Properties

Label 432.2.v.a.179.7
Level $432$
Weight $2$
Character 432.179
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 179.7
Character \(\chi\) \(=\) 432.179
Dual form 432.2.v.a.251.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.717593 + 1.21863i) q^{2} +(-0.970121 - 1.74896i) q^{4} +(-1.20583 + 0.323102i) q^{5} +(0.140266 + 0.242948i) q^{7} +(2.82749 + 0.0728225i) q^{8} +(0.471556 - 1.70132i) q^{10} +(3.07444 + 0.823794i) q^{11} +(2.76539 - 0.740984i) q^{13} +(-0.396717 - 0.00340517i) q^{14} +(-2.11773 + 3.39341i) q^{16} +3.72031i q^{17} +(-4.10860 + 4.10860i) q^{19} +(1.73490 + 1.79551i) q^{20} +(-3.21010 + 3.15546i) q^{22} +(1.57595 + 0.909876i) q^{23} +(-2.98049 + 1.72078i) q^{25} +(-1.08144 + 3.90172i) q^{26} +(0.288831 - 0.481009i) q^{28} +(3.83006 + 1.02626i) q^{29} +(8.81101 + 5.08704i) q^{31} +(-2.61564 - 5.01582i) q^{32} +(-4.53369 - 2.66967i) q^{34} +(-0.247635 - 0.247635i) q^{35} +(1.76964 - 1.76964i) q^{37} +(-2.05856 - 7.95516i) q^{38} +(-3.43301 + 0.825757i) q^{40} +(-2.66819 + 4.62144i) q^{41} +(-1.84748 + 6.89490i) q^{43} +(-1.54180 - 6.17626i) q^{44} +(-2.23969 + 1.26758i) q^{46} +(5.48486 + 9.50006i) q^{47} +(3.46065 - 5.99402i) q^{49} +(0.0417747 - 4.86693i) q^{50} +(-3.97872 - 4.11772i) q^{52} +(-8.58403 - 8.58403i) q^{53} -3.97344 q^{55} +(0.378909 + 0.697147i) q^{56} +(-3.99906 + 3.93099i) q^{58} +(-1.44299 - 5.38532i) q^{59} +(1.66977 - 6.23168i) q^{61} +(-12.5219 + 7.08695i) q^{62} +(7.98939 + 0.411810i) q^{64} +(-3.09519 + 1.78701i) q^{65} +(-1.00652 - 3.75640i) q^{67} +(6.50668 - 3.60915i) q^{68} +(0.479476 - 0.124074i) q^{70} +10.6808i q^{71} -9.30419i q^{73} +(0.886658 + 3.42643i) q^{74} +(11.1716 + 3.19994i) q^{76} +(0.231101 + 0.862479i) q^{77} +(8.70990 - 5.02866i) q^{79} +(1.45721 - 4.77613i) q^{80} +(-3.71715 - 6.56784i) q^{82} +(-0.588691 + 2.19703i) q^{83} +(-1.20204 - 4.48608i) q^{85} +(-7.07659 - 7.19913i) q^{86} +(8.63296 + 2.55316i) q^{88} +1.87637 q^{89} +(0.567911 + 0.567911i) q^{91} +(0.0624738 - 3.63897i) q^{92} +(-15.5130 - 0.133153i) q^{94} +(3.62679 - 6.28179i) q^{95} +(9.19070 + 15.9188i) q^{97} +(4.82116 + 8.51852i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.717593 + 1.21863i −0.507415 + 0.861702i
\(3\) 0 0
\(4\) −0.970121 1.74896i −0.485061 0.874481i
\(5\) −1.20583 + 0.323102i −0.539266 + 0.144496i −0.518164 0.855282i \(-0.673384\pi\)
−0.0211020 + 0.999777i \(0.506717\pi\)
\(6\) 0 0
\(7\) 0.140266 + 0.242948i 0.0530156 + 0.0918256i 0.891315 0.453384i \(-0.149783\pi\)
−0.838300 + 0.545210i \(0.816450\pi\)
\(8\) 2.82749 + 0.0728225i 0.999669 + 0.0257466i
\(9\) 0 0
\(10\) 0.471556 1.70132i 0.149119 0.538005i
\(11\) 3.07444 + 0.823794i 0.926979 + 0.248383i 0.690566 0.723269i \(-0.257361\pi\)
0.236413 + 0.971653i \(0.424028\pi\)
\(12\) 0 0
\(13\) 2.76539 0.740984i 0.766982 0.205512i 0.145944 0.989293i \(-0.453378\pi\)
0.621038 + 0.783781i \(0.286711\pi\)
\(14\) −0.396717 0.00340517i −0.106027 0.000910071i
\(15\) 0 0
\(16\) −2.11773 + 3.39341i −0.529432 + 0.848352i
\(17\) 3.72031i 0.902309i 0.892446 + 0.451154i \(0.148988\pi\)
−0.892446 + 0.451154i \(0.851012\pi\)
\(18\) 0 0
\(19\) −4.10860 + 4.10860i −0.942577 + 0.942577i −0.998439 0.0558614i \(-0.982209\pi\)
0.0558614 + 0.998439i \(0.482209\pi\)
\(20\) 1.73490 + 1.79551i 0.387935 + 0.401488i
\(21\) 0 0
\(22\) −3.21010 + 3.15546i −0.684395 + 0.672747i
\(23\) 1.57595 + 0.909876i 0.328609 + 0.189722i 0.655223 0.755435i \(-0.272575\pi\)
−0.326615 + 0.945158i \(0.605908\pi\)
\(24\) 0 0
\(25\) −2.98049 + 1.72078i −0.596097 + 0.344157i
\(26\) −1.08144 + 3.90172i −0.212088 + 0.765189i
\(27\) 0 0
\(28\) 0.288831 0.481009i 0.0545840 0.0909021i
\(29\) 3.83006 + 1.02626i 0.711224 + 0.190572i 0.596253 0.802797i \(-0.296656\pi\)
0.114972 + 0.993369i \(0.463322\pi\)
\(30\) 0 0
\(31\) 8.81101 + 5.08704i 1.58250 + 0.913659i 0.994493 + 0.104807i \(0.0334225\pi\)
0.588012 + 0.808852i \(0.299911\pi\)
\(32\) −2.61564 5.01582i −0.462385 0.886679i
\(33\) 0 0
\(34\) −4.53369 2.66967i −0.777521 0.457845i
\(35\) −0.247635 0.247635i −0.0418579 0.0418579i
\(36\) 0 0
\(37\) 1.76964 1.76964i 0.290928 0.290928i −0.546519 0.837447i \(-0.684047\pi\)
0.837447 + 0.546519i \(0.184047\pi\)
\(38\) −2.05856 7.95516i −0.333943 1.29050i
\(39\) 0 0
\(40\) −3.43301 + 0.825757i −0.542807 + 0.130564i
\(41\) −2.66819 + 4.62144i −0.416701 + 0.721747i −0.995605 0.0936482i \(-0.970147\pi\)
0.578904 + 0.815395i \(0.303480\pi\)
\(42\) 0 0
\(43\) −1.84748 + 6.89490i −0.281738 + 1.05146i 0.669452 + 0.742856i \(0.266529\pi\)
−0.951190 + 0.308606i \(0.900138\pi\)
\(44\) −1.54180 6.17626i −0.232435 0.931106i
\(45\) 0 0
\(46\) −2.23969 + 1.26758i −0.330225 + 0.186895i
\(47\) 5.48486 + 9.50006i 0.800049 + 1.38573i 0.919583 + 0.392896i \(0.128527\pi\)
−0.119534 + 0.992830i \(0.538140\pi\)
\(48\) 0 0
\(49\) 3.46065 5.99402i 0.494379 0.856289i
\(50\) 0.0417747 4.86693i 0.00590783 0.688288i
\(51\) 0 0
\(52\) −3.97872 4.11772i −0.551749 0.571025i
\(53\) −8.58403 8.58403i −1.17911 1.17911i −0.979972 0.199135i \(-0.936187\pi\)
−0.199135 0.979972i \(-0.563813\pi\)
\(54\) 0 0
\(55\) −3.97344 −0.535778
\(56\) 0.378909 + 0.697147i 0.0506338 + 0.0931602i
\(57\) 0 0
\(58\) −3.99906 + 3.93099i −0.525102 + 0.516164i
\(59\) −1.44299 5.38532i −0.187862 0.701109i −0.994000 0.109382i \(-0.965113\pi\)
0.806138 0.591727i \(-0.201554\pi\)
\(60\) 0 0
\(61\) 1.66977 6.23168i 0.213793 0.797885i −0.772796 0.634655i \(-0.781142\pi\)
0.986588 0.163230i \(-0.0521911\pi\)
\(62\) −12.5219 + 7.08695i −1.59029 + 0.900043i
\(63\) 0 0
\(64\) 7.98939 + 0.411810i 0.998674 + 0.0514762i
\(65\) −3.09519 + 1.78701i −0.383911 + 0.221651i
\(66\) 0 0
\(67\) −1.00652 3.75640i −0.122967 0.458918i 0.876792 0.480869i \(-0.159679\pi\)
−0.999759 + 0.0219514i \(0.993012\pi\)
\(68\) 6.50668 3.60915i 0.789051 0.437674i
\(69\) 0 0
\(70\) 0.479476 0.124074i 0.0573083 0.0148297i
\(71\) 10.6808i 1.26758i 0.773506 + 0.633789i \(0.218501\pi\)
−0.773506 + 0.633789i \(0.781499\pi\)
\(72\) 0 0
\(73\) 9.30419i 1.08897i −0.838770 0.544487i \(-0.816725\pi\)
0.838770 0.544487i \(-0.183275\pi\)
\(74\) 0.886658 + 3.42643i 0.103072 + 0.398314i
\(75\) 0 0
\(76\) 11.1716 + 3.19994i 1.28147 + 0.367058i
\(77\) 0.231101 + 0.862479i 0.0263364 + 0.0982886i
\(78\) 0 0
\(79\) 8.70990 5.02866i 0.979940 0.565769i 0.0776882 0.996978i \(-0.475246\pi\)
0.902252 + 0.431209i \(0.141913\pi\)
\(80\) 1.45721 4.77613i 0.162921 0.533988i
\(81\) 0 0
\(82\) −3.71715 6.56784i −0.410491 0.725297i
\(83\) −0.588691 + 2.19703i −0.0646173 + 0.241155i −0.990679 0.136217i \(-0.956506\pi\)
0.926062 + 0.377372i \(0.123172\pi\)
\(84\) 0 0
\(85\) −1.20204 4.48608i −0.130380 0.486584i
\(86\) −7.07659 7.19913i −0.763089 0.776302i
\(87\) 0 0
\(88\) 8.63296 + 2.55316i 0.920277 + 0.272168i
\(89\) 1.87637 0.198895 0.0994475 0.995043i \(-0.468292\pi\)
0.0994475 + 0.995043i \(0.468292\pi\)
\(90\) 0 0
\(91\) 0.567911 + 0.567911i 0.0595332 + 0.0595332i
\(92\) 0.0624738 3.63897i 0.00651335 0.379389i
\(93\) 0 0
\(94\) −15.5130 0.133153i −1.60004 0.0137337i
\(95\) 3.62679 6.28179i 0.372101 0.644498i
\(96\) 0 0
\(97\) 9.19070 + 15.9188i 0.933175 + 1.61631i 0.777857 + 0.628441i \(0.216307\pi\)
0.155317 + 0.987865i \(0.450360\pi\)
\(98\) 4.82116 + 8.51852i 0.487011 + 0.860501i
\(99\) 0 0
\(100\) 5.90102 + 3.54338i 0.590102 + 0.354338i
\(101\) 4.18566 15.6211i 0.416488 1.55436i −0.365347 0.930871i \(-0.619050\pi\)
0.781836 0.623485i \(-0.214284\pi\)
\(102\) 0 0
\(103\) 0.0611378 0.105894i 0.00602409 0.0104340i −0.862998 0.505208i \(-0.831416\pi\)
0.869022 + 0.494774i \(0.164749\pi\)
\(104\) 7.87308 1.89374i 0.772019 0.185697i
\(105\) 0 0
\(106\) 16.6206 4.30092i 1.61434 0.417743i
\(107\) −5.97359 + 5.97359i −0.577489 + 0.577489i −0.934211 0.356722i \(-0.883894\pi\)
0.356722 + 0.934211i \(0.383894\pi\)
\(108\) 0 0
\(109\) −3.40913 3.40913i −0.326536 0.326536i 0.524732 0.851268i \(-0.324166\pi\)
−0.851268 + 0.524732i \(0.824166\pi\)
\(110\) 2.85131 4.84215i 0.271862 0.461681i
\(111\) 0 0
\(112\) −1.12147 0.0385180i −0.105969 0.00363961i
\(113\) −1.91330 1.10464i −0.179988 0.103916i 0.407299 0.913295i \(-0.366471\pi\)
−0.587287 + 0.809379i \(0.699804\pi\)
\(114\) 0 0
\(115\) −2.19432 0.587966i −0.204621 0.0548281i
\(116\) −1.92073 7.69422i −0.178335 0.714391i
\(117\) 0 0
\(118\) 7.59820 + 2.10599i 0.699471 + 0.193872i
\(119\) −0.903842 + 0.521833i −0.0828551 + 0.0478364i
\(120\) 0 0
\(121\) −0.752719 0.434583i −0.0684290 0.0395075i
\(122\) 6.39590 + 6.50664i 0.579057 + 0.589084i
\(123\) 0 0
\(124\) 0.349286 20.3452i 0.0313668 1.82705i
\(125\) 7.45164 7.45164i 0.666495 0.666495i
\(126\) 0 0
\(127\) 3.63934i 0.322939i −0.986878 0.161470i \(-0.948377\pi\)
0.986878 0.161470i \(-0.0516234\pi\)
\(128\) −6.23498 + 9.44061i −0.551099 + 0.834440i
\(129\) 0 0
\(130\) 0.0433824 5.05424i 0.00380489 0.443286i
\(131\) 14.9890 4.01630i 1.30960 0.350906i 0.464527 0.885559i \(-0.346224\pi\)
0.845072 + 0.534653i \(0.179558\pi\)
\(132\) 0 0
\(133\) −1.57447 0.421878i −0.136524 0.0365815i
\(134\) 5.29994 + 1.46899i 0.457845 + 0.126901i
\(135\) 0 0
\(136\) −0.270922 + 10.5191i −0.0232314 + 0.902009i
\(137\) −10.4065 18.0245i −0.889085 1.53994i −0.840959 0.541099i \(-0.818008\pi\)
−0.0481263 0.998841i \(-0.515325\pi\)
\(138\) 0 0
\(139\) 0.802043 0.214907i 0.0680284 0.0182282i −0.224644 0.974441i \(-0.572122\pi\)
0.292673 + 0.956213i \(0.405455\pi\)
\(140\) −0.192868 + 0.673339i −0.0163003 + 0.0569075i
\(141\) 0 0
\(142\) −13.0159 7.66446i −1.09227 0.643187i
\(143\) 9.11246 0.762022
\(144\) 0 0
\(145\) −4.95000 −0.411076
\(146\) 11.3384 + 6.67662i 0.938370 + 0.552561i
\(147\) 0 0
\(148\) −4.81181 1.37827i −0.395528 0.113293i
\(149\) −5.13681 + 1.37640i −0.420824 + 0.112759i −0.463015 0.886350i \(-0.653233\pi\)
0.0421919 + 0.999110i \(0.486566\pi\)
\(150\) 0 0
\(151\) −1.53487 2.65847i −0.124906 0.216343i 0.796790 0.604256i \(-0.206529\pi\)
−0.921696 + 0.387913i \(0.873196\pi\)
\(152\) −11.9162 + 11.3178i −0.966533 + 0.917996i
\(153\) 0 0
\(154\) −1.21688 0.337283i −0.0980590 0.0271790i
\(155\) −12.2683 3.28727i −0.985410 0.264040i
\(156\) 0 0
\(157\) −5.63885 + 1.51093i −0.450029 + 0.120585i −0.476713 0.879059i \(-0.658172\pi\)
0.0266838 + 0.999644i \(0.491505\pi\)
\(158\) −0.122079 + 14.2227i −0.00971205 + 1.13150i
\(159\) 0 0
\(160\) 4.77465 + 5.20312i 0.377470 + 0.411343i
\(161\) 0.510499i 0.0402329i
\(162\) 0 0
\(163\) −12.5565 + 12.5565i −0.983500 + 0.983500i −0.999866 0.0163656i \(-0.994790\pi\)
0.0163656 + 0.999866i \(0.494790\pi\)
\(164\) 10.6712 + 0.183203i 0.833279 + 0.0143057i
\(165\) 0 0
\(166\) −2.25492 2.29397i −0.175016 0.178046i
\(167\) −12.0834 6.97635i −0.935041 0.539846i −0.0466388 0.998912i \(-0.514851\pi\)
−0.888402 + 0.459066i \(0.848184\pi\)
\(168\) 0 0
\(169\) −4.16000 + 2.40178i −0.320000 + 0.184752i
\(170\) 6.32945 + 1.75433i 0.485447 + 0.134551i
\(171\) 0 0
\(172\) 13.8512 3.45771i 1.05614 0.263648i
\(173\) 2.38993 + 0.640380i 0.181703 + 0.0486872i 0.348523 0.937300i \(-0.386683\pi\)
−0.166820 + 0.985987i \(0.553350\pi\)
\(174\) 0 0
\(175\) −0.836121 0.482735i −0.0632048 0.0364913i
\(176\) −9.30631 + 8.68827i −0.701489 + 0.654903i
\(177\) 0 0
\(178\) −1.34647 + 2.28661i −0.100922 + 0.171388i
\(179\) −9.53870 9.53870i −0.712956 0.712956i 0.254197 0.967153i \(-0.418189\pi\)
−0.967153 + 0.254197i \(0.918189\pi\)
\(180\) 0 0
\(181\) −6.83874 + 6.83874i −0.508320 + 0.508320i −0.914010 0.405691i \(-0.867031\pi\)
0.405691 + 0.914010i \(0.367031\pi\)
\(182\) −1.09960 + 0.284545i −0.0815079 + 0.0210919i
\(183\) 0 0
\(184\) 4.38973 + 2.68743i 0.323615 + 0.198120i
\(185\) −1.56212 + 2.70567i −0.114849 + 0.198925i
\(186\) 0 0
\(187\) −3.06477 + 11.4379i −0.224118 + 0.836421i
\(188\) 11.2943 18.8090i 0.823718 1.37179i
\(189\) 0 0
\(190\) 5.05262 + 8.92748i 0.366555 + 0.647668i
\(191\) 7.08629 + 12.2738i 0.512746 + 0.888102i 0.999891 + 0.0147810i \(0.00470512\pi\)
−0.487145 + 0.873321i \(0.661962\pi\)
\(192\) 0 0
\(193\) −6.47017 + 11.2067i −0.465733 + 0.806673i −0.999234 0.0391263i \(-0.987543\pi\)
0.533501 + 0.845799i \(0.320876\pi\)
\(194\) −25.9943 0.223119i −1.86628 0.0160190i
\(195\) 0 0
\(196\) −13.8406 0.237615i −0.988612 0.0169725i
\(197\) 8.02294 + 8.02294i 0.571611 + 0.571611i 0.932578 0.360968i \(-0.117553\pi\)
−0.360968 + 0.932578i \(0.617553\pi\)
\(198\) 0 0
\(199\) 10.9199 0.774093 0.387046 0.922060i \(-0.373495\pi\)
0.387046 + 0.922060i \(0.373495\pi\)
\(200\) −8.55260 + 4.64845i −0.604760 + 0.328695i
\(201\) 0 0
\(202\) 16.0327 + 16.3103i 1.12806 + 1.14759i
\(203\) 0.287899 + 1.07445i 0.0202066 + 0.0754119i
\(204\) 0 0
\(205\) 1.72420 6.43478i 0.120423 0.449425i
\(206\) 0.0851733 + 0.150493i 0.00593431 + 0.0104853i
\(207\) 0 0
\(208\) −3.34189 + 10.9533i −0.231718 + 0.759475i
\(209\) −16.0163 + 9.24701i −1.10787 + 0.639629i
\(210\) 0 0
\(211\) −4.37047 16.3108i −0.300875 1.12288i −0.936438 0.350833i \(-0.885899\pi\)
0.635563 0.772049i \(-0.280768\pi\)
\(212\) −6.68559 + 23.3407i −0.459168 + 1.60304i
\(213\) 0 0
\(214\) −2.99300 11.5662i −0.204597 0.790650i
\(215\) 8.91103i 0.607727i
\(216\) 0 0
\(217\) 2.85415i 0.193753i
\(218\) 6.60085 1.70811i 0.447066 0.115688i
\(219\) 0 0
\(220\) 3.85472 + 6.94939i 0.259885 + 0.468528i
\(221\) 2.75669 + 10.2881i 0.185435 + 0.692054i
\(222\) 0 0
\(223\) −12.3586 + 7.13522i −0.827591 + 0.477810i −0.853027 0.521867i \(-0.825236\pi\)
0.0254364 + 0.999676i \(0.491902\pi\)
\(224\) 0.851696 1.33901i 0.0569063 0.0894666i
\(225\) 0 0
\(226\) 2.71912 1.53892i 0.180873 0.102367i
\(227\) 2.27906 8.50557i 0.151267 0.564535i −0.848130 0.529789i \(-0.822271\pi\)
0.999396 0.0347459i \(-0.0110622\pi\)
\(228\) 0 0
\(229\) −6.45185 24.0786i −0.426350 1.59116i −0.760957 0.648803i \(-0.775270\pi\)
0.334606 0.942358i \(-0.391397\pi\)
\(230\) 2.29114 2.25214i 0.151073 0.148502i
\(231\) 0 0
\(232\) 10.7547 + 3.18066i 0.706082 + 0.208820i
\(233\) 6.51295 0.426678 0.213339 0.976978i \(-0.431566\pi\)
0.213339 + 0.976978i \(0.431566\pi\)
\(234\) 0 0
\(235\) −9.68332 9.68332i −0.631670 0.631670i
\(236\) −8.01884 + 7.74815i −0.521982 + 0.504362i
\(237\) 0 0
\(238\) 0.0126683 1.47591i 0.000821165 0.0956693i
\(239\) 2.36907 4.10336i 0.153243 0.265424i −0.779175 0.626806i \(-0.784362\pi\)
0.932418 + 0.361382i \(0.117695\pi\)
\(240\) 0 0
\(241\) 7.43805 + 12.8831i 0.479127 + 0.829872i 0.999713 0.0239367i \(-0.00762000\pi\)
−0.520586 + 0.853809i \(0.674287\pi\)
\(242\) 1.06974 0.605434i 0.0687656 0.0389187i
\(243\) 0 0
\(244\) −12.5188 + 3.12512i −0.801437 + 0.200065i
\(245\) −2.23629 + 8.34594i −0.142871 + 0.533203i
\(246\) 0 0
\(247\) −8.31748 + 14.4063i −0.529228 + 0.916650i
\(248\) 24.5426 + 15.0252i 1.55846 + 0.954101i
\(249\) 0 0
\(250\) 3.73355 + 14.4280i 0.236131 + 0.912510i
\(251\) −6.89508 + 6.89508i −0.435213 + 0.435213i −0.890397 0.455184i \(-0.849573\pi\)
0.455184 + 0.890397i \(0.349573\pi\)
\(252\) 0 0
\(253\) 4.09562 + 4.09562i 0.257489 + 0.257489i
\(254\) 4.43501 + 2.61156i 0.278277 + 0.163864i
\(255\) 0 0
\(256\) −7.03044 14.3726i −0.439403 0.898290i
\(257\) −2.17437 1.25537i −0.135633 0.0783080i 0.430648 0.902520i \(-0.358285\pi\)
−0.566281 + 0.824212i \(0.691618\pi\)
\(258\) 0 0
\(259\) 0.678152 + 0.181710i 0.0421383 + 0.0112909i
\(260\) 6.12812 + 3.67975i 0.380050 + 0.228209i
\(261\) 0 0
\(262\) −5.86164 + 21.1482i −0.362133 + 1.30654i
\(263\) 3.14718 1.81703i 0.194064 0.112043i −0.399820 0.916594i \(-0.630927\pi\)
0.593884 + 0.804551i \(0.297594\pi\)
\(264\) 0 0
\(265\) 13.1244 + 7.57740i 0.806228 + 0.465476i
\(266\) 1.64394 1.61596i 0.100797 0.0990810i
\(267\) 0 0
\(268\) −5.59335 + 5.40454i −0.341668 + 0.330135i
\(269\) 12.3633 12.3633i 0.753802 0.753802i −0.221384 0.975187i \(-0.571058\pi\)
0.975187 + 0.221384i \(0.0710575\pi\)
\(270\) 0 0
\(271\) 27.2658i 1.65628i −0.560523 0.828139i \(-0.689400\pi\)
0.560523 0.828139i \(-0.310600\pi\)
\(272\) −12.6245 7.87862i −0.765475 0.477711i
\(273\) 0 0
\(274\) 29.4329 + 0.252633i 1.77810 + 0.0152621i
\(275\) −10.5809 + 2.83514i −0.638053 + 0.170966i
\(276\) 0 0
\(277\) −16.7042 4.47587i −1.00366 0.268929i −0.280680 0.959801i \(-0.590560\pi\)
−0.722977 + 0.690872i \(0.757227\pi\)
\(278\) −0.313648 + 1.13161i −0.0188114 + 0.0678694i
\(279\) 0 0
\(280\) −0.682151 0.718217i −0.0407663 0.0429217i
\(281\) 7.04702 + 12.2058i 0.420390 + 0.728137i 0.995978 0.0896034i \(-0.0285600\pi\)
−0.575588 + 0.817740i \(0.695227\pi\)
\(282\) 0 0
\(283\) 0.628767 0.168478i 0.0373763 0.0100149i −0.240082 0.970753i \(-0.577174\pi\)
0.277459 + 0.960738i \(0.410508\pi\)
\(284\) 18.6803 10.3617i 1.10847 0.614852i
\(285\) 0 0
\(286\) −6.53903 + 11.1047i −0.386661 + 0.656636i
\(287\) −1.49702 −0.0883665
\(288\) 0 0
\(289\) 3.15927 0.185839
\(290\) 3.55209 6.03223i 0.208586 0.354225i
\(291\) 0 0
\(292\) −16.2727 + 9.02619i −0.952286 + 0.528218i
\(293\) 8.09169 2.16816i 0.472722 0.126665i −0.0145900 0.999894i \(-0.504644\pi\)
0.487312 + 0.873228i \(0.337978\pi\)
\(294\) 0 0
\(295\) 3.48002 + 6.02757i 0.202615 + 0.350939i
\(296\) 5.13252 4.87478i 0.298322 0.283341i
\(297\) 0 0
\(298\) 2.00881 7.24757i 0.116367 0.419840i
\(299\) 5.03233 + 1.34841i 0.291027 + 0.0779804i
\(300\) 0 0
\(301\) −1.93424 + 0.518278i −0.111488 + 0.0298730i
\(302\) 4.34110 + 0.0372612i 0.249802 + 0.00214414i
\(303\) 0 0
\(304\) −5.24125 22.6431i −0.300606 1.29867i
\(305\) 8.05388i 0.461164i
\(306\) 0 0
\(307\) 10.1250 10.1250i 0.577865 0.577865i −0.356449 0.934315i \(-0.616013\pi\)
0.934315 + 0.356449i \(0.116013\pi\)
\(308\) 1.28425 1.24090i 0.0731768 0.0707066i
\(309\) 0 0
\(310\) 12.8096 12.5916i 0.727535 0.715152i
\(311\) 13.7848 + 7.95868i 0.781667 + 0.451295i 0.837021 0.547171i \(-0.184295\pi\)
−0.0553539 + 0.998467i \(0.517629\pi\)
\(312\) 0 0
\(313\) −9.90266 + 5.71730i −0.559732 + 0.323161i −0.753038 0.657977i \(-0.771412\pi\)
0.193306 + 0.981138i \(0.438079\pi\)
\(314\) 2.20514 7.95591i 0.124443 0.448978i
\(315\) 0 0
\(316\) −17.2446 10.3549i −0.970084 0.582507i
\(317\) −26.3682 7.06533i −1.48098 0.396828i −0.574302 0.818644i \(-0.694726\pi\)
−0.906682 + 0.421815i \(0.861393\pi\)
\(318\) 0 0
\(319\) 10.9299 + 6.31036i 0.611955 + 0.353313i
\(320\) −9.76694 + 2.08482i −0.545989 + 0.116545i
\(321\) 0 0
\(322\) −0.622109 0.366330i −0.0346688 0.0204148i
\(323\) −15.2853 15.2853i −0.850495 0.850495i
\(324\) 0 0
\(325\) −6.96714 + 6.96714i −0.386467 + 0.386467i
\(326\) −6.29128 24.3122i −0.348442 1.34653i
\(327\) 0 0
\(328\) −7.88082 + 12.8728i −0.435145 + 0.710779i
\(329\) −1.53868 + 2.66507i −0.0848301 + 0.146930i
\(330\) 0 0
\(331\) 2.97493 11.1026i 0.163517 0.610254i −0.834708 0.550693i \(-0.814363\pi\)
0.998225 0.0595605i \(-0.0189699\pi\)
\(332\) 4.41362 1.10178i 0.242229 0.0604682i
\(333\) 0 0
\(334\) 17.1726 9.71902i 0.939640 0.531801i
\(335\) 2.42740 + 4.20439i 0.132623 + 0.229710i
\(336\) 0 0
\(337\) 4.37194 7.57242i 0.238155 0.412496i −0.722030 0.691862i \(-0.756791\pi\)
0.960185 + 0.279366i \(0.0901242\pi\)
\(338\) 0.0583068 6.79300i 0.00317147 0.369490i
\(339\) 0 0
\(340\) −6.67986 + 6.45437i −0.362266 + 0.350037i
\(341\) 22.8983 + 22.8983i 1.24001 + 1.24001i
\(342\) 0 0
\(343\) 3.90537 0.210870
\(344\) −5.72584 + 19.3607i −0.308717 + 1.04386i
\(345\) 0 0
\(346\) −2.49538 + 2.45291i −0.134153 + 0.131869i
\(347\) −0.832493 3.10690i −0.0446905 0.166787i 0.939974 0.341246i \(-0.110849\pi\)
−0.984664 + 0.174459i \(0.944182\pi\)
\(348\) 0 0
\(349\) 8.57705 32.0100i 0.459119 1.71346i −0.216568 0.976268i \(-0.569486\pi\)
0.675687 0.737188i \(-0.263847\pi\)
\(350\) 1.18827 0.672516i 0.0635157 0.0359475i
\(351\) 0 0
\(352\) −3.90965 17.5756i −0.208385 0.936782i
\(353\) 7.18886 4.15049i 0.382624 0.220908i −0.296335 0.955084i \(-0.595765\pi\)
0.678959 + 0.734176i \(0.262431\pi\)
\(354\) 0 0
\(355\) −3.45099 12.8793i −0.183160 0.683561i
\(356\) −1.82031 3.28170i −0.0964762 0.173930i
\(357\) 0 0
\(358\) 18.4691 4.77925i 0.976120 0.252591i
\(359\) 17.1616i 0.905754i −0.891573 0.452877i \(-0.850398\pi\)
0.891573 0.452877i \(-0.149602\pi\)
\(360\) 0 0
\(361\) 14.7612i 0.776903i
\(362\) −3.42647 13.2413i −0.180091 0.695949i
\(363\) 0 0
\(364\) 0.442312 1.54420i 0.0231834 0.0809379i
\(365\) 3.00621 + 11.2193i 0.157352 + 0.587246i
\(366\) 0 0
\(367\) −1.27977 + 0.738875i −0.0668034 + 0.0385690i −0.533030 0.846097i \(-0.678947\pi\)
0.466226 + 0.884666i \(0.345613\pi\)
\(368\) −6.42502 + 3.42097i −0.334927 + 0.178331i
\(369\) 0 0
\(370\) −2.17625 3.84522i −0.113138 0.199903i
\(371\) 0.881424 3.28952i 0.0457612 0.170783i
\(372\) 0 0
\(373\) 8.48049 + 31.6496i 0.439103 + 1.63876i 0.731052 + 0.682322i \(0.239030\pi\)
−0.291948 + 0.956434i \(0.594304\pi\)
\(374\) −11.7393 11.9426i −0.607025 0.617536i
\(375\) 0 0
\(376\) 14.8166 + 27.2607i 0.764106 + 1.40587i
\(377\) 11.3521 0.584661
\(378\) 0 0
\(379\) 19.2548 + 19.2548i 0.989053 + 0.989053i 0.999941 0.0108880i \(-0.00346583\pi\)
−0.0108880 + 0.999941i \(0.503466\pi\)
\(380\) −14.5050 0.249022i −0.744092 0.0127746i
\(381\) 0 0
\(382\) −20.0423 0.172031i −1.02545 0.00880186i
\(383\) 3.99635 6.92189i 0.204204 0.353692i −0.745675 0.666310i \(-0.767873\pi\)
0.949879 + 0.312618i \(0.101206\pi\)
\(384\) 0 0
\(385\) −0.557338 0.965338i −0.0284046 0.0491982i
\(386\) −9.01383 15.9266i −0.458792 0.810641i
\(387\) 0 0
\(388\) 18.9252 31.5173i 0.960782 1.60005i
\(389\) 2.21212 8.25574i 0.112159 0.418583i −0.886900 0.461962i \(-0.847146\pi\)
0.999059 + 0.0433793i \(0.0138124\pi\)
\(390\) 0 0
\(391\) −3.38502 + 5.86303i −0.171188 + 0.296506i
\(392\) 10.2215 16.6960i 0.516261 0.843277i
\(393\) 0 0
\(394\) −15.5342 + 4.01980i −0.782602 + 0.202514i
\(395\) −8.87792 + 8.87792i −0.446697 + 0.446697i
\(396\) 0 0
\(397\) 21.9949 + 21.9949i 1.10389 + 1.10389i 0.993936 + 0.109957i \(0.0350713\pi\)
0.109957 + 0.993936i \(0.464929\pi\)
\(398\) −7.83606 + 13.3073i −0.392786 + 0.667037i
\(399\) 0 0
\(400\) 0.472540 13.7582i 0.0236270 0.687908i
\(401\) 15.4215 + 8.90359i 0.770111 + 0.444624i 0.832914 0.553402i \(-0.186671\pi\)
−0.0628030 + 0.998026i \(0.520004\pi\)
\(402\) 0 0
\(403\) 28.1353 + 7.53883i 1.40152 + 0.375536i
\(404\) −31.3813 + 7.83379i −1.56128 + 0.389746i
\(405\) 0 0
\(406\) −1.51596 0.420178i −0.0752357 0.0208531i
\(407\) 6.89849 3.98284i 0.341945 0.197422i
\(408\) 0 0
\(409\) 21.0100 + 12.1301i 1.03888 + 0.599797i 0.919515 0.393054i \(-0.128581\pi\)
0.119363 + 0.992851i \(0.461915\pi\)
\(410\) 6.60436 + 6.71871i 0.326166 + 0.331814i
\(411\) 0 0
\(412\) −0.244515 0.00419784i −0.0120464 0.000206813i
\(413\) 1.10595 1.10595i 0.0544202 0.0544202i
\(414\) 0 0
\(415\) 2.83946i 0.139383i
\(416\) −10.9499 11.9325i −0.536864 0.585041i
\(417\) 0 0
\(418\) 0.224485 26.1535i 0.0109799 1.27921i
\(419\) −11.0392 + 2.95796i −0.539302 + 0.144506i −0.518180 0.855271i \(-0.673390\pi\)
−0.0211217 + 0.999777i \(0.506724\pi\)
\(420\) 0 0
\(421\) 16.7104 + 4.47753i 0.814413 + 0.218221i 0.641903 0.766786i \(-0.278145\pi\)
0.172511 + 0.985008i \(0.444812\pi\)
\(422\) 23.0131 + 6.37853i 1.12026 + 0.310502i
\(423\) 0 0
\(424\) −23.6461 24.8964i −1.14836 1.20907i
\(425\) −6.40186 11.0883i −0.310536 0.537864i
\(426\) 0 0
\(427\) 1.74819 0.468425i 0.0846006 0.0226687i
\(428\) 16.2427 + 4.65247i 0.785120 + 0.224886i
\(429\) 0 0
\(430\) 10.8593 + 6.39449i 0.523680 + 0.308370i
\(431\) −33.7821 −1.62723 −0.813613 0.581407i \(-0.802502\pi\)
−0.813613 + 0.581407i \(0.802502\pi\)
\(432\) 0 0
\(433\) −32.7436 −1.57356 −0.786779 0.617235i \(-0.788253\pi\)
−0.786779 + 0.617235i \(0.788253\pi\)
\(434\) −3.47816 2.04812i −0.166957 0.0983129i
\(435\) 0 0
\(436\) −2.65517 + 9.26972i −0.127160 + 0.443939i
\(437\) −10.2133 + 2.73664i −0.488567 + 0.130911i
\(438\) 0 0
\(439\) −14.7258 25.5058i −0.702824 1.21733i −0.967471 0.252982i \(-0.918589\pi\)
0.264647 0.964345i \(-0.414745\pi\)
\(440\) −11.2349 0.289356i −0.535601 0.0137945i
\(441\) 0 0
\(442\) −14.5156 4.02329i −0.690437 0.191368i
\(443\) 8.80422 + 2.35908i 0.418301 + 0.112083i 0.461830 0.886969i \(-0.347193\pi\)
−0.0435282 + 0.999052i \(0.513860\pi\)
\(444\) 0 0
\(445\) −2.26259 + 0.606260i −0.107257 + 0.0287395i
\(446\) 0.173218 20.1807i 0.00820213 0.955584i
\(447\) 0 0
\(448\) 1.02059 + 1.99877i 0.0482184 + 0.0944329i
\(449\) 2.79179i 0.131753i −0.997828 0.0658765i \(-0.979016\pi\)
0.997828 0.0658765i \(-0.0209843\pi\)
\(450\) 0 0
\(451\) −12.0103 + 12.0103i −0.565543 + 0.565543i
\(452\) −0.0758469 + 4.41792i −0.00356754 + 0.207802i
\(453\) 0 0
\(454\) 8.72971 + 8.88087i 0.409706 + 0.416800i
\(455\) −0.868300 0.501313i −0.0407065 0.0235019i
\(456\) 0 0
\(457\) 1.90950 1.10245i 0.0893226 0.0515704i −0.454673 0.890658i \(-0.650244\pi\)
0.543996 + 0.839088i \(0.316911\pi\)
\(458\) 33.9728 + 9.41623i 1.58744 + 0.439992i
\(459\) 0 0
\(460\) 1.10043 + 4.40818i 0.0513076 + 0.205532i
\(461\) 19.1849 + 5.14058i 0.893531 + 0.239421i 0.676236 0.736685i \(-0.263610\pi\)
0.217295 + 0.976106i \(0.430277\pi\)
\(462\) 0 0
\(463\) −1.39347 0.804523i −0.0647602 0.0373893i 0.467270 0.884115i \(-0.345238\pi\)
−0.532031 + 0.846725i \(0.678571\pi\)
\(464\) −11.5936 + 10.8236i −0.538217 + 0.502474i
\(465\) 0 0
\(466\) −4.67365 + 7.93688i −0.216503 + 0.367669i
\(467\) 9.94383 + 9.94383i 0.460145 + 0.460145i 0.898703 0.438558i \(-0.144511\pi\)
−0.438558 + 0.898703i \(0.644511\pi\)
\(468\) 0 0
\(469\) 0.771428 0.771428i 0.0356213 0.0356213i
\(470\) 18.7491 4.85171i 0.864831 0.223793i
\(471\) 0 0
\(472\) −3.68787 15.3320i −0.169748 0.705713i
\(473\) −11.3600 + 19.6760i −0.522331 + 0.904704i
\(474\) 0 0
\(475\) 5.17561 19.3156i 0.237473 0.886262i
\(476\) 1.78950 + 1.07454i 0.0820217 + 0.0492516i
\(477\) 0 0
\(478\) 3.30045 + 5.83157i 0.150959 + 0.266730i
\(479\) −14.3867 24.9185i −0.657346 1.13856i −0.981300 0.192483i \(-0.938346\pi\)
0.323955 0.946073i \(-0.394987\pi\)
\(480\) 0 0
\(481\) 3.58248 6.20504i 0.163347 0.282925i
\(482\) −21.0372 0.180570i −0.958219 0.00822475i
\(483\) 0 0
\(484\) −0.0298393 + 1.73808i −0.00135633 + 0.0790034i
\(485\) −16.2259 16.2259i −0.736778 0.736778i
\(486\) 0 0
\(487\) 43.0194 1.94939 0.974697 0.223530i \(-0.0717581\pi\)
0.974697 + 0.223530i \(0.0717581\pi\)
\(488\) 5.17507 17.4984i 0.234265 0.792116i
\(489\) 0 0
\(490\) −8.56588 8.71420i −0.386967 0.393667i
\(491\) −1.40962 5.26076i −0.0636152 0.237415i 0.926796 0.375565i \(-0.122551\pi\)
−0.990411 + 0.138150i \(0.955885\pi\)
\(492\) 0 0
\(493\) −3.81801 + 14.2490i −0.171955 + 0.641744i
\(494\) −11.5874 20.4738i −0.521341 0.921159i
\(495\) 0 0
\(496\) −35.9217 + 19.1264i −1.61293 + 0.858800i
\(497\) −2.59488 + 1.49815i −0.116396 + 0.0672013i
\(498\) 0 0
\(499\) −4.61454 17.2217i −0.206575 0.770950i −0.988964 0.148159i \(-0.952665\pi\)
0.782388 0.622791i \(-0.214001\pi\)
\(500\) −20.2616 5.80364i −0.906128 0.259547i
\(501\) 0 0
\(502\) −3.45469 13.3504i −0.154191 0.595858i
\(503\) 0.254767i 0.0113595i 0.999984 + 0.00567974i \(0.00180793\pi\)
−0.999984 + 0.00567974i \(0.998192\pi\)
\(504\) 0 0
\(505\) 20.1888i 0.898391i
\(506\) −7.93004 + 2.05206i −0.352533 + 0.0912252i
\(507\) 0 0
\(508\) −6.36506 + 3.53060i −0.282404 + 0.156645i
\(509\) −2.84712 10.6256i −0.126196 0.470971i 0.873683 0.486495i \(-0.161725\pi\)
−0.999879 + 0.0155245i \(0.995058\pi\)
\(510\) 0 0
\(511\) 2.26043 1.30506i 0.0999956 0.0577325i
\(512\) 22.5599 + 1.74619i 0.997018 + 0.0771716i
\(513\) 0 0
\(514\) 3.09015 1.74891i 0.136301 0.0771410i
\(515\) −0.0395075 + 0.147444i −0.00174091 + 0.00649716i
\(516\) 0 0
\(517\) 9.03680 + 33.7258i 0.397438 + 1.48326i
\(518\) −0.708074 + 0.696023i −0.0311110 + 0.0305815i
\(519\) 0 0
\(520\) −8.88175 + 4.82735i −0.389491 + 0.211693i
\(521\) 8.17552 0.358176 0.179088 0.983833i \(-0.442685\pi\)
0.179088 + 0.983833i \(0.442685\pi\)
\(522\) 0 0
\(523\) −11.4305 11.4305i −0.499820 0.499820i 0.411562 0.911382i \(-0.364983\pi\)
−0.911382 + 0.411562i \(0.864983\pi\)
\(524\) −21.5655 22.3189i −0.942095 0.975008i
\(525\) 0 0
\(526\) −0.0441112 + 5.13914i −0.00192334 + 0.224077i
\(527\) −18.9254 + 32.7797i −0.824403 + 1.42791i
\(528\) 0 0
\(529\) −9.84425 17.0507i −0.428011 0.741337i
\(530\) −18.6521 + 10.5564i −0.810193 + 0.458539i
\(531\) 0 0
\(532\) 0.789579 + 3.16296i 0.0342326 + 0.137132i
\(533\) −3.95417 + 14.7572i −0.171274 + 0.639204i
\(534\) 0 0
\(535\) 5.27308 9.13325i 0.227975 0.394865i
\(536\) −2.57239 10.6945i −0.111110 0.461931i
\(537\) 0 0
\(538\) 6.19447 + 23.9381i 0.267063 + 1.03204i
\(539\) 15.5774 15.5774i 0.670967 0.670967i
\(540\) 0 0
\(541\) 9.93863 + 9.93863i 0.427295 + 0.427295i 0.887706 0.460411i \(-0.152298\pi\)
−0.460411 + 0.887706i \(0.652298\pi\)
\(542\) 33.2269 + 19.5657i 1.42722 + 0.840420i
\(543\) 0 0
\(544\) 18.6604 9.73101i 0.800058 0.417214i
\(545\) 5.21235 + 3.00935i 0.223273 + 0.128906i
\(546\) 0 0
\(547\) 2.81747 + 0.754938i 0.120466 + 0.0322788i 0.318548 0.947907i \(-0.396805\pi\)
−0.198082 + 0.980185i \(0.563471\pi\)
\(548\) −21.4287 + 35.6865i −0.915388 + 1.52445i
\(549\) 0 0
\(550\) 4.13779 14.9287i 0.176436 0.636562i
\(551\) −19.9527 + 11.5197i −0.850012 + 0.490755i
\(552\) 0 0
\(553\) 2.44341 + 1.41070i 0.103904 + 0.0599891i
\(554\) 17.4412 17.1444i 0.741007 0.728395i
\(555\) 0 0
\(556\) −1.15394 1.19426i −0.0489380 0.0506477i
\(557\) −11.5964 + 11.5964i −0.491356 + 0.491356i −0.908733 0.417377i \(-0.862949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(558\) 0 0
\(559\) 20.4360i 0.864352i
\(560\) 1.36475 0.315902i 0.0576711 0.0133493i
\(561\) 0 0
\(562\) −19.9312 0.171077i −0.840749 0.00721646i
\(563\) 7.42718 1.99011i 0.313018 0.0838730i −0.0988898 0.995098i \(-0.531529\pi\)
0.411908 + 0.911225i \(0.364862\pi\)
\(564\) 0 0
\(565\) 2.66403 + 0.713826i 0.112077 + 0.0300309i
\(566\) −0.245887 + 0.887133i −0.0103354 + 0.0372890i
\(567\) 0 0
\(568\) −0.777802 + 30.1998i −0.0326359 + 1.26716i
\(569\) 11.7897 + 20.4204i 0.494250 + 0.856066i 0.999978 0.00662697i \(-0.00210945\pi\)
−0.505728 + 0.862693i \(0.668776\pi\)
\(570\) 0 0
\(571\) −7.46185 + 1.99940i −0.312269 + 0.0836722i −0.411550 0.911387i \(-0.635012\pi\)
0.0992811 + 0.995059i \(0.468346\pi\)
\(572\) −8.84019 15.9373i −0.369627 0.666373i
\(573\) 0 0
\(574\) 1.07425 1.82432i 0.0448385 0.0761456i
\(575\) −6.26280 −0.261177
\(576\) 0 0
\(577\) 16.4238 0.683733 0.341866 0.939749i \(-0.388941\pi\)
0.341866 + 0.939749i \(0.388941\pi\)
\(578\) −2.26707 + 3.84998i −0.0942976 + 0.160138i
\(579\) 0 0
\(580\) 4.80210 + 8.65737i 0.199397 + 0.359478i
\(581\) −0.616336 + 0.165147i −0.0255699 + 0.00685144i
\(582\) 0 0
\(583\) −19.3196 33.4626i −0.800137 1.38588i
\(584\) 0.677554 26.3075i 0.0280374 1.08861i
\(585\) 0 0
\(586\) −3.16435 + 11.4166i −0.130718 + 0.471617i
\(587\) 44.0249 + 11.7964i 1.81710 + 0.486891i 0.996424 0.0844969i \(-0.0269283\pi\)
0.820680 + 0.571388i \(0.193595\pi\)
\(588\) 0 0
\(589\) −57.1015 + 15.3003i −2.35283 + 0.630438i
\(590\) −9.84262 0.0844828i −0.405214 0.00347810i
\(591\) 0 0
\(592\) 2.25750 + 9.75275i 0.0927825 + 0.400836i
\(593\) 9.66931i 0.397071i −0.980094 0.198535i \(-0.936382\pi\)
0.980094 0.198535i \(-0.0636185\pi\)
\(594\) 0 0
\(595\) 0.921278 0.921278i 0.0377687 0.0377687i
\(596\) 7.39060 + 7.64880i 0.302731 + 0.313307i
\(597\) 0 0
\(598\) −5.25437 + 5.16494i −0.214867 + 0.211210i
\(599\) 8.99479 + 5.19314i 0.367517 + 0.212186i 0.672373 0.740212i \(-0.265275\pi\)
−0.304856 + 0.952398i \(0.598608\pi\)
\(600\) 0 0
\(601\) −16.6353 + 9.60440i −0.678569 + 0.391772i −0.799316 0.600912i \(-0.794804\pi\)
0.120747 + 0.992683i \(0.461471\pi\)
\(602\) 0.756407 2.72903i 0.0308288 0.111227i
\(603\) 0 0
\(604\) −3.16055 + 5.26345i −0.128601 + 0.214167i
\(605\) 1.04807 + 0.280829i 0.0426101 + 0.0114173i
\(606\) 0 0
\(607\) −12.1261 7.00100i −0.492183 0.284162i 0.233297 0.972406i \(-0.425049\pi\)
−0.725480 + 0.688244i \(0.758382\pi\)
\(608\) 31.3546 + 9.86134i 1.27160 + 0.399930i
\(609\) 0 0
\(610\) −9.81470 5.77941i −0.397386 0.234001i
\(611\) 22.2072 + 22.2072i 0.898406 + 0.898406i
\(612\) 0 0
\(613\) 17.8303 17.8303i 0.720159 0.720159i −0.248478 0.968637i \(-0.579930\pi\)
0.968637 + 0.248478i \(0.0799304\pi\)
\(614\) 5.07302 + 19.6043i 0.204730 + 0.791165i
\(615\) 0 0
\(616\) 0.590627 + 2.45548i 0.0237970 + 0.0989341i
\(617\) 24.3668 42.2045i 0.980970 1.69909i 0.322340 0.946624i \(-0.395531\pi\)
0.658630 0.752467i \(-0.271136\pi\)
\(618\) 0 0
\(619\) −2.99775 + 11.1877i −0.120490 + 0.449673i −0.999639 0.0268731i \(-0.991445\pi\)
0.879149 + 0.476547i \(0.158112\pi\)
\(620\) 6.15239 + 24.6457i 0.247086 + 0.989797i
\(621\) 0 0
\(622\) −19.5906 + 11.0875i −0.785511 + 0.444570i
\(623\) 0.263191 + 0.455861i 0.0105445 + 0.0182637i
\(624\) 0 0
\(625\) 2.02612 3.50934i 0.0810447 0.140374i
\(626\) 0.138796 16.1704i 0.00554742 0.646299i
\(627\) 0 0
\(628\) 8.11292 + 8.39635i 0.323741 + 0.335051i
\(629\) 6.58363 + 6.58363i 0.262506 + 0.262506i
\(630\) 0 0
\(631\) 1.63509 0.0650918 0.0325459 0.999470i \(-0.489638\pi\)
0.0325459 + 0.999470i \(0.489638\pi\)
\(632\) 24.9934 13.5842i 0.994182 0.540351i
\(633\) 0 0
\(634\) 27.5316 27.0630i 1.09342 1.07481i
\(635\) 1.17588 + 4.38844i 0.0466633 + 0.174150i
\(636\) 0 0
\(637\) 5.12858 19.1401i 0.203202 0.758359i
\(638\) −15.5332 + 8.79120i −0.614965 + 0.348047i
\(639\) 0 0
\(640\) 4.46806 13.3983i 0.176616 0.529616i
\(641\) 33.5608 19.3763i 1.32557 0.765319i 0.340960 0.940078i \(-0.389248\pi\)
0.984611 + 0.174759i \(0.0559148\pi\)
\(642\) 0 0
\(643\) 5.22528 + 19.5010i 0.206065 + 0.769044i 0.989122 + 0.147095i \(0.0469924\pi\)
−0.783058 + 0.621949i \(0.786341\pi\)
\(644\) 0.892842 0.495245i 0.0351829 0.0195154i
\(645\) 0 0
\(646\) 29.5957 7.65850i 1.16443 0.301320i
\(647\) 28.2882i 1.11212i 0.831141 + 0.556062i \(0.187688\pi\)
−0.831141 + 0.556062i \(0.812312\pi\)
\(648\) 0 0
\(649\) 17.7456i 0.696575i
\(650\) −3.49080 13.4899i −0.136920 0.529119i
\(651\) 0 0
\(652\) 34.1421 + 9.77950i 1.33711 + 0.382995i
\(653\) −0.228971 0.854532i −0.00896033 0.0334404i 0.961301 0.275500i \(-0.0888436\pi\)
−0.970261 + 0.242060i \(0.922177\pi\)
\(654\) 0 0
\(655\) −16.7766 + 9.68599i −0.655517 + 0.378463i
\(656\) −10.0319 18.8412i −0.391681 0.735625i
\(657\) 0 0
\(658\) −2.14359 3.78752i −0.0835659 0.147653i
\(659\) −13.0375 + 48.6567i −0.507869 + 1.89539i −0.0671656 + 0.997742i \(0.521396\pi\)
−0.440704 + 0.897653i \(0.645271\pi\)
\(660\) 0 0
\(661\) −7.17239 26.7677i −0.278974 1.04114i −0.953131 0.302557i \(-0.902160\pi\)
0.674158 0.738587i \(-0.264507\pi\)
\(662\) 11.3952 + 11.5925i 0.442886 + 0.450555i
\(663\) 0 0
\(664\) −1.82451 + 6.16920i −0.0708048 + 0.239411i
\(665\) 2.03486 0.0789086
\(666\) 0 0
\(667\) 5.10222 + 5.10222i 0.197559 + 0.197559i
\(668\) −0.479010 + 27.9013i −0.0185334 + 1.07953i
\(669\) 0 0
\(670\) −6.86548 0.0589290i −0.265237 0.00227663i
\(671\) 10.2672 17.7834i 0.396363 0.686520i
\(672\) 0 0
\(673\) −16.5237 28.6198i −0.636941 1.10321i −0.986100 0.166150i \(-0.946866\pi\)
0.349160 0.937063i \(-0.386467\pi\)
\(674\) 6.09071 + 10.7617i 0.234605 + 0.414525i
\(675\) 0 0
\(676\) 8.23631 + 4.94566i 0.316781 + 0.190218i
\(677\) −2.69118 + 10.0436i −0.103430 + 0.386007i −0.998162 0.0605961i \(-0.980700\pi\)
0.894732 + 0.446603i \(0.147367\pi\)
\(678\) 0 0
\(679\) −2.57829 + 4.46572i −0.0989455 + 0.171379i
\(680\) −3.07207 12.7719i −0.117809 0.489779i
\(681\) 0 0
\(682\) −44.3362 + 11.4729i −1.69772 + 0.439320i
\(683\) 9.18142 9.18142i 0.351317 0.351317i −0.509282 0.860600i \(-0.670089\pi\)
0.860600 + 0.509282i \(0.170089\pi\)
\(684\) 0 0
\(685\) 18.3723 + 18.3723i 0.701968 + 0.701968i
\(686\) −2.80247 + 4.75920i −0.106999 + 0.181707i
\(687\) 0 0
\(688\) −19.4847 20.8708i −0.742848 0.795691i
\(689\) −30.0988 17.3776i −1.14667 0.662033i
\(690\) 0 0
\(691\) 24.3744 + 6.53111i 0.927247 + 0.248455i 0.690680 0.723160i \(-0.257311\pi\)
0.236567 + 0.971615i \(0.423978\pi\)
\(692\) −1.19852 4.80114i −0.0455610 0.182512i
\(693\) 0 0
\(694\) 4.38356 + 1.21499i 0.166398 + 0.0461204i
\(695\) −0.897694 + 0.518284i −0.0340515 + 0.0196596i
\(696\) 0 0
\(697\) −17.1932 9.92649i −0.651239 0.375993i
\(698\) 32.8535 + 33.4224i 1.24352 + 1.26506i
\(699\) 0 0
\(700\) −0.0331455 + 1.93066i −0.00125278 + 0.0729719i
\(701\) −32.8695 + 32.8695i −1.24146 + 1.24146i −0.282069 + 0.959394i \(0.591021\pi\)
−0.959394 + 0.282069i \(0.908979\pi\)
\(702\) 0 0
\(703\) 14.5415i 0.548443i
\(704\) 24.2237 + 7.84770i 0.912965 + 0.295771i
\(705\) 0 0
\(706\) −0.100760 + 11.7389i −0.00379213 + 0.441800i
\(707\) 4.38221 1.17421i 0.164810 0.0441607i
\(708\) 0 0
\(709\) 41.1714 + 11.0318i 1.54622 + 0.414310i 0.928271 0.371905i \(-0.121295\pi\)
0.617953 + 0.786215i \(0.287962\pi\)
\(710\) 18.1715 + 5.03659i 0.681964 + 0.189020i
\(711\) 0 0
\(712\) 5.30542 + 0.136642i 0.198829 + 0.00512088i
\(713\) 9.25715 + 16.0339i 0.346683 + 0.600473i
\(714\) 0 0
\(715\) −10.9881 + 2.94426i −0.410932 + 0.110109i
\(716\) −7.42912 + 25.9365i −0.277639 + 0.969293i
\(717\) 0 0
\(718\) 20.9136 + 12.3150i 0.780490 + 0.459593i
\(719\) 8.84226 0.329761 0.164880 0.986314i \(-0.447276\pi\)
0.164880 + 0.986314i \(0.447276\pi\)
\(720\) 0 0
\(721\) 0.0343022 0.00127748
\(722\) 17.9884 + 10.5925i 0.669459 + 0.394212i
\(723\) 0 0
\(724\) 18.5951 + 5.32629i 0.691082 + 0.197950i
\(725\) −13.1814 + 3.53195i −0.489545 + 0.131173i
\(726\) 0 0
\(727\) 11.4146 + 19.7707i 0.423344 + 0.733254i 0.996264 0.0863576i \(-0.0275228\pi\)
−0.572920 + 0.819611i \(0.694189\pi\)
\(728\) 1.56441 + 1.64712i 0.0579807 + 0.0610463i
\(729\) 0 0
\(730\) −15.8294 4.38744i −0.585873 0.162387i
\(731\) −25.6512 6.87321i −0.948743 0.254215i
\(732\) 0 0
\(733\) −28.8645 + 7.73423i −1.06614 + 0.285670i −0.748905 0.662678i \(-0.769420\pi\)
−0.317232 + 0.948348i \(0.602753\pi\)
\(734\) 0.0179373 2.08978i 0.000662079 0.0771351i
\(735\) 0 0
\(736\) 0.441643 10.2846i 0.0162792 0.379095i
\(737\) 12.3780i 0.455950i
\(738\) 0 0
\(739\) 6.92568 6.92568i 0.254765 0.254765i −0.568156 0.822921i \(-0.692343\pi\)
0.822921 + 0.568156i \(0.192343\pi\)
\(740\) 6.24756 + 0.107258i 0.229665 + 0.00394289i
\(741\) 0 0
\(742\) 3.37620 + 3.43467i 0.123944 + 0.126091i
\(743\) −27.7583 16.0262i −1.01835 0.587946i −0.104726 0.994501i \(-0.533397\pi\)
−0.913626 + 0.406555i \(0.866730\pi\)
\(744\) 0 0
\(745\) 5.74942 3.31943i 0.210642 0.121614i
\(746\) −44.6548 12.3770i −1.63493 0.453153i
\(747\) 0 0
\(748\) 22.9776 5.73597i 0.840145 0.209728i
\(749\) −2.28916 0.613380i −0.0836442 0.0224124i
\(750\) 0 0
\(751\) −7.35037 4.24374i −0.268219 0.154856i 0.359859 0.933007i \(-0.382825\pi\)
−0.628078 + 0.778151i \(0.716158\pi\)
\(752\) −43.8530 1.50618i −1.59916 0.0549248i
\(753\) 0 0
\(754\) −8.14615 + 13.8340i −0.296665 + 0.503803i
\(755\) 2.70975 + 2.70975i 0.0986179 + 0.0986179i
\(756\) 0 0
\(757\) −15.2511 + 15.2511i −0.554309 + 0.554309i −0.927682 0.373372i \(-0.878201\pi\)
0.373372 + 0.927682i \(0.378201\pi\)
\(758\) −37.2816 + 9.64738i −1.35413 + 0.350409i
\(759\) 0 0
\(760\) 10.7122 17.4976i 0.388571 0.634704i
\(761\) −1.63439 + 2.83084i −0.0592465 + 0.102618i −0.894127 0.447813i \(-0.852203\pi\)
0.834881 + 0.550431i \(0.185536\pi\)
\(762\) 0 0
\(763\) 0.350056 1.30643i 0.0126729 0.0472959i
\(764\) 14.5919 24.3007i 0.527915 0.879170i
\(765\) 0 0
\(766\) 5.56747 + 9.83718i 0.201161 + 0.355432i
\(767\) −7.98088 13.8233i −0.288173 0.499130i
\(768\) 0 0
\(769\) 19.1814 33.2232i 0.691701 1.19806i −0.279580 0.960123i \(-0.590195\pi\)
0.971280 0.237938i \(-0.0764716\pi\)
\(770\) 1.57633 + 0.0135302i 0.0568071 + 0.000487596i
\(771\) 0 0
\(772\) 25.8769 + 0.444254i 0.931328 + 0.0159891i
\(773\) −20.0548 20.0548i −0.721320 0.721320i 0.247554 0.968874i \(-0.420373\pi\)
−0.968874 + 0.247554i \(0.920373\pi\)
\(774\) 0 0
\(775\) −35.0148 −1.25777
\(776\) 24.8274 + 45.6794i 0.891251 + 1.63980i
\(777\) 0 0
\(778\) 8.47329 + 8.62001i 0.303782 + 0.309042i
\(779\) −8.02512 29.9501i −0.287530 1.07308i
\(780\) 0 0
\(781\) −8.79878 + 32.8375i −0.314845 + 1.17502i
\(782\) −4.71580 8.33236i −0.168637 0.297965i
\(783\) 0 0
\(784\) 13.0114 + 24.4371i 0.464694 + 0.872754i
\(785\) 6.31134 3.64385i 0.225261 0.130055i
\(786\) 0 0
\(787\) 2.45116 + 9.14785i 0.0873744 + 0.326086i 0.995753 0.0920625i \(-0.0293460\pi\)
−0.908379 + 0.418148i \(0.862679\pi\)
\(788\) 6.24859 21.8150i 0.222597 0.777128i
\(789\) 0 0
\(790\) −4.44818 17.1896i −0.158259 0.611580i
\(791\) 0.619775i 0.0220367i
\(792\) 0 0
\(793\) 18.4703i 0.655900i
\(794\) −42.5871 + 11.0203i −1.51136 + 0.391095i
\(795\) 0 0
\(796\) −10.5936 19.0985i −0.375482 0.676929i
\(797\) −7.19855 26.8654i −0.254986 0.951620i −0.968098 0.250571i \(-0.919382\pi\)
0.713112 0.701050i \(-0.247285\pi\)
\(798\) 0 0
\(799\) −35.3432 + 20.4054i −1.25035 + 0.721891i
\(800\) 16.4270 + 10.4486i 0.580783 + 0.369414i
\(801\) 0 0
\(802\) −21.9165 + 12.4039i −0.773899 + 0.437998i
\(803\) 7.66474 28.6052i 0.270483 1.00946i
\(804\) 0 0
\(805\) −0.164943 0.615577i −0.00581349 0.0216962i
\(806\) −29.3768 + 28.8767i −1.03475 + 1.01714i
\(807\) 0 0
\(808\) 12.9725 43.8636i 0.456370 1.54312i
\(809\) −48.8492 −1.71745 −0.858724 0.512439i \(-0.828742\pi\)
−0.858724 + 0.512439i \(0.828742\pi\)
\(810\) 0 0
\(811\) −5.86383 5.86383i −0.205907 0.205907i 0.596618 0.802525i \(-0.296511\pi\)
−0.802525 + 0.596618i \(0.796511\pi\)
\(812\) 1.59988 1.54587i 0.0561448 0.0542496i
\(813\) 0 0
\(814\) −0.0966897 + 11.2648i −0.00338897 + 0.394830i
\(815\) 11.0840 19.1981i 0.388256 0.672480i
\(816\) 0 0
\(817\) −20.7378 35.9189i −0.725524 1.25664i
\(818\) −29.8588 + 16.8990i −1.04399 + 0.590858i
\(819\) 0 0
\(820\) −12.9269 + 3.22697i −0.451426 + 0.112691i
\(821\) 0.828375 3.09154i 0.0289105 0.107895i −0.949963 0.312363i \(-0.898880\pi\)
0.978873 + 0.204467i \(0.0655462\pi\)
\(822\) 0 0
\(823\) −20.9908 + 36.3572i −0.731695 + 1.26733i 0.224464 + 0.974482i \(0.427937\pi\)
−0.956158 + 0.292850i \(0.905396\pi\)
\(824\) 0.180578 0.294961i 0.00629073 0.0102755i
\(825\) 0 0
\(826\) 0.554122 + 2.14136i 0.0192804 + 0.0745076i
\(827\) 12.7209 12.7209i 0.442348 0.442348i −0.450453 0.892800i \(-0.648737\pi\)
0.892800 + 0.450453i \(0.148737\pi\)
\(828\) 0 0
\(829\) −10.4132 10.4132i −0.361665 0.361665i 0.502761 0.864425i \(-0.332318\pi\)
−0.864425 + 0.502761i \(0.832318\pi\)
\(830\) 3.46025 + 2.03757i 0.120107 + 0.0707252i
\(831\) 0 0
\(832\) 22.3989 4.78120i 0.776544 0.165758i
\(833\) 22.2996 + 12.8747i 0.772637 + 0.446082i
\(834\) 0 0
\(835\) 16.8246 + 4.50815i 0.582241 + 0.156011i
\(836\) 31.7104 + 19.0411i 1.09673 + 0.658552i
\(837\) 0 0
\(838\) 4.31702 15.5754i 0.149129 0.538042i
\(839\) 25.7863 14.8877i 0.890241 0.513981i 0.0162196 0.999868i \(-0.494837\pi\)
0.874021 + 0.485888i \(0.161504\pi\)
\(840\) 0 0
\(841\) −11.4986 6.63872i −0.396503 0.228921i
\(842\) −17.4477 + 17.1507i −0.601287 + 0.591053i
\(843\) 0 0
\(844\) −24.2871 + 23.4672i −0.835996 + 0.807775i
\(845\) 4.24025 4.24025i 0.145869 0.145869i
\(846\) 0 0
\(847\) 0.243829i 0.00837805i
\(848\) 47.3078 10.9505i 1.62456 0.376040i
\(849\) 0 0
\(850\) 18.1065 + 0.155415i 0.621048 + 0.00533069i
\(851\) 4.39903 1.17872i 0.150797 0.0404059i
\(852\) 0 0
\(853\) −28.4092 7.61221i −0.972711 0.260637i −0.262739 0.964867i \(-0.584626\pi\)
−0.709972 + 0.704230i \(0.751292\pi\)
\(854\) −0.683648 + 2.46653i −0.0233940 + 0.0844029i
\(855\) 0 0
\(856\) −17.3253 + 16.4553i −0.592166 + 0.562429i
\(857\) −14.3783 24.9039i −0.491152 0.850700i 0.508796 0.860887i \(-0.330091\pi\)
−0.999948 + 0.0101867i \(0.996757\pi\)
\(858\) 0 0
\(859\) 9.26004 2.48122i 0.315949 0.0846582i −0.0973599 0.995249i \(-0.531040\pi\)
0.413308 + 0.910591i \(0.364373\pi\)
\(860\) −15.5850 + 8.64478i −0.531446 + 0.294784i
\(861\) 0 0
\(862\) 24.2418 41.1679i 0.825678 1.40218i
\(863\) −38.6895 −1.31700 −0.658502 0.752579i \(-0.728810\pi\)
−0.658502 + 0.752579i \(0.728810\pi\)
\(864\) 0 0
\(865\) −3.08877 −0.105021
\(866\) 23.4966 39.9024i 0.798446 1.35594i
\(867\) 0 0
\(868\) 4.99181 2.76888i 0.169433 0.0939818i
\(869\) 30.9207 8.28517i 1.04891 0.281055i
\(870\) 0 0
\(871\) −5.56687 9.64210i −0.188626 0.326710i
\(872\) −9.39103 9.88755i −0.318020 0.334835i
\(873\) 0 0
\(874\) 3.99402 14.4100i 0.135100 0.487425i
\(875\) 2.85557 + 0.765148i 0.0965360 + 0.0258667i
\(876\) 0 0
\(877\) 33.8645 9.07397i 1.14352 0.306406i 0.363157 0.931728i \(-0.381699\pi\)
0.780367 + 0.625322i \(0.215032\pi\)
\(878\) 41.6493 + 0.357492i 1.40560 + 0.0120648i
\(879\) 0 0
\(880\) 8.41467 13.4835i 0.283658 0.454529i
\(881\) 15.5358i 0.523415i −0.965147 0.261708i \(-0.915714\pi\)
0.965147 0.261708i \(-0.0842856\pi\)
\(882\) 0 0
\(883\) −35.3696 + 35.3696i −1.19028 + 1.19028i −0.213292 + 0.976988i \(0.568419\pi\)
−0.976988 + 0.213292i \(0.931581\pi\)
\(884\) 15.3192 14.8021i 0.515240 0.497848i
\(885\) 0 0
\(886\) −9.19270 + 9.03623i −0.308835 + 0.303578i
\(887\) 22.5037 + 12.9925i 0.755599 + 0.436246i 0.827714 0.561151i \(-0.189641\pi\)
−0.0721141 + 0.997396i \(0.522975\pi\)
\(888\) 0 0
\(889\) 0.884169 0.510475i 0.0296541 0.0171208i
\(890\) 0.884814 3.19231i 0.0296590 0.107007i
\(891\) 0 0
\(892\) 24.4685 + 14.6926i 0.819267 + 0.491945i
\(893\) −61.5670 16.4968i −2.06026 0.552045i
\(894\) 0 0
\(895\) 14.5841 + 8.42011i 0.487492 + 0.281453i
\(896\) −3.16813 0.190577i −0.105840 0.00636674i
\(897\) 0 0
\(898\) 3.40217 + 2.00337i 0.113532 + 0.0668534i
\(899\) 28.5261 + 28.5261i 0.951398 + 0.951398i
\(900\) 0 0
\(901\) 31.9353 31.9353i 1.06392 1.06392i
\(902\) −6.01762 23.2546i −0.200365 0.774295i
\(903\) 0 0
\(904\) −5.32939 3.26270i −0.177253 0.108516i
\(905\) 6.03678 10.4560i 0.200669 0.347569i
\(906\) 0 0
\(907\) 7.10188 26.5046i 0.235814 0.880070i −0.741966 0.670437i \(-0.766106\pi\)
0.977780 0.209633i \(-0.0672268\pi\)
\(908\) −17.0869 + 4.26545i −0.567048 + 0.141554i
\(909\) 0 0
\(910\) 1.23400 0.698398i 0.0409067 0.0231517i
\(911\) −23.4177 40.5606i −0.775863 1.34383i −0.934308 0.356466i \(-0.883982\pi\)
0.158445 0.987368i \(-0.449352\pi\)
\(912\) 0 0
\(913\) −3.61980 + 6.26967i −0.119798 + 0.207496i
\(914\) −0.0267637 + 3.11809i −0.000885264 + 0.103137i
\(915\) 0 0
\(916\) −35.8535 + 34.6432i −1.18463 + 1.14464i
\(917\) 3.07820 + 3.07820i 0.101651 + 0.101651i
\(918\) 0 0
\(919\) −0.421071 −0.0138899 −0.00694493 0.999976i \(-0.502211\pi\)
−0.00694493 + 0.999976i \(0.502211\pi\)
\(920\) −6.16160 1.82226i −0.203142 0.0600783i
\(921\) 0 0
\(922\) −20.0314 + 19.6905i −0.659700 + 0.648472i
\(923\) 7.91430 + 29.5366i 0.260503 + 0.972209i
\(924\) 0 0
\(925\) −2.22922 + 8.31957i −0.0732964 + 0.273546i
\(926\) 1.98036 1.12081i 0.0650788 0.0368321i
\(927\) 0 0
\(928\) −4.87053 21.8952i −0.159883 0.718745i
\(929\) 5.41100 3.12404i 0.177529 0.102496i −0.408602 0.912713i \(-0.633984\pi\)
0.586131 + 0.810216i \(0.300650\pi\)
\(930\) 0 0
\(931\) 10.4086 + 38.8455i 0.341128 + 1.27311i
\(932\) −6.31835 11.3909i −0.206965 0.373121i
\(933\) 0 0
\(934\) −19.2535 + 4.98223i −0.629993 + 0.163024i
\(935\) 14.7824i 0.483437i
\(936\) 0 0
\(937\) 41.2133i 1.34638i −0.739470 0.673189i \(-0.764924\pi\)
0.739470 0.673189i \(-0.235076\pi\)
\(938\) 0.386515 + 1.49366i 0.0126202 + 0.0487697i
\(939\) 0 0
\(940\) −7.54176 + 26.3298i −0.245985 + 0.858782i
\(941\) −3.22526 12.0368i −0.105141 0.392390i 0.893221 0.449619i \(-0.148440\pi\)
−0.998361 + 0.0572290i \(0.981773\pi\)
\(942\) 0 0
\(943\) −8.40987 + 4.85544i −0.273863 + 0.158115i
\(944\) 21.3305 + 6.50799i 0.694247 + 0.211817i
\(945\) 0 0
\(946\) −15.8260 27.9630i −0.514547 0.909154i
\(947\) −3.96886 + 14.8120i −0.128971 + 0.481325i −0.999950 0.00999447i \(-0.996819\pi\)
0.870979 + 0.491320i \(0.163485\pi\)
\(948\) 0 0
\(949\) −6.89426 25.7297i −0.223797 0.835222i
\(950\) 19.8246 + 20.1679i 0.643196 + 0.654333i
\(951\) 0 0
\(952\) −2.59360 + 1.40966i −0.0840592 + 0.0456873i
\(953\) −20.0192 −0.648486 −0.324243 0.945974i \(-0.605110\pi\)
−0.324243 + 0.945974i \(0.605110\pi\)
\(954\) 0 0
\(955\) −12.5106 12.5106i −0.404833 0.404833i
\(956\) −9.47490 0.162665i −0.306440 0.00526097i
\(957\) 0 0
\(958\) 40.6903 + 0.349260i 1.31464 + 0.0112841i
\(959\) 2.91935 5.05646i 0.0942707 0.163282i
\(960\) 0 0
\(961\) 36.2559 + 62.7971i 1.16955 + 2.02571i
\(962\) 4.99088 + 8.81841i 0.160913 + 0.284317i
\(963\) 0 0
\(964\) 15.3162 25.5070i 0.493302 0.821526i
\(965\) 4.18105 15.6039i 0.134593 0.502307i
\(966\) 0 0
\(967\) −16.3485 + 28.3164i −0.525732 + 0.910594i 0.473819 + 0.880622i \(0.342875\pi\)
−0.999551 + 0.0299719i \(0.990458\pi\)
\(968\) −2.09666 1.28359i −0.0673892 0.0412562i
\(969\) 0 0
\(970\) 31.4169 8.12977i 1.00874 0.261031i
\(971\) 12.2406 12.2406i 0.392820 0.392820i −0.482871 0.875691i \(-0.660406\pi\)
0.875691 + 0.482871i \(0.160406\pi\)
\(972\) 0 0
\(973\) 0.164710 + 0.164710i 0.00528037 + 0.00528037i
\(974\) −30.8704 + 52.4247i −0.989151 + 1.67980i
\(975\) 0 0
\(976\) 17.6105 + 18.8632i 0.563698 + 0.603797i
\(977\) −34.1771 19.7322i −1.09342 0.631288i −0.158938 0.987289i \(-0.550807\pi\)
−0.934486 + 0.356000i \(0.884140\pi\)
\(978\) 0 0
\(979\) 5.76880 + 1.54575i 0.184372 + 0.0494022i
\(980\) 16.7662 4.18539i 0.535577 0.133698i
\(981\) 0 0
\(982\) 7.42246 + 2.05728i 0.236860 + 0.0656506i
\(983\) −3.78032 + 2.18257i −0.120574 + 0.0696132i −0.559074 0.829118i \(-0.688843\pi\)
0.438500 + 0.898731i \(0.355510\pi\)
\(984\) 0 0
\(985\) −12.2666 7.08211i −0.390845 0.225655i
\(986\) −14.6245 14.8777i −0.465739 0.473804i
\(987\) 0 0
\(988\) 33.2650 + 0.571094i 1.05830 + 0.0181689i
\(989\) −9.18504 + 9.18504i −0.292067 + 0.292067i
\(990\) 0 0
\(991\) 21.1610i 0.672200i −0.941826 0.336100i \(-0.890892\pi\)
0.941826 0.336100i \(-0.109108\pi\)
\(992\) 2.46919 57.5003i 0.0783968 1.82564i
\(993\) 0 0
\(994\) 0.0363700 4.23726i 0.00115359 0.134398i
\(995\) −13.1676 + 3.52825i −0.417441 + 0.111853i
\(996\) 0 0
\(997\) 12.7473 + 3.41563i 0.403712 + 0.108174i 0.454960 0.890512i \(-0.349653\pi\)
−0.0512486 + 0.998686i \(0.516320\pi\)
\(998\) 24.2983 + 6.73475i 0.769148 + 0.213185i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.179.7 88
3.2 odd 2 144.2.u.a.131.16 yes 88
4.3 odd 2 1728.2.z.a.1583.7 88
9.2 odd 6 inner 432.2.v.a.35.1 88
9.7 even 3 144.2.u.a.83.22 yes 88
12.11 even 2 576.2.y.a.239.6 88
16.5 even 4 1728.2.z.a.719.7 88
16.11 odd 4 inner 432.2.v.a.395.1 88
36.7 odd 6 576.2.y.a.47.17 88
36.11 even 6 1728.2.z.a.1007.7 88
48.5 odd 4 576.2.y.a.527.17 88
48.11 even 4 144.2.u.a.59.22 yes 88
144.11 even 12 inner 432.2.v.a.251.7 88
144.43 odd 12 144.2.u.a.11.16 88
144.101 odd 12 1728.2.z.a.143.7 88
144.133 even 12 576.2.y.a.335.6 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.16 88 144.43 odd 12
144.2.u.a.59.22 yes 88 48.11 even 4
144.2.u.a.83.22 yes 88 9.7 even 3
144.2.u.a.131.16 yes 88 3.2 odd 2
432.2.v.a.35.1 88 9.2 odd 6 inner
432.2.v.a.179.7 88 1.1 even 1 trivial
432.2.v.a.251.7 88 144.11 even 12 inner
432.2.v.a.395.1 88 16.11 odd 4 inner
576.2.y.a.47.17 88 36.7 odd 6
576.2.y.a.239.6 88 12.11 even 2
576.2.y.a.335.6 88 144.133 even 12
576.2.y.a.527.17 88 48.5 odd 4
1728.2.z.a.143.7 88 144.101 odd 12
1728.2.z.a.719.7 88 16.5 even 4
1728.2.z.a.1007.7 88 36.11 even 6
1728.2.z.a.1583.7 88 4.3 odd 2