + 0.968098i \(0.419382\pi\)
\(798\) 0 0
\(799\) −35.3432 20.4054i −1.25035 0.721891i
\(800\) 0 0
\(801\) 0.964141 + 5.54594i 0.0340662 + 0.195956i
\(802\) 0 0
\(803\) 28.6052 7.66474i 1.00946 0.270483i
\(804\) 0 0
\(805\) 0.615577 + 0.164943i 0.0216962 + 0.00581349i
\(806\) 0 0
\(807\) 30.1716 2.60309i 1.06209 0.0916332i
\(808\) 0 0
\(809\) −48.8492 −1.71745 −0.858724 0.512439i \(-0.828742\pi\)
−0.858724 + 0.512439i \(0.828742\pi\)
\(810\) 0 0
\(811\) 5.86383 + 5.86383i 0.205907 + 0.205907i 0.802525 0.596618i \(-0.203489\pi\)
−0.596618 + 0.802525i \(0.703489\pi\)
\(812\) 0 0
\(813\) −30.3996 + 36.1404i −1.06616 + 1.26750i
\(814\) 0 0
\(815\) −11.0840 19.1981i −0.388256 0.672480i
\(816\) 0 0
\(817\) −20.7378 + 35.9189i −0.725524 + 1.25664i
\(818\) 0 0
\(819\) 1.38675 1.97037i 0.0484568 0.0688502i
\(820\) 0 0
\(821\) −3.09154 + 0.828375i −0.107895 + 0.0289105i −0.312363 0.949963i \(-0.601120\pi\)
0.204467 + 0.978873i \(0.434454\pi\)
\(822\) 0 0
\(823\) 20.9908 + 36.3572i 0.731695 + 1.26733i 0.956158 + 0.292850i \(0.0946037\pi\)
−0.224464 + 0.974482i \(0.572063\pi\)
\(824\) 0 0
\(825\) −15.5550 + 10.8638i −0.541555 + 0.378231i
\(826\) 0 0
\(827\) −12.7209 + 12.7209i −0.442348 + 0.442348i −0.892800 0.450453i \(-0.851263\pi\)
0.450453 + 0.892800i \(0.351263\pi\)
\(828\) 0 0
\(829\) −10.4132 10.4132i −0.361665 0.361665i 0.502761 0.864425i \(-0.332318\pi\)
−0.864425 + 0.502761i \(0.832318\pi\)
\(830\) 0 0
\(831\) −12.6914 + 27.1315i −0.440260 + 0.941181i
\(832\) 0 0
\(833\) −22.2996 + 12.8747i −0.772637 + 0.446082i
\(834\) 0 0
\(835\) 4.50815 + 16.8246i 0.156011 + 0.582241i
\(836\) 0 0
\(837\) −0.190858 + 52.8657i −0.00659702 + 1.82731i
\(838\) 0 0
\(839\) 25.7863 + 14.8877i 0.890241 + 0.513981i 0.874021 0.485888i \(-0.161504\pi\)
0.0162196 + 0.999868i \(0.494837\pi\)
\(840\) 0 0
\(841\) 11.4986 6.63872i 0.396503 0.228921i
\(842\) 0 0
\(843\) 22.9494 8.32164i 0.790420 0.286613i
\(844\) 0 0
\(845\) 4.24025 4.24025i 0.145869 0.145869i
\(846\) 0 0
\(847\) 0.243829i 0.00837805i
\(848\) 0 0
\(849\) 0.924350 0.645580i 0.0317236 0.0221563i
\(850\) 0 0
\(851\) 1.17872 4.39903i 0.0404059 0.150797i
\(852\) 0 0
\(853\) 7.61221 + 28.4092i 0.260637 + 0.972711i 0.964867 + 0.262739i \(0.0846258\pi\)
−0.704230 + 0.709972i \(0.748708\pi\)
\(854\) 0 0
\(855\) 16.7033 13.9474i 0.571241 0.476990i
\(856\) 0 0
\(857\) −14.3783 + 24.9039i −0.491152 + 0.850700i −0.999948 0.0101867i \(-0.996757\pi\)
0.508796 + 0.860887i \(0.330091\pi\)
\(858\) 0 0
\(859\) 2.48122 9.26004i 0.0846582 0.315949i −0.910591 0.413308i \(-0.864373\pi\)
0.995249 + 0.0973599i \(0.0310398\pi\)
\(860\) 0 0
\(861\) 1.98429 + 1.66909i 0.0676243 + 0.0568823i
\(862\) 0 0
\(863\) 38.6895 1.31700 0.658502 0.752579i \(-0.271190\pi\)
0.658502 + 0.752579i \(0.271190\pi\)
\(864\) 0 0
\(865\) −3.08877 −0.105021
\(866\) 0 0
\(867\) 4.18757 + 3.52238i 0.142217 + 0.119626i
\(868\) 0 0
\(869\) −8.28517 + 30.9207i −0.281055 + 1.04891i
\(870\) 0 0
\(871\) 5.56687 9.64210i 0.188626 0.326710i
\(872\) 0 0
\(873\) 51.7731 + 18.9851i 1.75225 + 0.642548i
\(874\) 0 0
\(875\) 0.765148 + 2.85557i 0.0258667 + 0.0965360i
\(876\) 0 0
\(877\) −9.07397 + 33.8645i −0.306406 + 1.14352i 0.625322 + 0.780367i \(0.284968\pi\)
−0.931728 + 0.363157i \(0.881699\pi\)
\(878\) 0 0
\(879\) −11.8956 + 8.30807i −0.401228 + 0.280224i
\(880\) 0 0
\(881\) 15.5358i 0.523415i −0.965147 0.261708i \(-0.915714\pi\)
0.965147 0.261708i \(-0.0842856\pi\)
\(882\) 0 0
\(883\) 35.3696 35.3696i 1.19028 1.19028i 0.213292 0.976988i \(-0.431581\pi\)
0.976988 0.213292i \(-0.0684187\pi\)
\(884\) 0 0
\(885\) −11.3331 + 4.10946i −0.380957 + 0.138138i
\(886\) 0 0
\(887\) 22.5037 12.9925i 0.755599 0.436246i −0.0721141 0.997396i \(-0.522975\pi\)
0.827714 + 0.561151i \(0.189641\pi\)
\(888\) 0 0
\(889\) −0.884169 0.510475i −0.0296541 0.0171208i
\(890\) 0 0
\(891\) −16.3176 23.5443i −0.546659 0.788764i
\(892\) 0 0
\(893\) 16.4968 + 61.5670i 0.552045 + 2.06026i
\(894\) 0 0
\(895\) 14.5841 8.42011i 0.487492 0.281453i
\(896\) 0 0
\(897\) −3.82343 + 8.17367i −0.127661 + 0.272911i
\(898\) 0 0
\(899\) −28.5261 28.5261i −0.951398 0.951398i
\(900\) 0 0
\(901\) 31.9353 31.9353i 1.06392 1.06392i
\(902\) 0 0
\(903\) 2.84352 1.98596i 0.0946266 0.0660887i
\(904\) 0 0
\(905\) 6.03678 + 10.4560i 0.200669 + 0.347569i
\(906\) 0 0
\(907\) 26.5046 7.10188i 0.880070 0.235814i 0.209633 0.977780i \(-0.432773\pi\)
0.670437 + 0.741966i \(0.266106\pi\)
\(908\) 0 0
\(909\) −20.3980 44.0200i −0.676560 1.46005i
\(910\) 0 0
\(911\) 23.4177 40.5606i 0.775863 1.34383i −0.158445 0.987368i \(-0.550648\pi\)
0.934308 0.356466i \(-0.116018\pi\)
\(912\) 0 0
\(913\) −3.61980 6.26967i −0.119798 0.207496i
\(914\) 0 0
\(915\) −8.97957 + 10.6753i −0.296855 + 0.352915i
\(916\) 0 0
\(917\) 3.07820 + 3.07820i 0.101651 + 0.101651i
\(918\) 0 0
\(919\) 0.421071 0.0138899 0.00694493 0.999976i \(-0.497789\pi\)
0.00694493 + 0.999976i \(0.497789\pi\)
\(920\) 0 0
\(921\) −24.7093 + 2.13183i −0.814200 + 0.0702461i
\(922\) 0 0
\(923\) 29.5366 + 7.91430i 0.972209 + 0.260503i
\(924\) 0 0
\(925\) 8.31957 2.22922i 0.273546 0.0732964i
\(926\) 0 0
\(927\) 0.281572 0.235115i 0.00924805 0.00772218i
\(928\) 0 0
\(929\) −5.41100 3.12404i −0.177529 0.102496i 0.408602 0.912713i \(-0.366016\pi\)
−0.586131 + 0.810216i \(0.699350\pi\)
\(930\) 0 0
\(931\) 38.8455 + 10.4086i 1.27311 + 0.341128i
\(932\) 0 0
\(933\) 27.1451 + 4.82010i 0.888689 + 0.157803i
\(934\) 0 0
\(935\) 14.7824i 0.483437i
\(936\) 0 0
\(937\) 41.2133i 1.34638i −0.739470 0.673189i \(-0.764924\pi\)
0.739470 0.673189i \(-0.235076\pi\)
\(938\) 0 0
\(939\) 6.75142 + 18.6191i 0.220324 + 0.607610i
\(940\) 0 0
\(941\) 12.0368 + 3.22526i 0.392390 + 0.105141i 0.449619 0.893221i \(-0.351560\pi\)
−0.0572290 + 0.998361i \(0.518227\pi\)
\(942\) 0 0
\(943\) −8.40987 4.85544i −0.273863 0.158115i
\(944\) 0 0
\(945\) −1.75942 + 0.464633i −0.0572339 + 0.0151145i
\(946\) 0 0
\(947\) −14.8120 + 3.96886i −0.481325 + 0.128971i −0.491320 0.870979i \(-0.663485\pi\)
0.00999447 + 0.999950i \(0.496819\pi\)
\(948\) 0 0
\(949\) 25.7297 + 6.89426i 0.835222 + 0.223797i
\(950\) 0 0
\(951\) −20.0338 + 42.8281i −0.649642 + 1.38879i
\(952\) 0 0
\(953\) −20.0192 −0.648486 −0.324243 0.945974i \(-0.605110\pi\)
−0.324243 + 0.945974i \(0.605110\pi\)
\(954\) 0 0
\(955\) 12.5106 + 12.5106i 0.404833 + 0.404833i
\(956\) 0 0
\(957\) 21.5231 + 3.82181i 0.695742 + 0.123541i
\(958\) 0 0
\(959\) −2.91935 5.05646i −0.0942707 0.163282i
\(960\) 0 0
\(961\) 36.2559 62.7971i 1.16955 2.02571i
\(962\) 0 0
\(963\) 20.7254 + 14.5865i 0.667866 + 0.470045i
\(964\) 0 0
\(965\) −15.6039 + 4.18105i −0.502307 + 0.134593i
\(966\) 0 0
\(967\) 16.3485 + 28.3164i 0.525732 + 0.910594i 0.999551 + 0.0299719i \(0.00954179\pi\)
−0.473819 + 0.880622i \(0.657125\pi\)
\(968\) 0 0
\(969\) 3.21832 + 37.3025i 0.103387 + 1.19833i
\(970\) 0 0
\(971\) −12.2406 + 12.2406i −0.392820 + 0.392820i −0.875691 0.482871i \(-0.839594\pi\)
0.482871 + 0.875691i \(0.339594\pi\)
\(972\) 0 0
\(973\) 0.164710 + 0.164710i 0.00528037 + 0.00528037i
\(974\) 0 0
\(975\) −17.0028 + 1.46693i −0.544524 + 0.0469795i
\(976\) 0 0
\(977\) 34.1771 19.7322i 1.09342 0.631288i 0.158938 0.987289i \(-0.449193\pi\)
0.934486 + 0.356000i \(0.115860\pi\)
\(978\) 0 0
\(979\) 1.54575 + 5.76880i 0.0494022 + 0.184372i
\(980\) 0 0
\(981\) 8.32455 11.8280i 0.265782 0.377639i
\(982\) 0 0
\(983\) −3.78032 2.18257i −0.120574 0.0696132i 0.438500 0.898731i \(-0.355510\pi\)
−0.559074 + 0.829118i \(0.688843\pi\)
\(984\) 0 0
\(985\) 12.2666 7.08211i 0.390845 0.225655i
\(986\) 0 0
\(987\) 0.931885 5.24804i 0.0296622 0.167047i
\(988\) 0 0
\(989\) −9.18504 + 9.18504i −0.292067 + 0.292067i
\(990\) 0 0
\(991\) 21.1610i 0.672200i 0.941826 + 0.336100i \(0.109108\pi\)
−0.941826 + 0.336100i \(0.890892\pi\)
\(992\) 0 0
\(993\) 18.0332 + 8.43546i 0.572266 + 0.267691i
\(994\) 0 0
\(995\) −3.52825 + 13.1676i −0.111853 + 0.417441i
\(996\) 0 0
\(997\) −3.41563 12.7473i −0.108174 0.403712i 0.890512 0.454960i \(-0.150347\pi\)
−0.998686 + 0.0512486i \(0.983680\pi\)
\(998\) 0 0
\(999\) 3.32036 + 12.5731i 0.105051 + 0.397796i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.47.17 88
3.2 odd 2 1728.2.z.a.1007.7 88
4.3 odd 2 144.2.u.a.83.22 yes 88
9.4 even 3 1728.2.z.a.1583.7 88
9.5 odd 6 inner 576.2.y.a.239.6 88
12.11 even 2 432.2.v.a.35.1 88
16.5 even 4 144.2.u.a.11.16 88
16.11 odd 4 inner 576.2.y.a.335.6 88
36.23 even 6 144.2.u.a.131.16 yes 88
36.31 odd 6 432.2.v.a.179.7 88
48.5 odd 4 432.2.v.a.251.7 88
48.11 even 4 1728.2.z.a.143.7 88
144.5 odd 12 144.2.u.a.59.22 yes 88
144.59 even 12 inner 576.2.y.a.527.17 88
144.85 even 12 432.2.v.a.395.1 88
144.139 odd 12 1728.2.z.a.719.7 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.16 88 16.5 even 4
144.2.u.a.59.22 yes 88 144.5 odd 12
144.2.u.a.83.22 yes 88 4.3 odd 2
144.2.u.a.131.16 yes 88 36.23 even 6
432.2.v.a.35.1 88 12.11 even 2
432.2.v.a.179.7 88 36.31 odd 6
432.2.v.a.251.7 88 48.5 odd 4
432.2.v.a.395.1 88 144.85 even 12
576.2.y.a.47.17 88 1.1 even 1 trivial
576.2.y.a.239.6 88 9.5 odd 6 inner
576.2.y.a.335.6 88 16.11 odd 4 inner
576.2.y.a.527.17 88 144.59 even 12 inner
1728.2.z.a.143.7 88 48.11 even 4
1728.2.z.a.719.7 88 144.139 odd 12
1728.2.z.a.1007.7 88 3.2 odd 2
1728.2.z.a.1583.7 88 9.4 even 3