Properties

Label 1728.2.z.a.1007.13
Level $1728$
Weight $2$
Character 1728.1007
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1007.13
Character \(\chi\) \(=\) 1728.1007
Dual form 1728.2.z.a.719.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.206232 - 0.769670i) q^{5} +(2.17574 - 3.76849i) q^{7} +(1.05570 + 3.93991i) q^{11} +(-0.454903 + 1.69772i) q^{13} +6.68683i q^{17} +(0.708282 - 0.708282i) q^{19} +(3.88191 - 2.24122i) q^{23} +(3.78027 + 2.18254i) q^{25} +(1.06907 + 3.98981i) q^{29} +(4.94177 - 2.85313i) q^{31} +(-2.45179 - 2.45179i) q^{35} +(-1.51665 + 1.51665i) q^{37} +(-1.36389 - 2.36233i) q^{41} +(8.60436 - 2.30553i) q^{43} +(1.23164 - 2.13327i) q^{47} +(-5.96768 - 10.3363i) q^{49} +(-1.68291 - 1.68291i) q^{53} +3.25015 q^{55} +(-1.00516 - 0.269331i) q^{59} +(1.97401 - 0.528935i) q^{61} +(1.21287 + 0.700250i) q^{65} +(-8.01120 - 2.14659i) q^{67} -8.05218i q^{71} -9.73126i q^{73} +(17.1444 + 4.59383i) q^{77} +(-11.9835 - 6.91865i) q^{79} +(3.05012 - 0.817277i) q^{83} +(5.14666 + 1.37904i) q^{85} -1.71120 q^{89} +(5.40809 + 5.40809i) q^{91} +(-0.399073 - 0.691214i) q^{95} +(3.66561 - 6.34903i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.206232 0.769670i 0.0922300 0.344207i −0.904355 0.426781i \(-0.859647\pi\)
0.996585 + 0.0825742i \(0.0263142\pi\)
\(6\) 0 0
\(7\) 2.17574 3.76849i 0.822352 1.42436i −0.0815745 0.996667i \(-0.525995\pi\)
0.903926 0.427688i \(-0.140672\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.05570 + 3.93991i 0.318304 + 1.18793i 0.920874 + 0.389861i \(0.127477\pi\)
−0.602570 + 0.798066i \(0.705856\pi\)
\(12\) 0 0
\(13\) −0.454903 + 1.69772i −0.126167 + 0.470863i −0.999879 0.0155820i \(-0.995040\pi\)
0.873711 + 0.486445i \(0.161707\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.68683i 1.62180i 0.585188 + 0.810898i \(0.301021\pi\)
−0.585188 + 0.810898i \(0.698979\pi\)
\(18\) 0 0
\(19\) 0.708282 0.708282i 0.162491 0.162491i −0.621178 0.783669i \(-0.713346\pi\)
0.783669 + 0.621178i \(0.213346\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.88191 2.24122i 0.809433 0.467327i −0.0373258 0.999303i \(-0.511884\pi\)
0.846759 + 0.531977i \(0.178551\pi\)
\(24\) 0 0
\(25\) 3.78027 + 2.18254i 0.756053 + 0.436508i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.06907 + 3.98981i 0.198520 + 0.740888i 0.991327 + 0.131415i \(0.0419522\pi\)
−0.792807 + 0.609473i \(0.791381\pi\)
\(30\) 0 0
\(31\) 4.94177 2.85313i 0.887568 0.512437i 0.0144215 0.999896i \(-0.495409\pi\)
0.873146 + 0.487459i \(0.162076\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.45179 2.45179i −0.414427 0.414427i
\(36\) 0 0
\(37\) −1.51665 + 1.51665i −0.249335 + 0.249335i −0.820698 0.571363i \(-0.806415\pi\)
0.571363 + 0.820698i \(0.306415\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.36389 2.36233i −0.213005 0.368935i 0.739649 0.672993i \(-0.234992\pi\)
−0.952653 + 0.304058i \(0.901658\pi\)
\(42\) 0 0
\(43\) 8.60436 2.30553i 1.31215 0.351590i 0.466120 0.884722i \(-0.345652\pi\)
0.846033 + 0.533131i \(0.178985\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.23164 2.13327i 0.179654 0.311169i −0.762108 0.647449i \(-0.775836\pi\)
0.941762 + 0.336280i \(0.109169\pi\)
\(48\) 0 0
\(49\) −5.96768 10.3363i −0.852525 1.47662i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.68291 1.68291i −0.231165 0.231165i 0.582014 0.813179i \(-0.302265\pi\)
−0.813179 + 0.582014i \(0.802265\pi\)
\(54\) 0 0
\(55\) 3.25015 0.438250
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.00516 0.269331i −0.130860 0.0350640i 0.192794 0.981239i \(-0.438245\pi\)
−0.323655 + 0.946175i \(0.604912\pi\)
\(60\) 0 0
\(61\) 1.97401 0.528935i 0.252747 0.0677232i −0.130221 0.991485i \(-0.541569\pi\)
0.382968 + 0.923762i \(0.374902\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.21287 + 0.700250i 0.150438 + 0.0868553i
\(66\) 0 0
\(67\) −8.01120 2.14659i −0.978723 0.262248i −0.266217 0.963913i \(-0.585774\pi\)
−0.712507 + 0.701665i \(0.752440\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.05218i 0.955618i −0.878464 0.477809i \(-0.841431\pi\)
0.878464 0.477809i \(-0.158569\pi\)
\(72\) 0 0
\(73\) 9.73126i 1.13896i −0.822006 0.569479i \(-0.807145\pi\)
0.822006 0.569479i \(-0.192855\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.1444 + 4.59383i 1.95379 + 0.523516i
\(78\) 0 0
\(79\) −11.9835 6.91865i −1.34824 0.778409i −0.360243 0.932858i \(-0.617306\pi\)
−0.988001 + 0.154449i \(0.950640\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.05012 0.817277i 0.334794 0.0897078i −0.0875058 0.996164i \(-0.527890\pi\)
0.422300 + 0.906456i \(0.361223\pi\)
\(84\) 0 0
\(85\) 5.14666 + 1.37904i 0.558233 + 0.149578i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.71120 −0.181386 −0.0906932 0.995879i \(-0.528908\pi\)
−0.0906932 + 0.995879i \(0.528908\pi\)
\(90\) 0 0
\(91\) 5.40809 + 5.40809i 0.566922 + 0.566922i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.399073 0.691214i −0.0409440 0.0709171i
\(96\) 0 0
\(97\) 3.66561 6.34903i 0.372187 0.644646i −0.617715 0.786402i \(-0.711941\pi\)
0.989902 + 0.141756i \(0.0452748\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.0255 3.75813i 1.39559 0.373948i 0.518833 0.854876i \(-0.326367\pi\)
0.876760 + 0.480928i \(0.159700\pi\)
\(102\) 0 0
\(103\) 7.43866 + 12.8841i 0.732953 + 1.26951i 0.955616 + 0.294616i \(0.0951917\pi\)
−0.222663 + 0.974895i \(0.571475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.0974799 + 0.0974799i −0.00942374 + 0.00942374i −0.711803 0.702379i \(-0.752121\pi\)
0.702379 + 0.711803i \(0.252121\pi\)
\(108\) 0 0
\(109\) 8.80665 + 8.80665i 0.843524 + 0.843524i 0.989315 0.145791i \(-0.0465728\pi\)
−0.145791 + 0.989315i \(0.546573\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.22037 + 4.16868i −0.679235 + 0.392157i −0.799567 0.600577i \(-0.794938\pi\)
0.120331 + 0.992734i \(0.461604\pi\)
\(114\) 0 0
\(115\) −0.924424 3.45000i −0.0862030 0.321714i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.1993 + 14.5488i 2.31001 + 1.33369i
\(120\) 0 0
\(121\) −4.88210 + 2.81868i −0.443827 + 0.256244i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.27664 5.27664i 0.471957 0.471957i
\(126\) 0 0
\(127\) 4.84829i 0.430216i 0.976590 + 0.215108i \(0.0690103\pi\)
−0.976590 + 0.215108i \(0.930990\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.49193 + 20.4961i −0.479832 + 1.79076i 0.122452 + 0.992474i \(0.460924\pi\)
−0.602284 + 0.798282i \(0.705742\pi\)
\(132\) 0 0
\(133\) −1.12812 4.21019i −0.0978201 0.365070i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.93860 5.08981i 0.251062 0.434852i −0.712757 0.701411i \(-0.752554\pi\)
0.963818 + 0.266560i \(0.0858869\pi\)
\(138\) 0 0
\(139\) 1.86863 6.97384i 0.158496 0.591513i −0.840285 0.542145i \(-0.817612\pi\)
0.998781 0.0493686i \(-0.0157209\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.16910 −0.599510
\(144\) 0 0
\(145\) 3.29131 0.273328
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.16425 + 4.34504i −0.0953792 + 0.355960i −0.997077 0.0764076i \(-0.975655\pi\)
0.901698 + 0.432367i \(0.142322\pi\)
\(150\) 0 0
\(151\) 4.23499 7.33521i 0.344638 0.596931i −0.640650 0.767833i \(-0.721335\pi\)
0.985288 + 0.170902i \(0.0546683\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.17682 4.39194i −0.0945241 0.352769i
\(156\) 0 0
\(157\) −4.38117 + 16.3507i −0.349655 + 1.30493i 0.537423 + 0.843313i \(0.319398\pi\)
−0.887079 + 0.461618i \(0.847269\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.5052i 1.53723i
\(162\) 0 0
\(163\) −13.6982 + 13.6982i −1.07293 + 1.07293i −0.0758059 + 0.997123i \(0.524153\pi\)
−0.997123 + 0.0758059i \(0.975847\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.11859 + 4.10992i −0.550853 + 0.318035i −0.749466 0.662043i \(-0.769690\pi\)
0.198613 + 0.980078i \(0.436356\pi\)
\(168\) 0 0
\(169\) 8.58301 + 4.95540i 0.660232 + 0.381185i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.52258 + 9.41440i 0.191788 + 0.715764i 0.993075 + 0.117483i \(0.0374826\pi\)
−0.801287 + 0.598281i \(0.795851\pi\)
\(174\) 0 0
\(175\) 16.4497 9.49727i 1.24348 0.717926i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.59887 + 2.59887i 0.194248 + 0.194248i 0.797529 0.603281i \(-0.206140\pi\)
−0.603281 + 0.797529i \(0.706140\pi\)
\(180\) 0 0
\(181\) 6.92926 6.92926i 0.515048 0.515048i −0.401021 0.916069i \(-0.631345\pi\)
0.916069 + 0.401021i \(0.131345\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.854536 + 1.48010i 0.0628267 + 0.108819i
\(186\) 0 0
\(187\) −26.3455 + 7.05926i −1.92657 + 0.516224i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.96728 12.0677i 0.504135 0.873187i −0.495854 0.868406i \(-0.665145\pi\)
0.999989 0.00478132i \(-0.00152195\pi\)
\(192\) 0 0
\(193\) −1.34094 2.32257i −0.0965226 0.167182i 0.813720 0.581256i \(-0.197439\pi\)
−0.910243 + 0.414074i \(0.864105\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.2363 14.2363i −1.01430 1.01430i −0.999896 0.0144009i \(-0.995416\pi\)
−0.0144009 0.999896i \(-0.504584\pi\)
\(198\) 0 0
\(199\) −7.90078 −0.560072 −0.280036 0.959990i \(-0.590346\pi\)
−0.280036 + 0.959990i \(0.590346\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 17.3615 + 4.65201i 1.21854 + 0.326507i
\(204\) 0 0
\(205\) −2.09950 + 0.562559i −0.146635 + 0.0392908i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.53830 + 2.04284i 0.244749 + 0.141306i
\(210\) 0 0
\(211\) −13.2108 3.53982i −0.909469 0.243691i −0.226391 0.974037i \(-0.572693\pi\)
−0.683078 + 0.730345i \(0.739359\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.09799i 0.484079i
\(216\) 0 0
\(217\) 24.8307i 1.68562i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.3524 3.04186i −0.763643 0.204618i
\(222\) 0 0
\(223\) 24.3372 + 14.0511i 1.62974 + 0.940931i 0.984169 + 0.177230i \(0.0567136\pi\)
0.645570 + 0.763701i \(0.276620\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.489998 0.131295i 0.0325223 0.00871433i −0.242521 0.970146i \(-0.577974\pi\)
0.275044 + 0.961432i \(0.411308\pi\)
\(228\) 0 0
\(229\) −14.6181 3.91690i −0.965988 0.258836i −0.258855 0.965916i \(-0.583345\pi\)
−0.707133 + 0.707080i \(0.750012\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.4968 −1.01523 −0.507614 0.861584i \(-0.669473\pi\)
−0.507614 + 0.861584i \(0.669473\pi\)
\(234\) 0 0
\(235\) −1.38791 1.38791i −0.0905371 0.0905371i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.61709 13.1932i −0.492709 0.853397i 0.507256 0.861796i \(-0.330660\pi\)
−0.999965 + 0.00839869i \(0.997327\pi\)
\(240\) 0 0
\(241\) −9.10697 + 15.7737i −0.586632 + 1.01608i 0.408038 + 0.912965i \(0.366213\pi\)
−0.994670 + 0.103111i \(0.967120\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.18628 + 2.46146i −0.586890 + 0.157257i
\(246\) 0 0
\(247\) 0.880265 + 1.52466i 0.0560099 + 0.0970121i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.18418 2.18418i 0.137864 0.137864i −0.634807 0.772671i \(-0.718920\pi\)
0.772671 + 0.634807i \(0.218920\pi\)
\(252\) 0 0
\(253\) 12.9283 + 12.9283i 0.812796 + 0.812796i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.6777 + 9.62887i −1.04033 + 0.600633i −0.919926 0.392093i \(-0.871751\pi\)
−0.120400 + 0.992725i \(0.538418\pi\)
\(258\) 0 0
\(259\) 2.41564 + 9.01529i 0.150101 + 0.560183i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.8254 13.1782i −1.40747 0.812605i −0.412329 0.911035i \(-0.635285\pi\)
−0.995144 + 0.0984300i \(0.968618\pi\)
\(264\) 0 0
\(265\) −1.64235 + 0.948214i −0.100889 + 0.0582483i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.605506 0.605506i 0.0369184 0.0369184i −0.688407 0.725325i \(-0.741690\pi\)
0.725325 + 0.688407i \(0.241690\pi\)
\(270\) 0 0
\(271\) 19.1084i 1.16075i −0.814349 0.580376i \(-0.802906\pi\)
0.814349 0.580376i \(-0.197094\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.60819 + 17.1980i −0.277884 + 1.03708i
\(276\) 0 0
\(277\) −1.82792 6.82191i −0.109829 0.409889i 0.889019 0.457871i \(-0.151388\pi\)
−0.998848 + 0.0479819i \(0.984721\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.8490 20.5230i 0.706849 1.22430i −0.259171 0.965831i \(-0.583449\pi\)
0.966020 0.258467i \(-0.0832174\pi\)
\(282\) 0 0
\(283\) 0.194826 0.727099i 0.0115812 0.0432215i −0.959893 0.280365i \(-0.909544\pi\)
0.971475 + 0.237143i \(0.0762112\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.8699 −0.700659
\(288\) 0 0
\(289\) −27.7137 −1.63022
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.31070 + 19.8198i −0.310255 + 1.15789i 0.618072 + 0.786121i \(0.287914\pi\)
−0.928327 + 0.371765i \(0.878753\pi\)
\(294\) 0 0
\(295\) −0.414592 + 0.718095i −0.0241385 + 0.0418091i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.03907 + 7.60993i 0.117923 + 0.440093i
\(300\) 0 0
\(301\) 10.0325 37.4417i 0.578262 2.15810i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.62842i 0.0932432i
\(306\) 0 0
\(307\) 15.3450 15.3450i 0.875783 0.875783i −0.117312 0.993095i \(-0.537428\pi\)
0.993095 + 0.117312i \(0.0374277\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.576605 0.332903i 0.0326963 0.0188772i −0.483563 0.875310i \(-0.660658\pi\)
0.516259 + 0.856432i \(0.327324\pi\)
\(312\) 0 0
\(313\) 14.3283 + 8.27244i 0.809882 + 0.467586i 0.846915 0.531728i \(-0.178457\pi\)
−0.0370327 + 0.999314i \(0.511791\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.75927 + 6.56570i 0.0988107 + 0.368767i 0.997570 0.0696766i \(-0.0221967\pi\)
−0.898759 + 0.438443i \(0.855530\pi\)
\(318\) 0 0
\(319\) −14.5909 + 8.42404i −0.816931 + 0.471656i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.73616 + 4.73616i 0.263527 + 0.263527i
\(324\) 0 0
\(325\) −5.42499 + 5.42499i −0.300924 + 0.300924i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.35946 9.28286i −0.295477 0.511781i
\(330\) 0 0
\(331\) −9.39568 + 2.51757i −0.516434 + 0.138378i −0.507616 0.861583i \(-0.669473\pi\)
−0.00881711 + 0.999961i \(0.502807\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.30434 + 5.72328i −0.180535 + 0.312696i
\(336\) 0 0
\(337\) 13.5580 + 23.4832i 0.738553 + 1.27921i 0.953147 + 0.302509i \(0.0978241\pi\)
−0.214593 + 0.976704i \(0.568843\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.4581 + 16.4581i 0.891254 + 0.891254i
\(342\) 0 0
\(343\) −21.4761 −1.15960
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.1679 8.08347i −1.61950 0.433944i −0.668645 0.743582i \(-0.733125\pi\)
−0.950854 + 0.309638i \(0.899792\pi\)
\(348\) 0 0
\(349\) −31.6714 + 8.48634i −1.69533 + 0.454263i −0.971757 0.235982i \(-0.924169\pi\)
−0.723576 + 0.690245i \(0.757503\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.48989 + 2.01489i 0.185748 + 0.107242i 0.589990 0.807410i \(-0.299131\pi\)
−0.404243 + 0.914652i \(0.632465\pi\)
\(354\) 0 0
\(355\) −6.19752 1.66062i −0.328930 0.0881366i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.8043i 0.781342i 0.920530 + 0.390671i \(0.127757\pi\)
−0.920530 + 0.390671i \(0.872243\pi\)
\(360\) 0 0
\(361\) 17.9967i 0.947193i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.48986 2.00690i −0.392037 0.105046i
\(366\) 0 0
\(367\) 2.66934 + 1.54114i 0.139338 + 0.0804470i 0.568049 0.822995i \(-0.307699\pi\)
−0.428710 + 0.903442i \(0.641032\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.0036 + 2.68045i −0.519361 + 0.139162i
\(372\) 0 0
\(373\) 28.2816 + 7.57804i 1.46437 + 0.392376i 0.900996 0.433828i \(-0.142837\pi\)
0.563372 + 0.826204i \(0.309504\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.25990 −0.373904
\(378\) 0 0
\(379\) 13.0654 + 13.0654i 0.671124 + 0.671124i 0.957975 0.286851i \(-0.0926085\pi\)
−0.286851 + 0.957975i \(0.592608\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.66394 + 2.88203i 0.0850235 + 0.147265i 0.905401 0.424557i \(-0.139570\pi\)
−0.820378 + 0.571822i \(0.806237\pi\)
\(384\) 0 0
\(385\) 7.07147 12.2481i 0.360396 0.624223i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.62255 1.77451i 0.335777 0.0899711i −0.0869912 0.996209i \(-0.527725\pi\)
0.422768 + 0.906238i \(0.361059\pi\)
\(390\) 0 0
\(391\) 14.9867 + 25.9577i 0.757908 + 1.31274i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.79645 + 7.79645i −0.392282 + 0.392282i
\(396\) 0 0
\(397\) 2.33820 + 2.33820i 0.117351 + 0.117351i 0.763344 0.645993i \(-0.223556\pi\)
−0.645993 + 0.763344i \(0.723556\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.32787 + 1.92135i −0.166186 + 0.0959474i −0.580786 0.814056i \(-0.697255\pi\)
0.414600 + 0.910004i \(0.363921\pi\)
\(402\) 0 0
\(403\) 2.59579 + 9.68764i 0.129306 + 0.482575i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.57656 4.37433i −0.375556 0.216828i
\(408\) 0 0
\(409\) 4.36888 2.52237i 0.216027 0.124723i −0.388082 0.921625i \(-0.626862\pi\)
0.604109 + 0.796901i \(0.293529\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.20193 + 3.20193i −0.157557 + 0.157557i
\(414\) 0 0
\(415\) 2.51613i 0.123512i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.72083 21.3504i 0.279481 1.04304i −0.673298 0.739371i \(-0.735123\pi\)
0.952779 0.303665i \(-0.0982103\pi\)
\(420\) 0 0
\(421\) 2.13099 + 7.95298i 0.103858 + 0.387604i 0.998213 0.0597538i \(-0.0190316\pi\)
−0.894355 + 0.447358i \(0.852365\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.5943 + 25.2780i −0.707926 + 1.22616i
\(426\) 0 0
\(427\) 2.30165 8.58988i 0.111385 0.415693i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.08094 −0.0520671 −0.0260336 0.999661i \(-0.508288\pi\)
−0.0260336 + 0.999661i \(0.508288\pi\)
\(432\) 0 0
\(433\) −15.5307 −0.746359 −0.373179 0.927759i \(-0.621732\pi\)
−0.373179 + 0.927759i \(0.621732\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.16207 4.33690i 0.0555893 0.207462i
\(438\) 0 0
\(439\) 2.26321 3.91999i 0.108017 0.187091i −0.806950 0.590620i \(-0.798883\pi\)
0.914967 + 0.403529i \(0.132217\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.82958 25.4883i −0.324483 1.21099i −0.914830 0.403838i \(-0.867676\pi\)
0.590347 0.807149i \(-0.298991\pi\)
\(444\) 0 0
\(445\) −0.352904 + 1.31706i −0.0167293 + 0.0624345i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.94688i 0.280650i −0.990105 0.140325i \(-0.955185\pi\)
0.990105 0.140325i \(-0.0448148\pi\)
\(450\) 0 0
\(451\) 7.86752 7.86752i 0.370467 0.370467i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.27777 3.04712i 0.247426 0.142851i
\(456\) 0 0
\(457\) −18.2318 10.5261i −0.852846 0.492391i 0.00876413 0.999962i \(-0.497210\pi\)
−0.861610 + 0.507571i \(0.830544\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.2518 38.2603i −0.477475 1.78196i −0.611788 0.791021i \(-0.709550\pi\)
0.134314 0.990939i \(-0.457117\pi\)
\(462\) 0 0
\(463\) −9.98020 + 5.76207i −0.463819 + 0.267786i −0.713649 0.700504i \(-0.752959\pi\)
0.249829 + 0.968290i \(0.419625\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.1476 25.1476i −1.16369 1.16369i −0.983661 0.180032i \(-0.942380\pi\)
−0.180032 0.983661i \(-0.557620\pi\)
\(468\) 0 0
\(469\) −25.5197 + 25.5197i −1.17839 + 1.17839i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.1672 + 31.4664i 0.835327 + 1.44683i
\(474\) 0 0
\(475\) 4.22335 1.13164i 0.193780 0.0519233i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.64784 4.58619i 0.120983 0.209548i −0.799173 0.601101i \(-0.794729\pi\)
0.920155 + 0.391553i \(0.128062\pi\)
\(480\) 0 0
\(481\) −1.88491 3.26477i −0.0859447 0.148861i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.13069 4.13069i −0.187565 0.187565i
\(486\) 0 0
\(487\) −1.85543 −0.0840775 −0.0420387 0.999116i \(-0.513385\pi\)
−0.0420387 + 0.999116i \(0.513385\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.49505 0.936497i −0.157730 0.0422635i 0.179090 0.983833i \(-0.442685\pi\)
−0.336820 + 0.941569i \(0.609351\pi\)
\(492\) 0 0
\(493\) −26.6792 + 7.14866i −1.20157 + 0.321960i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.3446 17.5194i −1.36114 0.785854i
\(498\) 0 0
\(499\) 12.0253 + 3.22216i 0.538325 + 0.144244i 0.517730 0.855544i \(-0.326777\pi\)
0.0205953 + 0.999788i \(0.493444\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.6233i 0.741198i −0.928793 0.370599i \(-0.879152\pi\)
0.928793 0.370599i \(-0.120848\pi\)
\(504\) 0 0
\(505\) 11.5701i 0.514862i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.1091 4.04848i −0.669700 0.179446i −0.0920802 0.995752i \(-0.529352\pi\)
−0.577620 + 0.816306i \(0.696018\pi\)
\(510\) 0 0
\(511\) −36.6722 21.1727i −1.62228 0.936624i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.4506 3.06819i 0.504575 0.135200i
\(516\) 0 0
\(517\) 9.70511 + 2.60048i 0.426830 + 0.114369i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 40.4461 1.77198 0.885988 0.463709i \(-0.153482\pi\)
0.885988 + 0.463709i \(0.153482\pi\)
\(522\) 0 0
\(523\) −7.69126 7.69126i −0.336315 0.336315i 0.518663 0.854979i \(-0.326430\pi\)
−0.854979 + 0.518663i \(0.826430\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.0784 + 33.0448i 0.831069 + 1.43945i
\(528\) 0 0
\(529\) −1.45387 + 2.51818i −0.0632119 + 0.109486i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.63102 1.24088i 0.200592 0.0537484i
\(534\) 0 0
\(535\) 0.0549239 + 0.0951309i 0.00237457 + 0.00411287i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.4241 34.4241i 1.48275 1.48275i
\(540\) 0 0
\(541\) −17.0176 17.0176i −0.731643 0.731643i 0.239302 0.970945i \(-0.423081\pi\)
−0.970945 + 0.239302i \(0.923081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.59443 4.96200i 0.368145 0.212549i
\(546\) 0 0
\(547\) 5.77510 + 21.5530i 0.246926 + 0.921539i 0.972406 + 0.233296i \(0.0749511\pi\)
−0.725480 + 0.688243i \(0.758382\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.58311 + 2.06871i 0.152645 + 0.0881299i
\(552\) 0 0
\(553\) −52.1457 + 30.1064i −2.21746 + 1.28025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.6516 11.6516i 0.493695 0.493695i −0.415773 0.909468i \(-0.636489\pi\)
0.909468 + 0.415773i \(0.136489\pi\)
\(558\) 0 0
\(559\) 15.6566i 0.662203i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.30826 + 4.88249i −0.0551365 + 0.205772i −0.987999 0.154460i \(-0.950636\pi\)
0.932862 + 0.360233i \(0.117303\pi\)
\(564\) 0 0
\(565\) 1.71944 + 6.41702i 0.0723372 + 0.269966i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.79764 + 4.84565i −0.117283 + 0.203140i −0.918690 0.394979i \(-0.870752\pi\)
0.801407 + 0.598119i \(0.204085\pi\)
\(570\) 0 0
\(571\) 2.31993 8.65808i 0.0970859 0.362329i −0.900242 0.435391i \(-0.856610\pi\)
0.997327 + 0.0730613i \(0.0232769\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.5662 0.815966
\(576\) 0 0
\(577\) 16.6893 0.694785 0.347393 0.937720i \(-0.387067\pi\)
0.347393 + 0.937720i \(0.387067\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.55636 13.2725i 0.147543 0.550637i
\(582\) 0 0
\(583\) 4.85387 8.40714i 0.201027 0.348188i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.34545 + 5.02128i 0.0555325 + 0.207250i 0.988118 0.153700i \(-0.0491190\pi\)
−0.932585 + 0.360950i \(0.882452\pi\)
\(588\) 0 0
\(589\) 1.47934 5.52099i 0.0609553 0.227488i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 44.7927i 1.83942i 0.392602 + 0.919708i \(0.371575\pi\)
−0.392602 + 0.919708i \(0.628425\pi\)
\(594\) 0 0
\(595\) 16.3947 16.3947i 0.672116 0.672116i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.1165 + 15.6557i −1.10795 + 0.639674i −0.938297 0.345830i \(-0.887597\pi\)
−0.169651 + 0.985504i \(0.554264\pi\)
\(600\) 0 0
\(601\) 15.4248 + 8.90549i 0.629189 + 0.363262i 0.780438 0.625233i \(-0.214996\pi\)
−0.151249 + 0.988496i \(0.548330\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.16261 + 4.33891i 0.0472667 + 0.176402i
\(606\) 0 0
\(607\) −29.3159 + 16.9255i −1.18989 + 0.686986i −0.958283 0.285823i \(-0.907733\pi\)
−0.231612 + 0.972808i \(0.574400\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.06141 + 3.06141i 0.123852 + 0.123852i
\(612\) 0 0
\(613\) −11.3734 + 11.3734i −0.459367 + 0.459367i −0.898448 0.439081i \(-0.855304\pi\)
0.439081 + 0.898448i \(0.355304\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0269 31.2236i −0.725738 1.25701i −0.958670 0.284521i \(-0.908165\pi\)
0.232932 0.972493i \(-0.425168\pi\)
\(618\) 0 0
\(619\) −16.0209 + 4.29280i −0.643936 + 0.172542i −0.565986 0.824415i \(-0.691504\pi\)
−0.0779503 + 0.996957i \(0.524838\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.72312 + 6.44863i −0.149163 + 0.258359i
\(624\) 0 0
\(625\) 7.93964 + 13.7519i 0.317585 + 0.550074i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.1416 10.1416i −0.404371 0.404371i
\(630\) 0 0
\(631\) −24.4330 −0.972664 −0.486332 0.873774i \(-0.661665\pi\)
−0.486332 + 0.873774i \(0.661665\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.73158 + 0.999874i 0.148083 + 0.0396788i
\(636\) 0 0
\(637\) 20.2629 5.42943i 0.802845 0.215122i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.0952 + 23.1490i 1.58366 + 0.914329i 0.994318 + 0.106448i \(0.0339479\pi\)
0.589346 + 0.807881i \(0.299385\pi\)
\(642\) 0 0
\(643\) −10.5870 2.83678i −0.417511 0.111872i 0.0439466 0.999034i \(-0.486007\pi\)
−0.461458 + 0.887162i \(0.652674\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.0479i 0.395025i −0.980300 0.197512i \(-0.936714\pi\)
0.980300 0.197512i \(-0.0632863\pi\)
\(648\) 0 0
\(649\) 4.24456i 0.166614i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.5935 + 6.85777i 1.00155 + 0.268365i 0.722096 0.691793i \(-0.243179\pi\)
0.279457 + 0.960158i \(0.409846\pi\)
\(654\) 0 0
\(655\) 14.6427 + 8.45394i 0.572136 + 0.330323i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.76233 1.81196i 0.263423 0.0705840i −0.124690 0.992196i \(-0.539794\pi\)
0.388113 + 0.921612i \(0.373127\pi\)
\(660\) 0 0
\(661\) 20.1902 + 5.40993i 0.785306 + 0.210422i 0.629123 0.777306i \(-0.283414\pi\)
0.156183 + 0.987728i \(0.450081\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.47311 −0.134681
\(666\) 0 0
\(667\) 13.0920 + 13.0920i 0.506926 + 0.506926i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.16791 + 7.21904i 0.160901 + 0.278688i
\(672\) 0 0
\(673\) 3.86200 6.68918i 0.148869 0.257849i −0.781941 0.623353i \(-0.785770\pi\)
0.930810 + 0.365504i \(0.119103\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.62160 + 2.04220i −0.292922 + 0.0784882i −0.402287 0.915513i \(-0.631785\pi\)
0.109366 + 0.994002i \(0.465118\pi\)
\(678\) 0 0
\(679\) −15.9508 27.6277i −0.612137 1.06025i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.0318 + 23.0318i −0.881288 + 0.881288i −0.993666 0.112378i \(-0.964153\pi\)
0.112378 + 0.993666i \(0.464153\pi\)
\(684\) 0 0
\(685\) −3.31144 3.31144i −0.126524 0.126524i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.62267 2.09155i 0.138013 0.0796816i
\(690\) 0 0
\(691\) 6.66520 + 24.8749i 0.253556 + 0.946285i 0.968888 + 0.247500i \(0.0796089\pi\)
−0.715332 + 0.698785i \(0.753724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.98218 2.87646i −0.188985 0.109111i
\(696\) 0 0
\(697\) 15.7965 9.12014i 0.598337 0.345450i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35.0396 + 35.0396i −1.32343 + 1.32343i −0.412443 + 0.910983i \(0.635325\pi\)
−0.910983 + 0.412443i \(0.864675\pi\)
\(702\) 0 0
\(703\) 2.14843i 0.0810295i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.3534 61.0318i 0.615034 2.29534i
\(708\) 0 0
\(709\) −12.2110 45.5722i −0.458595 1.71150i −0.677297 0.735710i \(-0.736849\pi\)
0.218702 0.975792i \(-0.429818\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.7890 22.1512i 0.478951 0.829568i
\(714\) 0 0
\(715\) −1.47850 + 5.51784i −0.0552928 + 0.206356i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26.0582 0.971806 0.485903 0.874013i \(-0.338491\pi\)
0.485903 + 0.874013i \(0.338491\pi\)
\(720\) 0 0
\(721\) 64.7383 2.41098
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.66655 + 17.4158i −0.173311 + 0.646807i
\(726\) 0 0
\(727\) 4.96698 8.60307i 0.184215 0.319070i −0.759097 0.650978i \(-0.774359\pi\)
0.943312 + 0.331908i \(0.107692\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.4167 + 57.5359i 0.570207 + 2.12804i
\(732\) 0 0
\(733\) 3.40512 12.7081i 0.125771 0.469384i −0.874095 0.485755i \(-0.838545\pi\)
0.999866 + 0.0163712i \(0.00521135\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.8295i 1.24613i
\(738\) 0 0
\(739\) 32.6637 32.6637i 1.20155 1.20155i 0.227861 0.973694i \(-0.426827\pi\)
0.973694 0.227861i \(-0.0731732\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.76936 + 5.06299i −0.321717 + 0.185743i −0.652157 0.758084i \(-0.726136\pi\)
0.330441 + 0.943827i \(0.392803\pi\)
\(744\) 0 0
\(745\) 3.10414 + 1.79218i 0.113727 + 0.0656603i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.155261 + 0.579443i 0.00567312 + 0.0211724i
\(750\) 0 0
\(751\) 22.6187 13.0589i 0.825368 0.476526i −0.0268964 0.999638i \(-0.508562\pi\)
0.852264 + 0.523112i \(0.175229\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.77230 4.77230i −0.173682 0.173682i
\(756\) 0 0
\(757\) 2.39808 2.39808i 0.0871596 0.0871596i −0.662183 0.749342i \(-0.730370\pi\)
0.749342 + 0.662183i \(0.230370\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.1857 + 40.1589i 0.840482 + 1.45576i 0.889488 + 0.456959i \(0.151061\pi\)
−0.0490055 + 0.998799i \(0.515605\pi\)
\(762\) 0 0
\(763\) 52.3487 14.0268i 1.89515 0.507804i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.914499 1.58396i 0.0330206 0.0571934i
\(768\) 0 0
\(769\) −7.38255 12.7870i −0.266222 0.461109i 0.701661 0.712511i \(-0.252442\pi\)
−0.967883 + 0.251401i \(0.919109\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −22.1409 22.1409i −0.796353 0.796353i 0.186165 0.982518i \(-0.440394\pi\)
−0.982518 + 0.186165i \(0.940394\pi\)
\(774\) 0 0
\(775\) 24.9083 0.894731
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.63922 0.707177i −0.0945599 0.0253372i
\(780\) 0 0
\(781\) 31.7248 8.50064i 1.13520 0.304177i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.6811 + 6.74410i 0.416917 + 0.240707i
\(786\) 0 0
\(787\) 4.18136 + 1.12039i 0.149050 + 0.0399377i 0.332572 0.943078i \(-0.392083\pi\)
−0.183523 + 0.983015i \(0.558750\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.2799i 1.28996i
\(792\) 0 0
\(793\) 3.59194i 0.127553i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −51.5141 13.8032i −1.82472 0.488933i −0.827370 0.561657i \(-0.810164\pi\)
−0.997352 + 0.0727237i \(0.976831\pi\)
\(798\) 0 0
\(799\) 14.2648 + 8.23579i 0.504652 + 0.291361i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 38.3403 10.2732i 1.35300 0.362535i
\(804\) 0 0
\(805\) −15.0126 4.02261i −0.529124 0.141778i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.1140 −1.05875 −0.529375 0.848388i \(-0.677574\pi\)
−0.529375 + 0.848388i \(0.677574\pi\)
\(810\) 0 0
\(811\) −20.5672 20.5672i −0.722214 0.722214i 0.246842 0.969056i \(-0.420607\pi\)
−0.969056 + 0.246842i \(0.920607\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.71810 + 13.3681i 0.270353 + 0.468265i
\(816\) 0 0
\(817\) 4.46135 7.72728i 0.156083 0.270343i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.8546 + 8.53541i −1.11173 + 0.297888i −0.767533 0.641009i \(-0.778516\pi\)
−0.344199 + 0.938897i \(0.611849\pi\)
\(822\) 0 0
\(823\) −4.71220 8.16178i −0.164257 0.284502i 0.772134 0.635460i \(-0.219189\pi\)
−0.936391 + 0.350958i \(0.885856\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38.7468 + 38.7468i −1.34736 + 1.34736i −0.458841 + 0.888518i \(0.651735\pi\)
−0.888518 + 0.458841i \(0.848265\pi\)
\(828\) 0 0
\(829\) 11.0569 + 11.0569i 0.384021 + 0.384021i 0.872548 0.488528i \(-0.162466\pi\)
−0.488528 + 0.872548i \(0.662466\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 69.1173 39.9049i 2.39477 1.38262i
\(834\) 0 0
\(835\) 1.69520 + 6.32656i 0.0586647 + 0.218940i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.3695 + 14.6471i 0.875853 + 0.505674i 0.869289 0.494305i \(-0.164577\pi\)
0.00656388 + 0.999978i \(0.497911\pi\)
\(840\) 0 0
\(841\) 10.3391 5.96927i 0.356520 0.205837i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.58412 5.58412i 0.192100 0.192100i
\(846\) 0 0
\(847\) 24.5309i 0.842891i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.48834 + 9.28662i −0.0852992 + 0.318341i
\(852\) 0 0
\(853\) −10.9035 40.6922i −0.373327 1.39328i −0.855774 0.517350i \(-0.826918\pi\)
0.482447 0.875925i \(-0.339748\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.2207 + 24.6310i −0.485769 + 0.841377i −0.999866 0.0163548i \(-0.994794\pi\)
0.514097 + 0.857732i \(0.328127\pi\)
\(858\) 0 0
\(859\) 0.896437 3.34555i 0.0305860 0.114149i −0.948945 0.315441i \(-0.897848\pi\)
0.979531 + 0.201293i \(0.0645142\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.1356 −0.379062 −0.189531 0.981875i \(-0.560697\pi\)
−0.189531 + 0.981875i \(0.560697\pi\)
\(864\) 0 0
\(865\) 7.76622 0.264059
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14.6080 54.5177i 0.495541 1.84939i
\(870\) 0 0
\(871\) 7.28863 12.6243i 0.246966 0.427757i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.40437 31.3655i −0.284119 1.06035i
\(876\) 0 0
\(877\) 7.32539 27.3387i 0.247361 0.923163i −0.724821 0.688937i \(-0.758078\pi\)
0.972182 0.234226i \(-0.0752557\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.86363i 0.163860i −0.996638 0.0819299i \(-0.973892\pi\)
0.996638 0.0819299i \(-0.0261084\pi\)
\(882\) 0 0
\(883\) −8.56478 + 8.56478i −0.288228 + 0.288228i −0.836379 0.548151i \(-0.815332\pi\)
0.548151 + 0.836379i \(0.315332\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.99885 2.30874i 0.134268 0.0775199i −0.431361 0.902179i \(-0.641967\pi\)
0.565630 + 0.824659i \(0.308633\pi\)
\(888\) 0 0
\(889\) 18.2707 + 10.5486i 0.612780 + 0.353789i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.638605 2.38330i −0.0213701 0.0797543i
\(894\) 0 0
\(895\) 2.53624 1.46430i 0.0847772 0.0489461i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.6665 + 16.6665i 0.555859 + 0.555859i
\(900\) 0 0
\(901\) 11.2533 11.2533i 0.374903 0.374903i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.90421 6.76228i −0.129780 0.224786i
\(906\) 0 0
\(907\) −8.35931 + 2.23987i −0.277566 + 0.0743737i −0.394917 0.918717i \(-0.629227\pi\)
0.117350 + 0.993091i \(0.462560\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.9969 + 41.5638i −0.795052 + 1.37707i 0.127755 + 0.991806i \(0.459223\pi\)
−0.922806 + 0.385264i \(0.874110\pi\)
\(912\) 0 0
\(913\) 6.43999 + 11.1544i 0.213133 + 0.369156i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 65.2905 + 65.2905i 2.15608 + 2.15608i
\(918\) 0 0
\(919\) −51.8939 −1.71182 −0.855910 0.517124i \(-0.827003\pi\)
−0.855910 + 0.517124i \(0.827003\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.6703 + 3.66296i 0.449965 + 0.120568i
\(924\) 0 0
\(925\) −9.04347 + 2.42319i −0.297347 + 0.0796740i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.80130 5.08143i −0.288761 0.166716i 0.348622 0.937263i \(-0.386650\pi\)
−0.637383 + 0.770547i \(0.719983\pi\)
\(930\) 0 0
\(931\) −11.5478 3.09423i −0.378465 0.101409i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21.7332i 0.710751i
\(936\) 0 0
\(937\) 37.8157i 1.23539i 0.786420 + 0.617693i \(0.211932\pi\)
−0.786420 + 0.617693i \(0.788068\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 34.3731 + 9.21025i 1.12053 + 0.300246i 0.771099 0.636716i \(-0.219707\pi\)
0.349433 + 0.936961i \(0.386374\pi\)
\(942\) 0 0
\(943\) −10.5890 6.11357i −0.344826 0.199085i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.0399 + 2.69018i −0.326253 + 0.0874191i −0.418228 0.908342i \(-0.637349\pi\)
0.0919752 + 0.995761i \(0.470682\pi\)
\(948\) 0 0
\(949\) 16.5210 + 4.42678i 0.536293 + 0.143699i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.6743 0.799280 0.399640 0.916672i \(-0.369135\pi\)
0.399640 + 0.916672i \(0.369135\pi\)
\(954\) 0 0
\(955\) −7.85126 7.85126i −0.254061 0.254061i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.7873 22.1482i −0.412922 0.715203i
\(960\) 0 0
\(961\) 0.780708 1.35223i 0.0251841 0.0436202i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.06416 + 0.553089i −0.0664475 + 0.0178046i
\(966\) 0 0
\(967\) −12.5371 21.7150i −0.403167 0.698306i 0.590939 0.806716i \(-0.298757\pi\)
−0.994106 + 0.108410i \(0.965424\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.9203 18.9203i 0.607180 0.607180i −0.335028 0.942208i \(-0.608746\pi\)
0.942208 + 0.335028i \(0.108746\pi\)
\(972\) 0 0
\(973\) −22.2152 22.2152i −0.712186 0.712186i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.1897 7.03771i 0.389982 0.225156i −0.292170 0.956366i \(-0.594377\pi\)
0.682152 + 0.731210i \(0.261044\pi\)
\(978\) 0 0
\(979\) −1.80650 6.74196i −0.0577360 0.215474i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.562149 0.324557i −0.0179298 0.0103518i 0.491008 0.871155i \(-0.336628\pi\)
−0.508938 + 0.860803i \(0.669962\pi\)
\(984\) 0 0
\(985\) −13.8933 + 8.02129i −0.442677 + 0.255579i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.2341 28.2341i 0.897792 0.897792i
\(990\) 0 0
\(991\) 36.5529i 1.16114i 0.814210 + 0.580571i \(0.197171\pi\)
−0.814210 + 0.580571i \(0.802829\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.62940 + 6.08100i −0.0516554 + 0.192781i
\(996\) 0 0
\(997\) −2.07498 7.74395i −0.0657154 0.245253i 0.925253 0.379352i \(-0.123853\pi\)
−0.990968 + 0.134098i \(0.957186\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.1007.13 88
3.2 odd 2 576.2.y.a.47.8 88
4.3 odd 2 432.2.v.a.35.3 88
9.4 even 3 576.2.y.a.239.4 88
9.5 odd 6 inner 1728.2.z.a.1583.13 88
12.11 even 2 144.2.u.a.83.20 yes 88
16.5 even 4 432.2.v.a.251.11 88
16.11 odd 4 inner 1728.2.z.a.143.13 88
36.23 even 6 432.2.v.a.179.11 88
36.31 odd 6 144.2.u.a.131.12 yes 88
48.5 odd 4 144.2.u.a.11.12 88
48.11 even 4 576.2.y.a.335.4 88
144.5 odd 12 432.2.v.a.395.3 88
144.59 even 12 inner 1728.2.z.a.719.13 88
144.85 even 12 144.2.u.a.59.20 yes 88
144.139 odd 12 576.2.y.a.527.8 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.12 88 48.5 odd 4
144.2.u.a.59.20 yes 88 144.85 even 12
144.2.u.a.83.20 yes 88 12.11 even 2
144.2.u.a.131.12 yes 88 36.31 odd 6
432.2.v.a.35.3 88 4.3 odd 2
432.2.v.a.179.11 88 36.23 even 6
432.2.v.a.251.11 88 16.5 even 4
432.2.v.a.395.3 88 144.5 odd 12
576.2.y.a.47.8 88 3.2 odd 2
576.2.y.a.239.4 88 9.4 even 3
576.2.y.a.335.4 88 48.11 even 4
576.2.y.a.527.8 88 144.139 odd 12
1728.2.z.a.143.13 88 16.11 odd 4 inner
1728.2.z.a.719.13 88 144.59 even 12 inner
1728.2.z.a.1007.13 88 1.1 even 1 trivial
1728.2.z.a.1583.13 88 9.5 odd 6 inner