Properties

Label 432.2.v.a.179.11
Level $432$
Weight $2$
Character 432.179
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 179.11
Character \(\chi\) \(=\) 432.179
Dual form 432.2.v.a.251.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0415142 + 1.41360i) q^{2} +(-1.99655 + 0.117369i) q^{4} +(0.769670 - 0.206232i) q^{5} +(-2.17574 - 3.76849i) q^{7} +(-0.248799 - 2.81746i) q^{8} +(0.323483 + 1.07945i) q^{10} +(-3.93991 - 1.05570i) q^{11} +(1.69772 - 0.454903i) q^{13} +(5.23683 - 3.23208i) q^{14} +(3.97245 - 0.468669i) q^{16} -6.68683i q^{17} +(-0.708282 + 0.708282i) q^{19} +(-1.51248 + 0.502090i) q^{20} +(1.32877 - 5.61330i) q^{22} +(-3.88191 - 2.24122i) q^{23} +(-3.78027 + 2.18254i) q^{25} +(0.713532 + 2.38102i) q^{26} +(4.78628 + 7.26863i) q^{28} +(3.98981 + 1.06907i) q^{29} +(4.94177 + 2.85313i) q^{31} +(0.827425 + 5.59601i) q^{32} +(9.45254 - 0.277599i) q^{34} +(-2.45179 - 2.45179i) q^{35} +(-1.51665 + 1.51665i) q^{37} +(-1.03063 - 0.971827i) q^{38} +(-0.772546 - 2.11721i) q^{40} +(1.36389 - 2.36233i) q^{41} +(2.30553 - 8.60436i) q^{43} +(7.99014 + 1.64533i) q^{44} +(3.00704 - 5.58052i) q^{46} +(1.23164 + 2.13327i) q^{47} +(-5.96768 + 10.3363i) q^{49} +(-3.24218 - 5.25319i) q^{50} +(-3.33620 + 1.10750i) q^{52} +(1.68291 + 1.68291i) q^{53} -3.25015 q^{55} +(-10.0763 + 7.06766i) q^{56} +(-1.34560 + 5.68439i) q^{58} +(0.269331 + 1.00516i) q^{59} +(-0.528935 + 1.97401i) q^{61} +(-3.82804 + 7.10415i) q^{62} +(-7.87620 + 1.40197i) q^{64} +(1.21287 - 0.700250i) q^{65} +(-2.14659 - 8.01120i) q^{67} +(0.784830 + 13.3506i) q^{68} +(3.36407 - 3.56764i) q^{70} -8.05218i q^{71} -9.73126i q^{73} +(-2.20690 - 2.08098i) q^{74} +(1.33099 - 1.49725i) q^{76} +(4.59383 + 17.1444i) q^{77} +(-11.9835 + 6.91865i) q^{79} +(2.96082 - 1.17997i) q^{80} +(3.39603 + 1.82994i) q^{82} +(-0.817277 + 3.05012i) q^{83} +(-1.37904 - 5.14666i) q^{85} +(12.2589 + 2.90190i) q^{86} +(-1.99414 + 11.3632i) q^{88} +1.71120 q^{89} +(-5.40809 - 5.40809i) q^{91} +(8.01348 + 4.01910i) q^{92} +(-2.96446 + 1.82962i) q^{94} +(-0.399073 + 0.691214i) q^{95} +(3.66561 + 6.34903i) q^{97} +(-14.8592 - 8.00683i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0415142 + 1.41360i 0.0293550 + 0.999569i
\(3\) 0 0
\(4\) −1.99655 + 0.117369i −0.998277 + 0.0586847i
\(5\) 0.769670 0.206232i 0.344207 0.0922300i −0.0825742 0.996585i \(-0.526314\pi\)
0.426781 + 0.904355i \(0.359647\pi\)
\(6\) 0 0
\(7\) −2.17574 3.76849i −0.822352 1.42436i −0.903926 0.427688i \(-0.859328\pi\)
0.0815745 0.996667i \(-0.474005\pi\)
\(8\) −0.248799 2.81746i −0.0879638 0.996124i
\(9\) 0 0
\(10\) 0.323483 + 1.07945i 0.102294 + 0.341351i
\(11\) −3.93991 1.05570i −1.18793 0.318304i −0.389861 0.920874i \(-0.627477\pi\)
−0.798066 + 0.602570i \(0.794144\pi\)
\(12\) 0 0
\(13\) 1.69772 0.454903i 0.470863 0.126167i −0.0155820 0.999879i \(-0.504960\pi\)
0.486445 + 0.873711i \(0.338293\pi\)
\(14\) 5.23683 3.23208i 1.39960 0.863809i
\(15\) 0 0
\(16\) 3.97245 0.468669i 0.993112 0.117167i
\(17\) 6.68683i 1.62180i −0.585188 0.810898i \(-0.698979\pi\)
0.585188 0.810898i \(-0.301021\pi\)
\(18\) 0 0
\(19\) −0.708282 + 0.708282i −0.162491 + 0.162491i −0.783669 0.621178i \(-0.786654\pi\)
0.621178 + 0.783669i \(0.286654\pi\)
\(20\) −1.51248 + 0.502090i −0.338201 + 0.112271i
\(21\) 0 0
\(22\) 1.32877 5.61330i 0.283295 1.19676i
\(23\) −3.88191 2.24122i −0.809433 0.467327i 0.0373258 0.999303i \(-0.488116\pi\)
−0.846759 + 0.531977i \(0.821449\pi\)
\(24\) 0 0
\(25\) −3.78027 + 2.18254i −0.756053 + 0.436508i
\(26\) 0.713532 + 2.38102i 0.139935 + 0.466956i
\(27\) 0 0
\(28\) 4.78628 + 7.26863i 0.904523 + 1.37364i
\(29\) 3.98981 + 1.06907i 0.740888 + 0.198520i 0.609473 0.792807i \(-0.291381\pi\)
0.131415 + 0.991327i \(0.458048\pi\)
\(30\) 0 0
\(31\) 4.94177 + 2.85313i 0.887568 + 0.512437i 0.873146 0.487459i \(-0.162076\pi\)
0.0144215 + 0.999896i \(0.495409\pi\)
\(32\) 0.827425 + 5.59601i 0.146269 + 0.989245i
\(33\) 0 0
\(34\) 9.45254 0.277599i 1.62110 0.0476078i
\(35\) −2.45179 2.45179i −0.414427 0.414427i
\(36\) 0 0
\(37\) −1.51665 + 1.51665i −0.249335 + 0.249335i −0.820698 0.571363i \(-0.806415\pi\)
0.571363 + 0.820698i \(0.306415\pi\)
\(38\) −1.03063 0.971827i −0.167191 0.157651i
\(39\) 0 0
\(40\) −0.772546 2.11721i −0.122150 0.334760i
\(41\) 1.36389 2.36233i 0.213005 0.368935i −0.739649 0.672993i \(-0.765008\pi\)
0.952653 + 0.304058i \(0.0983418\pi\)
\(42\) 0 0
\(43\) 2.30553 8.60436i 0.351590 1.31215i −0.533131 0.846033i \(-0.678985\pi\)
0.884722 0.466120i \(-0.154348\pi\)
\(44\) 7.99014 + 1.64533i 1.20456 + 0.248042i
\(45\) 0 0
\(46\) 3.00704 5.58052i 0.443364 0.822803i
\(47\) 1.23164 + 2.13327i 0.179654 + 0.311169i 0.941762 0.336280i \(-0.109169\pi\)
−0.762108 + 0.647449i \(0.775836\pi\)
\(48\) 0 0
\(49\) −5.96768 + 10.3363i −0.852525 + 1.47662i
\(50\) −3.24218 5.25319i −0.458513 0.742914i
\(51\) 0 0
\(52\) −3.33620 + 1.10750i −0.462647 + 0.153582i
\(53\) 1.68291 + 1.68291i 0.231165 + 0.231165i 0.813179 0.582014i \(-0.197735\pi\)
−0.582014 + 0.813179i \(0.697735\pi\)
\(54\) 0 0
\(55\) −3.25015 −0.438250
\(56\) −10.0763 + 7.06766i −1.34650 + 0.944456i
\(57\) 0 0
\(58\) −1.34560 + 5.68439i −0.176686 + 0.746397i
\(59\) 0.269331 + 1.00516i 0.0350640 + 0.130860i 0.981239 0.192794i \(-0.0617550\pi\)
−0.946175 + 0.323655i \(0.895088\pi\)
\(60\) 0 0
\(61\) −0.528935 + 1.97401i −0.0677232 + 0.252747i −0.991485 0.130221i \(-0.958431\pi\)
0.923762 + 0.382968i \(0.125098\pi\)
\(62\) −3.82804 + 7.10415i −0.486162 + 0.902228i
\(63\) 0 0
\(64\) −7.87620 + 1.40197i −0.984525 + 0.175246i
\(65\) 1.21287 0.700250i 0.150438 0.0868553i
\(66\) 0 0
\(67\) −2.14659 8.01120i −0.262248 0.978723i −0.963913 0.266217i \(-0.914226\pi\)
0.701665 0.712507i \(-0.252440\pi\)
\(68\) 0.784830 + 13.3506i 0.0951746 + 1.61900i
\(69\) 0 0
\(70\) 3.36407 3.56764i 0.402083 0.426414i
\(71\) 8.05218i 0.955618i −0.878464 0.477809i \(-0.841431\pi\)
0.878464 0.477809i \(-0.158569\pi\)
\(72\) 0 0
\(73\) 9.73126i 1.13896i −0.822006 0.569479i \(-0.807145\pi\)
0.822006 0.569479i \(-0.192855\pi\)
\(74\) −2.20690 2.08098i −0.256547 0.241908i
\(75\) 0 0
\(76\) 1.33099 1.49725i 0.152675 0.171747i
\(77\) 4.59383 + 17.1444i 0.523516 + 1.95379i
\(78\) 0 0
\(79\) −11.9835 + 6.91865i −1.34824 + 0.778409i −0.988001 0.154449i \(-0.950640\pi\)
−0.360243 + 0.932858i \(0.617306\pi\)
\(80\) 2.96082 1.17997i 0.331030 0.131924i
\(81\) 0 0
\(82\) 3.39603 + 1.82994i 0.375028 + 0.202083i
\(83\) −0.817277 + 3.05012i −0.0897078 + 0.334794i −0.996164 0.0875058i \(-0.972110\pi\)
0.906456 + 0.422300i \(0.138777\pi\)
\(84\) 0 0
\(85\) −1.37904 5.14666i −0.149578 0.558233i
\(86\) 12.2589 + 2.90190i 1.32191 + 0.312920i
\(87\) 0 0
\(88\) −1.99414 + 11.3632i −0.212576 + 1.21132i
\(89\) 1.71120 0.181386 0.0906932 0.995879i \(-0.471092\pi\)
0.0906932 + 0.995879i \(0.471092\pi\)
\(90\) 0 0
\(91\) −5.40809 5.40809i −0.566922 0.566922i
\(92\) 8.01348 + 4.01910i 0.835463 + 0.419020i
\(93\) 0 0
\(94\) −2.96446 + 1.82962i −0.305761 + 0.188710i
\(95\) −0.399073 + 0.691214i −0.0409440 + 0.0709171i
\(96\) 0 0
\(97\) 3.66561 + 6.34903i 0.372187 + 0.644646i 0.989902 0.141756i \(-0.0452748\pi\)
−0.617715 + 0.786402i \(0.711941\pi\)
\(98\) −14.8592 8.00683i −1.50101 0.808812i
\(99\) 0 0
\(100\) 7.29134 4.80124i 0.729134 0.480124i
\(101\) 3.75813 14.0255i 0.373948 1.39559i −0.480928 0.876760i \(-0.659700\pi\)
0.854876 0.518833i \(-0.173633\pi\)
\(102\) 0 0
\(103\) −7.43866 + 12.8841i −0.732953 + 1.26951i 0.222663 + 0.974895i \(0.428525\pi\)
−0.955616 + 0.294616i \(0.904808\pi\)
\(104\) −1.70406 4.67009i −0.167097 0.457940i
\(105\) 0 0
\(106\) −2.30910 + 2.44883i −0.224280 + 0.237851i
\(107\) −0.0974799 + 0.0974799i −0.00942374 + 0.00942374i −0.711803 0.702379i \(-0.752121\pi\)
0.702379 + 0.711803i \(0.252121\pi\)
\(108\) 0 0
\(109\) 8.80665 + 8.80665i 0.843524 + 0.843524i 0.989315 0.145791i \(-0.0465728\pi\)
−0.145791 + 0.989315i \(0.546573\pi\)
\(110\) −0.134927 4.59442i −0.0128648 0.438061i
\(111\) 0 0
\(112\) −10.4092 13.9504i −0.983575 1.31819i
\(113\) −7.22037 4.16868i −0.679235 0.392157i 0.120331 0.992734i \(-0.461604\pi\)
−0.799567 + 0.600577i \(0.794938\pi\)
\(114\) 0 0
\(115\) −3.45000 0.924424i −0.321714 0.0862030i
\(116\) −8.09133 1.66616i −0.751262 0.154699i
\(117\) 0 0
\(118\) −1.40971 + 0.422456i −0.129775 + 0.0388903i
\(119\) −25.1993 + 14.5488i −2.31001 + 1.33369i
\(120\) 0 0
\(121\) 4.88210 + 2.81868i 0.443827 + 0.256244i
\(122\) −2.81243 0.665756i −0.254626 0.0602747i
\(123\) 0 0
\(124\) −10.2014 5.11641i −0.916110 0.459468i
\(125\) −5.27664 + 5.27664i −0.471957 + 0.471957i
\(126\) 0 0
\(127\) 4.84829i 0.430216i −0.976590 0.215108i \(-0.930990\pi\)
0.976590 0.215108i \(-0.0690103\pi\)
\(128\) −2.30880 11.0756i −0.204071 0.978956i
\(129\) 0 0
\(130\) 1.04023 + 1.68545i 0.0912340 + 0.147823i
\(131\) 20.4961 5.49193i 1.79076 0.479832i 0.798282 0.602284i \(-0.205742\pi\)
0.992474 + 0.122452i \(0.0390758\pi\)
\(132\) 0 0
\(133\) 4.21019 + 1.12812i 0.365070 + 0.0978201i
\(134\) 11.2355 3.36701i 0.970603 0.290866i
\(135\) 0 0
\(136\) −18.8399 + 1.66368i −1.61551 + 0.142659i
\(137\) −2.93860 5.08981i −0.251062 0.434852i 0.712757 0.701411i \(-0.247446\pi\)
−0.963818 + 0.266560i \(0.914113\pi\)
\(138\) 0 0
\(139\) 6.97384 1.86863i 0.591513 0.158496i 0.0493686 0.998781i \(-0.484279\pi\)
0.542145 + 0.840285i \(0.317612\pi\)
\(140\) 5.18288 + 4.60736i 0.438034 + 0.389393i
\(141\) 0 0
\(142\) 11.3826 0.334280i 0.955206 0.0280522i
\(143\) −7.16910 −0.599510
\(144\) 0 0
\(145\) 3.29131 0.273328
\(146\) 13.7562 0.403986i 1.13847 0.0334341i
\(147\) 0 0
\(148\) 2.85006 3.20607i 0.234273 0.263538i
\(149\) −4.34504 + 1.16425i −0.355960 + 0.0953792i −0.432367 0.901698i \(-0.642322\pi\)
0.0764076 + 0.997077i \(0.475655\pi\)
\(150\) 0 0
\(151\) −4.23499 7.33521i −0.344638 0.596931i 0.640650 0.767833i \(-0.278665\pi\)
−0.985288 + 0.170902i \(0.945332\pi\)
\(152\) 2.17178 + 1.81934i 0.176154 + 0.147568i
\(153\) 0 0
\(154\) −24.0447 + 7.20560i −1.93758 + 0.580644i
\(155\) 4.39194 + 1.17682i 0.352769 + 0.0945241i
\(156\) 0 0
\(157\) 16.3507 4.38117i 1.30493 0.349655i 0.461618 0.887079i \(-0.347269\pi\)
0.843313 + 0.537423i \(0.180602\pi\)
\(158\) −10.2777 16.6526i −0.817651 1.32481i
\(159\) 0 0
\(160\) 1.79092 + 4.13644i 0.141585 + 0.327014i
\(161\) 19.5052i 1.53723i
\(162\) 0 0
\(163\) 13.6982 13.6982i 1.07293 1.07293i 0.0758059 0.997123i \(-0.475847\pi\)
0.997123 0.0758059i \(-0.0241529\pi\)
\(164\) −2.44582 + 4.87661i −0.190987 + 0.380799i
\(165\) 0 0
\(166\) −4.34559 1.02868i −0.337283 0.0798412i
\(167\) 7.11859 + 4.10992i 0.550853 + 0.318035i 0.749466 0.662043i \(-0.230310\pi\)
−0.198613 + 0.980078i \(0.563644\pi\)
\(168\) 0 0
\(169\) −8.58301 + 4.95540i −0.660232 + 0.381185i
\(170\) 7.21808 2.16308i 0.553602 0.165901i
\(171\) 0 0
\(172\) −3.59323 + 17.4497i −0.273981 + 1.33052i
\(173\) 9.41440 + 2.52258i 0.715764 + 0.191788i 0.598281 0.801287i \(-0.295851\pi\)
0.117483 + 0.993075i \(0.462517\pi\)
\(174\) 0 0
\(175\) 16.4497 + 9.49727i 1.24348 + 0.717926i
\(176\) −16.1459 2.34718i −1.21704 0.176926i
\(177\) 0 0
\(178\) 0.0710390 + 2.41895i 0.00532460 + 0.181308i
\(179\) 2.59887 + 2.59887i 0.194248 + 0.194248i 0.797529 0.603281i \(-0.206140\pi\)
−0.603281 + 0.797529i \(0.706140\pi\)
\(180\) 0 0
\(181\) 6.92926 6.92926i 0.515048 0.515048i −0.401021 0.916069i \(-0.631345\pi\)
0.916069 + 0.401021i \(0.131345\pi\)
\(182\) 7.42039 7.86941i 0.550036 0.583320i
\(183\) 0 0
\(184\) −5.34874 + 11.4947i −0.394314 + 0.847403i
\(185\) −0.854536 + 1.48010i −0.0628267 + 0.108819i
\(186\) 0 0
\(187\) −7.05926 + 26.3455i −0.516224 + 1.92657i
\(188\) −2.70942 4.11462i −0.197605 0.300090i
\(189\) 0 0
\(190\) −0.993670 0.535435i −0.0720884 0.0388446i
\(191\) 6.96728 + 12.0677i 0.504135 + 0.873187i 0.999989 + 0.00478132i \(0.00152195\pi\)
−0.495854 + 0.868406i \(0.665145\pi\)
\(192\) 0 0
\(193\) −1.34094 + 2.32257i −0.0965226 + 0.167182i −0.910243 0.414074i \(-0.864105\pi\)
0.813720 + 0.581256i \(0.197439\pi\)
\(194\) −8.82284 + 5.44530i −0.633443 + 0.390950i
\(195\) 0 0
\(196\) 10.7016 21.3374i 0.764401 1.52410i
\(197\) 14.2363 + 14.2363i 1.01430 + 1.01430i 0.999896 + 0.0144009i \(0.00458410\pi\)
0.0144009 + 0.999896i \(0.495416\pi\)
\(198\) 0 0
\(199\) 7.90078 0.560072 0.280036 0.959990i \(-0.409654\pi\)
0.280036 + 0.959990i \(0.409654\pi\)
\(200\) 7.08975 + 10.1077i 0.501321 + 0.714726i
\(201\) 0 0
\(202\) 19.9826 + 4.73025i 1.40597 + 0.332819i
\(203\) −4.65201 17.3615i −0.326507 1.21854i
\(204\) 0 0
\(205\) 0.562559 2.09950i 0.0392908 0.146635i
\(206\) −18.5219 9.98044i −1.29048 0.695370i
\(207\) 0 0
\(208\) 6.53091 2.60275i 0.452837 0.180468i
\(209\) 3.53830 2.04284i 0.244749 0.141306i
\(210\) 0 0
\(211\) −3.53982 13.2108i −0.243691 0.909469i −0.974037 0.226391i \(-0.927307\pi\)
0.730345 0.683078i \(-0.239359\pi\)
\(212\) −3.55754 3.16249i −0.244333 0.217201i
\(213\) 0 0
\(214\) −0.141845 0.133751i −0.00969631 0.00914305i
\(215\) 7.09799i 0.484079i
\(216\) 0 0
\(217\) 24.8307i 1.68562i
\(218\) −12.0835 + 12.8147i −0.818399 + 0.867922i
\(219\) 0 0
\(220\) 6.48909 0.381468i 0.437494 0.0257186i
\(221\) −3.04186 11.3524i −0.204618 0.763643i
\(222\) 0 0
\(223\) 24.3372 14.0511i 1.62974 0.940931i 0.645570 0.763701i \(-0.276620\pi\)
0.984169 0.177230i \(-0.0567136\pi\)
\(224\) 19.2883 15.2936i 1.28875 1.02185i
\(225\) 0 0
\(226\) 5.59312 10.3798i 0.372049 0.690454i
\(227\) −0.131295 + 0.489998i −0.00871433 + 0.0325223i −0.970146 0.242521i \(-0.922026\pi\)
0.961432 + 0.275044i \(0.0886923\pi\)
\(228\) 0 0
\(229\) 3.91690 + 14.6181i 0.258836 + 0.965988i 0.965916 + 0.258855i \(0.0833452\pi\)
−0.707080 + 0.707133i \(0.749988\pi\)
\(230\) 1.16355 4.91531i 0.0767219 0.324106i
\(231\) 0 0
\(232\) 2.01939 11.5071i 0.132580 0.755479i
\(233\) 15.4968 1.01523 0.507614 0.861584i \(-0.330527\pi\)
0.507614 + 0.861584i \(0.330527\pi\)
\(234\) 0 0
\(235\) 1.38791 + 1.38791i 0.0905371 + 0.0905371i
\(236\) −0.655709 1.97524i −0.0426830 0.128577i
\(237\) 0 0
\(238\) −21.6124 35.0178i −1.40092 2.26987i
\(239\) −7.61709 + 13.1932i −0.492709 + 0.853397i −0.999965 0.00839869i \(-0.997327\pi\)
0.507256 + 0.861796i \(0.330660\pi\)
\(240\) 0 0
\(241\) −9.10697 15.7737i −0.586632 1.01608i −0.994670 0.103111i \(-0.967120\pi\)
0.408038 0.912965i \(-0.366213\pi\)
\(242\) −3.78182 + 7.01837i −0.243105 + 0.451158i
\(243\) 0 0
\(244\) 0.824359 4.00330i 0.0527742 0.256285i
\(245\) −2.46146 + 9.18628i −0.157257 + 0.586890i
\(246\) 0 0
\(247\) −0.880265 + 1.52466i −0.0560099 + 0.0970121i
\(248\) 6.80908 14.6331i 0.432377 0.929203i
\(249\) 0 0
\(250\) −7.67813 7.24002i −0.485608 0.457899i
\(251\) 2.18418 2.18418i 0.137864 0.137864i −0.634807 0.772671i \(-0.718920\pi\)
0.772671 + 0.634807i \(0.218920\pi\)
\(252\) 0 0
\(253\) 12.9283 + 12.9283i 0.812796 + 0.812796i
\(254\) 6.85356 0.201273i 0.430030 0.0126290i
\(255\) 0 0
\(256\) 15.5607 3.72352i 0.972544 0.232720i
\(257\) −16.6777 9.62887i −1.04033 0.600633i −0.120400 0.992725i \(-0.538418\pi\)
−0.919926 + 0.392093i \(0.871751\pi\)
\(258\) 0 0
\(259\) 9.01529 + 2.41564i 0.560183 + 0.150101i
\(260\) −2.33937 + 1.54044i −0.145081 + 0.0955340i
\(261\) 0 0
\(262\) 8.61429 + 28.7454i 0.532193 + 1.77590i
\(263\) 22.8254 13.1782i 1.40747 0.812605i 0.412329 0.911035i \(-0.364715\pi\)
0.995144 + 0.0984300i \(0.0313821\pi\)
\(264\) 0 0
\(265\) 1.64235 + 0.948214i 0.100889 + 0.0582483i
\(266\) −1.41993 + 5.99837i −0.0870614 + 0.367784i
\(267\) 0 0
\(268\) 5.22606 + 15.7428i 0.319232 + 0.961647i
\(269\) −0.605506 + 0.605506i −0.0369184 + 0.0369184i −0.725325 0.688407i \(-0.758310\pi\)
0.688407 + 0.725325i \(0.258310\pi\)
\(270\) 0 0
\(271\) 19.1084i 1.16075i 0.814349 + 0.580376i \(0.197094\pi\)
−0.814349 + 0.580376i \(0.802906\pi\)
\(272\) −3.13391 26.5631i −0.190021 1.61062i
\(273\) 0 0
\(274\) 7.07298 4.36532i 0.427295 0.263719i
\(275\) 17.1980 4.60819i 1.03708 0.277884i
\(276\) 0 0
\(277\) 6.82191 + 1.82792i 0.409889 + 0.109829i 0.457871 0.889019i \(-0.348612\pi\)
−0.0479819 + 0.998848i \(0.515279\pi\)
\(278\) 2.93102 + 9.78067i 0.175791 + 0.586606i
\(279\) 0 0
\(280\) −6.29781 + 7.51782i −0.376366 + 0.449276i
\(281\) −11.8490 20.5230i −0.706849 1.22430i −0.966020 0.258467i \(-0.916783\pi\)
0.259171 0.965831i \(-0.416551\pi\)
\(282\) 0 0
\(283\) 0.727099 0.194826i 0.0432215 0.0115812i −0.237143 0.971475i \(-0.576211\pi\)
0.280365 + 0.959893i \(0.409544\pi\)
\(284\) 0.945079 + 16.0766i 0.0560801 + 0.953971i
\(285\) 0 0
\(286\) −0.297620 10.1343i −0.0175986 0.599252i
\(287\) −11.8699 −0.700659
\(288\) 0 0
\(289\) −27.7137 −1.63022
\(290\) 0.136636 + 4.65261i 0.00802356 + 0.273211i
\(291\) 0 0
\(292\) 1.14215 + 19.4290i 0.0668394 + 1.13699i
\(293\) −19.8198 + 5.31070i −1.15789 + 0.310255i −0.786121 0.618072i \(-0.787914\pi\)
−0.371765 + 0.928327i \(0.621247\pi\)
\(294\) 0 0
\(295\) 0.414592 + 0.718095i 0.0241385 + 0.0418091i
\(296\) 4.65044 + 3.89576i 0.270301 + 0.226436i
\(297\) 0 0
\(298\) −1.82617 6.09384i −0.105787 0.353007i
\(299\) −7.60993 2.03907i −0.440093 0.117923i
\(300\) 0 0
\(301\) −37.4417 + 10.0325i −2.15810 + 0.578262i
\(302\) 10.1933 6.29111i 0.586557 0.362013i
\(303\) 0 0
\(304\) −2.48166 + 3.14556i −0.142333 + 0.180410i
\(305\) 1.62842i 0.0932432i
\(306\) 0 0
\(307\) −15.3450 + 15.3450i −0.875783 + 0.875783i −0.993095 0.117312i \(-0.962572\pi\)
0.117312 + 0.993095i \(0.462572\pi\)
\(308\) −11.1841 33.6906i −0.637271 1.91970i
\(309\) 0 0
\(310\) −1.48122 + 6.25732i −0.0841279 + 0.355392i
\(311\) −0.576605 0.332903i −0.0326963 0.0188772i 0.483563 0.875310i \(-0.339342\pi\)
−0.516259 + 0.856432i \(0.672676\pi\)
\(312\) 0 0
\(313\) −14.3283 + 8.27244i −0.809882 + 0.467586i −0.846915 0.531728i \(-0.821543\pi\)
0.0370327 + 0.999314i \(0.488209\pi\)
\(314\) 6.87202 + 22.9316i 0.387811 + 1.29410i
\(315\) 0 0
\(316\) 23.1136 15.2199i 1.30024 0.856189i
\(317\) 6.56570 + 1.75927i 0.368767 + 0.0988107i 0.438443 0.898759i \(-0.355530\pi\)
−0.0696766 + 0.997570i \(0.522197\pi\)
\(318\) 0 0
\(319\) −14.5909 8.42404i −0.816931 0.471656i
\(320\) −5.77294 + 2.70338i −0.322717 + 0.151123i
\(321\) 0 0
\(322\) −27.5727 + 0.809745i −1.53656 + 0.0451253i
\(323\) 4.73616 + 4.73616i 0.263527 + 0.263527i
\(324\) 0 0
\(325\) −5.42499 + 5.42499i −0.300924 + 0.300924i
\(326\) 19.9326 + 18.7952i 1.10396 + 1.04097i
\(327\) 0 0
\(328\) −6.99513 3.25498i −0.386241 0.179726i
\(329\) 5.35946 9.28286i 0.295477 0.511781i
\(330\) 0 0
\(331\) −2.51757 + 9.39568i −0.138378 + 0.516434i 0.861583 + 0.507616i \(0.169473\pi\)
−0.999961 + 0.00881711i \(0.997193\pi\)
\(332\) 1.27375 6.18565i 0.0699059 0.339481i
\(333\) 0 0
\(334\) −5.51427 + 10.2335i −0.301728 + 0.559951i
\(335\) −3.30434 5.72328i −0.180535 0.312696i
\(336\) 0 0
\(337\) 13.5580 23.4832i 0.738553 1.27921i −0.214593 0.976704i \(-0.568843\pi\)
0.953147 0.302509i \(-0.0978241\pi\)
\(338\) −7.36130 11.9273i −0.400402 0.648758i
\(339\) 0 0
\(340\) 3.35739 + 10.1137i 0.182080 + 0.548493i
\(341\) −16.4581 16.4581i −0.891254 0.891254i
\(342\) 0 0
\(343\) 21.4761 1.15960
\(344\) −24.8161 4.35499i −1.33799 0.234805i
\(345\) 0 0
\(346\) −3.17510 + 13.4130i −0.170694 + 0.721085i
\(347\) 8.08347 + 30.1679i 0.433944 + 1.61950i 0.743582 + 0.668645i \(0.233125\pi\)
−0.309638 + 0.950854i \(0.600208\pi\)
\(348\) 0 0
\(349\) 8.48634 31.6714i 0.454263 1.69533i −0.235982 0.971757i \(-0.575831\pi\)
0.690245 0.723576i \(-0.257503\pi\)
\(350\) −12.7425 + 23.6477i −0.681114 + 1.26402i
\(351\) 0 0
\(352\) 2.64771 22.9213i 0.141123 1.22171i
\(353\) 3.48989 2.01489i 0.185748 0.107242i −0.404243 0.914652i \(-0.632465\pi\)
0.589990 + 0.807410i \(0.299131\pi\)
\(354\) 0 0
\(355\) −1.66062 6.19752i −0.0881366 0.328930i
\(356\) −3.41649 + 0.200842i −0.181074 + 0.0106446i
\(357\) 0 0
\(358\) −3.56588 + 3.78166i −0.188463 + 0.199867i
\(359\) 14.8043i 0.781342i 0.920530 + 0.390671i \(0.127757\pi\)
−0.920530 + 0.390671i \(0.872243\pi\)
\(360\) 0 0
\(361\) 17.9967i 0.947193i
\(362\) 10.0829 + 9.50757i 0.529945 + 0.499707i
\(363\) 0 0
\(364\) 11.4323 + 10.1628i 0.599215 + 0.532675i
\(365\) −2.00690 7.48986i −0.105046 0.392037i
\(366\) 0 0
\(367\) 2.66934 1.54114i 0.139338 0.0804470i −0.428710 0.903442i \(-0.641032\pi\)
0.568049 + 0.822995i \(0.307699\pi\)
\(368\) −16.4711 7.08380i −0.858613 0.369269i
\(369\) 0 0
\(370\) −2.12775 1.14653i −0.110616 0.0596052i
\(371\) 2.68045 10.0036i 0.139162 0.519361i
\(372\) 0 0
\(373\) −7.57804 28.2816i −0.392376 1.46437i −0.826204 0.563372i \(-0.809504\pi\)
0.433828 0.900996i \(-0.357163\pi\)
\(374\) −37.5352 8.88528i −1.94090 0.459447i
\(375\) 0 0
\(376\) 5.70397 4.00086i 0.294160 0.206329i
\(377\) 7.25990 0.373904
\(378\) 0 0
\(379\) −13.0654 13.0654i −0.671124 0.671124i 0.286851 0.957975i \(-0.407392\pi\)
−0.957975 + 0.286851i \(0.907392\pi\)
\(380\) 0.715642 1.42688i 0.0367117 0.0731976i
\(381\) 0 0
\(382\) −16.7697 + 10.3500i −0.858012 + 0.529550i
\(383\) 1.66394 2.88203i 0.0850235 0.147265i −0.820378 0.571822i \(-0.806237\pi\)
0.905401 + 0.424557i \(0.139570\pi\)
\(384\) 0 0
\(385\) 7.07147 + 12.2481i 0.360396 + 0.624223i
\(386\) −3.33886 1.79913i −0.169943 0.0915734i
\(387\) 0 0
\(388\) −8.06378 12.2459i −0.409376 0.621694i
\(389\) 1.77451 6.62255i 0.0899711 0.335777i −0.906238 0.422768i \(-0.861059\pi\)
0.996209 + 0.0869912i \(0.0277252\pi\)
\(390\) 0 0
\(391\) −14.9867 + 25.9577i −0.757908 + 1.31274i
\(392\) 30.6070 + 14.2420i 1.54588 + 0.719332i
\(393\) 0 0
\(394\) −19.5335 + 20.7156i −0.984085 + 1.04363i
\(395\) −7.79645 + 7.79645i −0.392282 + 0.392282i
\(396\) 0 0
\(397\) 2.33820 + 2.33820i 0.117351 + 0.117351i 0.763344 0.645993i \(-0.223556\pi\)
−0.645993 + 0.763344i \(0.723556\pi\)
\(398\) 0.327995 + 11.1686i 0.0164409 + 0.559830i
\(399\) 0 0
\(400\) −13.9940 + 10.4417i −0.699702 + 0.522086i
\(401\) −3.32787 1.92135i −0.166186 0.0959474i 0.414600 0.910004i \(-0.363921\pi\)
−0.580786 + 0.814056i \(0.697255\pi\)
\(402\) 0 0
\(403\) 9.68764 + 2.59579i 0.482575 + 0.129306i
\(404\) −5.85714 + 28.4438i −0.291404 + 1.41513i
\(405\) 0 0
\(406\) 24.3492 7.29686i 1.20843 0.362137i
\(407\) 7.57656 4.37433i 0.375556 0.216828i
\(408\) 0 0
\(409\) −4.36888 2.52237i −0.216027 0.124723i 0.388082 0.921625i \(-0.373138\pi\)
−0.604109 + 0.796901i \(0.706471\pi\)
\(410\) 2.99121 + 0.708076i 0.147725 + 0.0349694i
\(411\) 0 0
\(412\) 13.3395 26.5969i 0.657189 1.31034i
\(413\) 3.20193 3.20193i 0.157557 0.157557i
\(414\) 0 0
\(415\) 2.51613i 0.123512i
\(416\) 3.95038 + 9.12407i 0.193683 + 0.447344i
\(417\) 0 0
\(418\) 3.03465 + 4.91694i 0.148430 + 0.240495i
\(419\) −21.3504 + 5.72083i −1.04304 + 0.279481i −0.739371 0.673298i \(-0.764877\pi\)
−0.303665 + 0.952779i \(0.598210\pi\)
\(420\) 0 0
\(421\) −7.95298 2.13099i −0.387604 0.103858i 0.0597538 0.998213i \(-0.480968\pi\)
−0.447358 + 0.894355i \(0.647635\pi\)
\(422\) 18.5279 5.55234i 0.901923 0.270284i
\(423\) 0 0
\(424\) 4.32283 5.16024i 0.209935 0.250603i
\(425\) 14.5943 + 25.2780i 0.707926 + 1.22616i
\(426\) 0 0
\(427\) 8.58988 2.30165i 0.415693 0.111385i
\(428\) 0.183183 0.206065i 0.00885447 0.00996053i
\(429\) 0 0
\(430\) 10.0338 0.294668i 0.483870 0.0142101i
\(431\) −1.08094 −0.0520671 −0.0260336 0.999661i \(-0.508288\pi\)
−0.0260336 + 0.999661i \(0.508288\pi\)
\(432\) 0 0
\(433\) −15.5307 −0.746359 −0.373179 0.927759i \(-0.621732\pi\)
−0.373179 + 0.927759i \(0.621732\pi\)
\(434\) 35.1007 1.03083i 1.68489 0.0494812i
\(435\) 0 0
\(436\) −18.6166 16.5493i −0.891572 0.792568i
\(437\) 4.33690 1.16207i 0.207462 0.0555893i
\(438\) 0 0
\(439\) −2.26321 3.91999i −0.108017 0.187091i 0.806950 0.590620i \(-0.201117\pi\)
−0.914967 + 0.403529i \(0.867783\pi\)
\(440\) 0.808634 + 9.15717i 0.0385501 + 0.436551i
\(441\) 0 0
\(442\) 15.9215 4.77127i 0.757308 0.226946i
\(443\) 25.4883 + 6.82958i 1.21099 + 0.324483i 0.807149 0.590347i \(-0.201009\pi\)
0.403838 + 0.914830i \(0.367676\pi\)
\(444\) 0 0
\(445\) 1.31706 0.352904i 0.0624345 0.0167293i
\(446\) 20.8730 + 33.8199i 0.988366 + 1.60142i
\(447\) 0 0
\(448\) 22.4198 + 26.6311i 1.05924 + 1.25820i
\(449\) 5.94688i 0.280650i 0.990105 + 0.140325i \(0.0448148\pi\)
−0.990105 + 0.140325i \(0.955185\pi\)
\(450\) 0 0
\(451\) −7.86752 + 7.86752i −0.370467 + 0.370467i
\(452\) 14.9051 + 7.47555i 0.701078 + 0.351620i
\(453\) 0 0
\(454\) −0.698114 0.165257i −0.0327641 0.00775588i
\(455\) −5.27777 3.04712i −0.247426 0.142851i
\(456\) 0 0
\(457\) 18.2318 10.5261i 0.852846 0.492391i −0.00876413 0.999962i \(-0.502790\pi\)
0.861610 + 0.507571i \(0.169456\pi\)
\(458\) −20.5015 + 6.14380i −0.957974 + 0.287081i
\(459\) 0 0
\(460\) 6.99660 + 1.44074i 0.326218 + 0.0671747i
\(461\) −38.2603 10.2518i −1.78196 0.477475i −0.791021 0.611788i \(-0.790450\pi\)
−0.990939 + 0.134314i \(0.957117\pi\)
\(462\) 0 0
\(463\) −9.98020 5.76207i −0.463819 0.267786i 0.249829 0.968290i \(-0.419625\pi\)
−0.713649 + 0.700504i \(0.752959\pi\)
\(464\) 16.3503 + 2.37691i 0.759045 + 0.110345i
\(465\) 0 0
\(466\) 0.643338 + 21.9063i 0.0298020 + 1.01479i
\(467\) −25.1476 25.1476i −1.16369 1.16369i −0.983661 0.180032i \(-0.942380\pi\)
−0.180032 0.983661i \(-0.557620\pi\)
\(468\) 0 0
\(469\) −25.5197 + 25.5197i −1.17839 + 1.17839i
\(470\) −1.90433 + 2.01957i −0.0878403 + 0.0931558i
\(471\) 0 0
\(472\) 2.76499 1.00891i 0.127269 0.0464390i
\(473\) −18.1672 + 31.4664i −0.835327 + 1.44683i
\(474\) 0 0
\(475\) 1.13164 4.22335i 0.0519233 0.193780i
\(476\) 48.6041 32.0051i 2.22776 1.46695i
\(477\) 0 0
\(478\) −18.9662 10.2199i −0.867493 0.467445i
\(479\) 2.64784 + 4.58619i 0.120983 + 0.209548i 0.920155 0.391553i \(-0.128062\pi\)
−0.799173 + 0.601101i \(0.794729\pi\)
\(480\) 0 0
\(481\) −1.88491 + 3.26477i −0.0859447 + 0.148861i
\(482\) 21.9198 13.5285i 0.998417 0.616206i
\(483\) 0 0
\(484\) −10.0782 5.05464i −0.458100 0.229756i
\(485\) 4.13069 + 4.13069i 0.187565 + 0.187565i
\(486\) 0 0
\(487\) 1.85543 0.0840775 0.0420387 0.999116i \(-0.486615\pi\)
0.0420387 + 0.999116i \(0.486615\pi\)
\(488\) 5.69331 + 0.999123i 0.257724 + 0.0452282i
\(489\) 0 0
\(490\) −13.0880 3.09816i −0.591253 0.139961i
\(491\) 0.936497 + 3.49505i 0.0422635 + 0.157730i 0.983833 0.179090i \(-0.0573154\pi\)
−0.941569 + 0.336820i \(0.890649\pi\)
\(492\) 0 0
\(493\) 7.14866 26.6792i 0.321960 1.20157i
\(494\) −2.19182 1.18105i −0.0986144 0.0531380i
\(495\) 0 0
\(496\) 20.9681 + 9.01786i 0.941495 + 0.404914i
\(497\) −30.3446 + 17.5194i −1.36114 + 0.785854i
\(498\) 0 0
\(499\) 3.22216 + 12.0253i 0.144244 + 0.538325i 0.999788 + 0.0205953i \(0.00655616\pi\)
−0.855544 + 0.517730i \(0.826777\pi\)
\(500\) 9.91577 11.1544i 0.443447 0.498840i
\(501\) 0 0
\(502\) 3.17824 + 2.99689i 0.141852 + 0.133758i
\(503\) 16.6233i 0.741198i −0.928793 0.370599i \(-0.879152\pi\)
0.928793 0.370599i \(-0.120848\pi\)
\(504\) 0 0
\(505\) 11.5701i 0.514862i
\(506\) −17.7388 + 18.8122i −0.788586 + 0.836305i
\(507\) 0 0
\(508\) 0.569041 + 9.67986i 0.0252471 + 0.429474i
\(509\) −4.04848 15.1091i −0.179446 0.669700i −0.995752 0.0920802i \(-0.970648\pi\)
0.816306 0.577620i \(-0.196018\pi\)
\(510\) 0 0
\(511\) −36.6722 + 21.1727i −1.62228 + 0.936624i
\(512\) 5.90958 + 21.8421i 0.261169 + 0.965293i
\(513\) 0 0
\(514\) 12.9191 23.9754i 0.569835 1.05751i
\(515\) −3.06819 + 11.4506i −0.135200 + 0.504575i
\(516\) 0 0
\(517\) −2.60048 9.70511i −0.114369 0.426830i
\(518\) −3.04050 + 12.8443i −0.133592 + 0.564348i
\(519\) 0 0
\(520\) −2.27469 3.24299i −0.0997517 0.142215i
\(521\) −40.4461 −1.77198 −0.885988 0.463709i \(-0.846518\pi\)
−0.885988 + 0.463709i \(0.846518\pi\)
\(522\) 0 0
\(523\) 7.69126 + 7.69126i 0.336315 + 0.336315i 0.854979 0.518663i \(-0.173570\pi\)
−0.518663 + 0.854979i \(0.673570\pi\)
\(524\) −40.2771 + 13.3705i −1.75951 + 0.584095i
\(525\) 0 0
\(526\) 19.5764 + 31.7190i 0.853571 + 1.38301i
\(527\) 19.0784 33.0448i 0.831069 1.43945i
\(528\) 0 0
\(529\) −1.45387 2.51818i −0.0632119 0.109486i
\(530\) −1.27222 + 2.36100i −0.0552616 + 0.102555i
\(531\) 0 0
\(532\) −8.53827 1.75820i −0.370181 0.0762275i
\(533\) 1.24088 4.63102i 0.0537484 0.200592i
\(534\) 0 0
\(535\) −0.0549239 + 0.0951309i −0.00237457 + 0.00411287i
\(536\) −22.0372 + 8.04113i −0.951861 + 0.347324i
\(537\) 0 0
\(538\) −0.881083 0.830809i −0.0379862 0.0358187i
\(539\) 34.4241 34.4241i 1.48275 1.48275i
\(540\) 0 0
\(541\) −17.0176 17.0176i −0.731643 0.731643i 0.239302 0.970945i \(-0.423081\pi\)
−0.970945 + 0.239302i \(0.923081\pi\)
\(542\) −27.0117 + 0.793270i −1.16025 + 0.0340739i
\(543\) 0 0
\(544\) 37.4196 5.53285i 1.60435 0.237219i
\(545\) 8.59443 + 4.96200i 0.368145 + 0.212549i
\(546\) 0 0
\(547\) 21.5530 + 5.77510i 0.921539 + 0.246926i 0.688243 0.725480i \(-0.258382\pi\)
0.233296 + 0.972406i \(0.425049\pi\)
\(548\) 6.46447 + 9.81718i 0.276148 + 0.419369i
\(549\) 0 0
\(550\) 7.22812 + 24.1199i 0.308208 + 1.02847i
\(551\) −3.58311 + 2.06871i −0.152645 + 0.0881299i
\(552\) 0 0
\(553\) 52.1457 + 30.1064i 2.21746 + 1.28025i
\(554\) −2.30075 + 9.71936i −0.0977497 + 0.412936i
\(555\) 0 0
\(556\) −13.7043 + 4.54934i −0.581193 + 0.192935i
\(557\) −11.6516 + 11.6516i −0.493695 + 0.493695i −0.909468 0.415773i \(-0.863511\pi\)
0.415773 + 0.909468i \(0.363511\pi\)
\(558\) 0 0
\(559\) 15.6566i 0.662203i
\(560\) −10.8887 8.59052i −0.460130 0.363016i
\(561\) 0 0
\(562\) 28.5195 17.6017i 1.20302 0.742484i
\(563\) 4.88249 1.30826i 0.205772 0.0551365i −0.154460 0.987999i \(-0.549364\pi\)
0.360233 + 0.932862i \(0.382697\pi\)
\(564\) 0 0
\(565\) −6.41702 1.71944i −0.269966 0.0723372i
\(566\) 0.305591 + 1.01974i 0.0128450 + 0.0428629i
\(567\) 0 0
\(568\) −22.6867 + 2.00338i −0.951913 + 0.0840598i
\(569\) 2.79764 + 4.84565i 0.117283 + 0.203140i 0.918690 0.394979i \(-0.129248\pi\)
−0.801407 + 0.598119i \(0.795915\pi\)
\(570\) 0 0
\(571\) 8.65808 2.31993i 0.362329 0.0970859i −0.0730613 0.997327i \(-0.523277\pi\)
0.435391 + 0.900242i \(0.356610\pi\)
\(572\) 14.3135 0.841433i 0.598477 0.0351821i
\(573\) 0 0
\(574\) −0.492770 16.7794i −0.0205678 0.700357i
\(575\) 19.5662 0.815966
\(576\) 0 0
\(577\) 16.6893 0.694785 0.347393 0.937720i \(-0.387067\pi\)
0.347393 + 0.937720i \(0.387067\pi\)
\(578\) −1.15052 39.1763i −0.0478551 1.62952i
\(579\) 0 0
\(580\) −6.57127 + 0.386299i −0.272857 + 0.0160402i
\(581\) 13.2725 3.55636i 0.550637 0.147543i
\(582\) 0 0
\(583\) −4.85387 8.40714i −0.201027 0.348188i
\(584\) −27.4175 + 2.42113i −1.13454 + 0.100187i
\(585\) 0 0
\(586\) −8.33004 27.7969i −0.344111 1.14828i
\(587\) −5.02128 1.34545i −0.207250 0.0555325i 0.153700 0.988118i \(-0.450881\pi\)
−0.360950 + 0.932585i \(0.617548\pi\)
\(588\) 0 0
\(589\) −5.52099 + 1.47934i −0.227488 + 0.0609553i
\(590\) −0.997891 + 0.615881i −0.0410825 + 0.0253554i
\(591\) 0 0
\(592\) −5.31400 + 6.73561i −0.218404 + 0.276832i
\(593\) 44.7927i 1.83942i −0.392602 0.919708i \(-0.628425\pi\)
0.392602 0.919708i \(-0.371575\pi\)
\(594\) 0 0
\(595\) −16.3947 + 16.3947i −0.672116 + 0.672116i
\(596\) 8.53846 2.83446i 0.349749 0.116104i
\(597\) 0 0
\(598\) 2.56652 10.8421i 0.104953 0.443365i
\(599\) 27.1165 + 15.6557i 1.10795 + 0.639674i 0.938297 0.345830i \(-0.112403\pi\)
0.169651 + 0.985504i \(0.445736\pi\)
\(600\) 0 0
\(601\) −15.4248 + 8.90549i −0.629189 + 0.363262i −0.780438 0.625233i \(-0.785004\pi\)
0.151249 + 0.988496i \(0.451670\pi\)
\(602\) −15.7363 52.5112i −0.641364 2.14020i
\(603\) 0 0
\(604\) 9.31630 + 14.1481i 0.379075 + 0.575677i
\(605\) 4.33891 + 1.16261i 0.176402 + 0.0472667i
\(606\) 0 0
\(607\) −29.3159 16.9255i −1.18989 0.686986i −0.231612 0.972808i \(-0.574400\pi\)
−0.958283 + 0.285823i \(0.907733\pi\)
\(608\) −4.54961 3.37751i −0.184511 0.136976i
\(609\) 0 0
\(610\) −2.30195 + 0.0676027i −0.0932030 + 0.00273715i
\(611\) 3.06141 + 3.06141i 0.123852 + 0.123852i
\(612\) 0 0
\(613\) −11.3734 + 11.3734i −0.459367 + 0.459367i −0.898448 0.439081i \(-0.855304\pi\)
0.439081 + 0.898448i \(0.355304\pi\)
\(614\) −22.3287 21.0547i −0.901115 0.849697i
\(615\) 0 0
\(616\) 47.1608 17.2085i 1.90016 0.693349i
\(617\) 18.0269 31.2236i 0.725738 1.25701i −0.232932 0.972493i \(-0.574832\pi\)
0.958670 0.284521i \(-0.0918346\pi\)
\(618\) 0 0
\(619\) −4.29280 + 16.0209i −0.172542 + 0.643936i 0.824415 + 0.565986i \(0.191504\pi\)
−0.996957 + 0.0779503i \(0.975162\pi\)
\(620\) −8.90686 1.83410i −0.357708 0.0736591i
\(621\) 0 0
\(622\) 0.446656 0.828912i 0.0179093 0.0332363i
\(623\) −3.72312 6.44863i −0.149163 0.258359i
\(624\) 0 0
\(625\) 7.93964 13.7519i 0.317585 0.550074i
\(626\) −12.2888 19.9111i −0.491158 0.795807i
\(627\) 0 0
\(628\) −32.1309 + 10.6663i −1.28216 + 0.425632i
\(629\) 10.1416 + 10.1416i 0.404371 + 0.404371i
\(630\) 0 0
\(631\) 24.4330 0.972664 0.486332 0.873774i \(-0.338335\pi\)
0.486332 + 0.873774i \(0.338335\pi\)
\(632\) 22.4745 + 32.0416i 0.893988 + 1.27455i
\(633\) 0 0
\(634\) −2.21435 + 9.35434i −0.0879430 + 0.371508i
\(635\) −0.999874 3.73158i −0.0396788 0.148083i
\(636\) 0 0
\(637\) −5.42943 + 20.2629i −0.215122 + 0.802845i
\(638\) 11.3025 20.9754i 0.447471 0.830425i
\(639\) 0 0
\(640\) −4.06117 8.04843i −0.160532 0.318142i
\(641\) 40.0952 23.1490i 1.58366 0.914329i 0.589346 0.807881i \(-0.299385\pi\)
0.994318 0.106448i \(-0.0339479\pi\)
\(642\) 0 0
\(643\) −2.83678 10.5870i −0.111872 0.417511i 0.887162 0.461458i \(-0.152674\pi\)
−0.999034 + 0.0439466i \(0.986007\pi\)
\(644\) −2.28932 38.9432i −0.0902117 1.53458i
\(645\) 0 0
\(646\) −6.49844 + 6.89168i −0.255678 + 0.271149i
\(647\) 10.0479i 0.395025i −0.980300 0.197512i \(-0.936714\pi\)
0.980300 0.197512i \(-0.0632863\pi\)
\(648\) 0 0
\(649\) 4.24456i 0.166614i
\(650\) −7.89401 7.44358i −0.309628 0.291961i
\(651\) 0 0
\(652\) −25.7415 + 28.9570i −1.00811 + 1.13404i
\(653\) 6.85777 + 25.5935i 0.268365 + 1.00155i 0.960158 + 0.279457i \(0.0901544\pi\)
−0.691793 + 0.722096i \(0.743179\pi\)
\(654\) 0 0
\(655\) 14.6427 8.45394i 0.572136 0.330323i
\(656\) 4.31085 10.0235i 0.168310 0.391351i
\(657\) 0 0
\(658\) 13.3448 + 7.19079i 0.520234 + 0.280326i
\(659\) −1.81196 + 6.76233i −0.0705840 + 0.263423i −0.992196 0.124690i \(-0.960206\pi\)
0.921612 + 0.388113i \(0.126873\pi\)
\(660\) 0 0
\(661\) −5.40993 20.1902i −0.210422 0.785306i −0.987728 0.156183i \(-0.950081\pi\)
0.777306 0.629123i \(-0.216586\pi\)
\(662\) −13.3863 3.16879i −0.520273 0.123158i
\(663\) 0 0
\(664\) 8.79693 + 1.54378i 0.341387 + 0.0599103i
\(665\) 3.47311 0.134681
\(666\) 0 0
\(667\) −13.0920 13.0920i −0.506926 0.506926i
\(668\) −14.6950 7.37017i −0.568567 0.285160i
\(669\) 0 0
\(670\) 7.95328 4.90862i 0.307262 0.189637i
\(671\) 4.16791 7.21904i 0.160901 0.278688i
\(672\) 0 0
\(673\) 3.86200 + 6.68918i 0.148869 + 0.257849i 0.930810 0.365504i \(-0.119103\pi\)
−0.781941 + 0.623353i \(0.785770\pi\)
\(674\) 33.7588 + 18.1908i 1.30034 + 0.700684i
\(675\) 0 0
\(676\) 16.5548 10.9011i 0.636724 0.419274i
\(677\) −2.04220 + 7.62160i −0.0784882 + 0.292922i −0.994002 0.109366i \(-0.965118\pi\)
0.915513 + 0.402287i \(0.131785\pi\)
\(678\) 0 0
\(679\) 15.9508 27.6277i 0.612137 1.06025i
\(680\) −14.1574 + 5.16588i −0.542912 + 0.198103i
\(681\) 0 0
\(682\) 22.5820 23.9484i 0.864708 0.917033i
\(683\) −23.0318 + 23.0318i −0.881288 + 0.881288i −0.993666 0.112378i \(-0.964153\pi\)
0.112378 + 0.993666i \(0.464153\pi\)
\(684\) 0 0
\(685\) −3.31144 3.31144i −0.126524 0.126524i
\(686\) 0.891563 + 30.3587i 0.0340400 + 1.15910i
\(687\) 0 0
\(688\) 5.12601 35.2609i 0.195427 1.34431i
\(689\) 3.62267 + 2.09155i 0.138013 + 0.0796816i
\(690\) 0 0
\(691\) 24.8749 + 6.66520i 0.946285 + 0.253556i 0.698785 0.715332i \(-0.253724\pi\)
0.247500 + 0.968888i \(0.420391\pi\)
\(692\) −19.0924 3.93151i −0.725785 0.149453i
\(693\) 0 0
\(694\) −42.3099 + 12.6792i −1.60606 + 0.481297i
\(695\) 4.98218 2.87646i 0.188985 0.109111i
\(696\) 0 0
\(697\) −15.7965 9.12014i −0.598337 0.345450i
\(698\) 45.1232 + 10.6815i 1.70794 + 0.404301i
\(699\) 0 0
\(700\) −33.9575 17.0311i −1.28347 0.643715i
\(701\) 35.0396 35.0396i 1.32343 1.32343i 0.412443 0.910983i \(-0.364675\pi\)
0.910983 0.412443i \(-0.135325\pi\)
\(702\) 0 0
\(703\) 2.14843i 0.0810295i
\(704\) 32.5115 + 2.79125i 1.22532 + 0.105199i
\(705\) 0 0
\(706\) 2.99313 + 4.84967i 0.112648 + 0.182520i
\(707\) −61.0318 + 16.3534i −2.29534 + 0.615034i
\(708\) 0 0
\(709\) 45.5722 + 12.2110i 1.71150 + 0.458595i 0.975792 0.218702i \(-0.0701821\pi\)
0.735710 + 0.677297i \(0.236849\pi\)
\(710\) 8.69190 2.60474i 0.326201 0.0977543i
\(711\) 0 0
\(712\) −0.425744 4.82123i −0.0159554 0.180683i
\(713\) −12.7890 22.1512i −0.478951 0.829568i
\(714\) 0 0
\(715\) −5.51784 + 1.47850i −0.206356 + 0.0552928i
\(716\) −5.49380 4.88375i −0.205313 0.182514i
\(717\) 0 0
\(718\) −20.9274 + 0.614590i −0.781005 + 0.0229363i
\(719\) 26.0582 0.971806 0.485903 0.874013i \(-0.338491\pi\)
0.485903 + 0.874013i \(0.338491\pi\)
\(720\) 0 0
\(721\) 64.7383 2.41098
\(722\) −25.4402 + 0.747118i −0.946785 + 0.0278049i
\(723\) 0 0
\(724\) −13.0214 + 14.6479i −0.483935 + 0.544386i
\(725\) −17.4158 + 4.66655i −0.646807 + 0.173311i
\(726\) 0 0
\(727\) −4.96698 8.60307i −0.184215 0.319070i 0.759097 0.650978i \(-0.225641\pi\)
−0.943312 + 0.331908i \(0.892308\pi\)
\(728\) −13.8916 + 16.5826i −0.514856 + 0.614593i
\(729\) 0 0
\(730\) 10.5044 3.14790i 0.388785 0.116509i
\(731\) −57.5359 15.4167i −2.12804 0.570207i
\(732\) 0 0
\(733\) −12.7081 + 3.40512i −0.469384 + 0.125771i −0.485755 0.874095i \(-0.661455\pi\)
0.0163712 + 0.999866i \(0.494789\pi\)
\(734\) 2.28938 + 3.70941i 0.0845026 + 0.136917i
\(735\) 0 0
\(736\) 9.32991 23.5776i 0.343905 0.869083i
\(737\) 33.8295i 1.24613i
\(738\) 0 0
\(739\) −32.6637 + 32.6637i −1.20155 + 1.20155i −0.227861 + 0.973694i \(0.573173\pi\)
−0.973694 + 0.227861i \(0.926827\pi\)
\(740\) 1.53241 3.05539i 0.0563324 0.112318i
\(741\) 0 0
\(742\) 14.2524 + 3.37381i 0.523222 + 0.123856i
\(743\) 8.76936 + 5.06299i 0.321717 + 0.185743i 0.652157 0.758084i \(-0.273864\pi\)
−0.330441 + 0.943827i \(0.607197\pi\)
\(744\) 0 0
\(745\) −3.10414 + 1.79218i −0.113727 + 0.0656603i
\(746\) 39.6644 11.8864i 1.45222 0.435193i
\(747\) 0 0
\(748\) 11.0020 53.4287i 0.402274 1.95355i
\(749\) 0.579443 + 0.155261i 0.0211724 + 0.00567312i
\(750\) 0 0
\(751\) 22.6187 + 13.0589i 0.825368 + 0.476526i 0.852264 0.523112i \(-0.175229\pi\)
−0.0268964 + 0.999638i \(0.508562\pi\)
\(752\) 5.89243 + 7.89706i 0.214875 + 0.287976i
\(753\) 0 0
\(754\) 0.301389 + 10.2626i 0.0109759 + 0.373742i
\(755\) −4.77230 4.77230i −0.173682 0.173682i
\(756\) 0 0
\(757\) 2.39808 2.39808i 0.0871596 0.0871596i −0.662183 0.749342i \(-0.730370\pi\)
0.749342 + 0.662183i \(0.230370\pi\)
\(758\) 17.9269 19.0117i 0.651134 0.690536i
\(759\) 0 0
\(760\) 2.04676 + 0.952399i 0.0742438 + 0.0345471i
\(761\) −23.1857 + 40.1589i −0.840482 + 1.45576i 0.0490055 + 0.998799i \(0.484395\pi\)
−0.889488 + 0.456959i \(0.848939\pi\)
\(762\) 0 0
\(763\) 14.0268 52.3487i 0.507804 1.89515i
\(764\) −15.3269 23.2760i −0.554509 0.842098i
\(765\) 0 0
\(766\) 4.14313 + 2.23251i 0.149697 + 0.0806639i
\(767\) 0.914499 + 1.58396i 0.0330206 + 0.0571934i
\(768\) 0 0
\(769\) −7.38255 + 12.7870i −0.266222 + 0.461109i −0.967883 0.251401i \(-0.919109\pi\)
0.701661 + 0.712511i \(0.252442\pi\)
\(770\) −17.0205 + 10.5047i −0.613375 + 0.378564i
\(771\) 0 0
\(772\) 2.40465 4.79452i 0.0865453 0.172558i
\(773\) 22.1409 + 22.1409i 0.796353 + 0.796353i 0.982518 0.186165i \(-0.0596060\pi\)
−0.186165 + 0.982518i \(0.559606\pi\)
\(774\) 0 0
\(775\) −24.9083 −0.894731
\(776\) 16.9762 11.9074i 0.609409 0.427450i
\(777\) 0 0
\(778\) 9.43533 + 2.23352i 0.338273 + 0.0800756i
\(779\) 0.707177 + 2.63922i 0.0253372 + 0.0945599i
\(780\) 0 0
\(781\) −8.50064 + 31.7248i −0.304177 + 1.13520i
\(782\) −37.3160 20.1076i −1.33442 0.719046i
\(783\) 0 0
\(784\) −18.8620 + 43.8574i −0.673642 + 1.56633i
\(785\) 11.6811 6.74410i 0.416917 0.240707i
\(786\) 0 0
\(787\) 1.12039 + 4.18136i 0.0399377 + 0.149050i 0.983015 0.183523i \(-0.0587501\pi\)
−0.943078 + 0.332572i \(0.892083\pi\)
\(788\) −30.0945 26.7527i −1.07207 0.953025i
\(789\) 0 0
\(790\) −11.3448 10.6974i −0.403629 0.380598i
\(791\) 36.2799i 1.28996i
\(792\) 0 0
\(793\) 3.59194i 0.127553i
\(794\) −3.20822 + 3.40236i −0.113856 + 0.120745i
\(795\) 0 0
\(796\) −15.7743 + 0.927310i −0.559106 + 0.0328676i
\(797\) −13.8032 51.5141i −0.488933 1.82472i −0.561657 0.827370i \(-0.689836\pi\)
0.0727237 0.997352i \(-0.476831\pi\)
\(798\) 0 0
\(799\) 14.2648 8.23579i 0.504652 0.291361i
\(800\) −15.3414 19.3485i −0.542400 0.684074i
\(801\) 0 0
\(802\) 2.57787 4.78405i 0.0910277 0.168931i
\(803\) −10.2732 + 38.3403i −0.362535 + 1.35300i
\(804\) 0 0
\(805\) 4.02261 + 15.0126i 0.141778 + 0.529124i
\(806\) −3.26725 + 13.8022i −0.115084 + 0.486163i
\(807\) 0 0
\(808\) −40.4514 7.09885i −1.42308 0.249737i
\(809\) 30.1140 1.05875 0.529375 0.848388i \(-0.322426\pi\)
0.529375 + 0.848388i \(0.322426\pi\)
\(810\) 0 0
\(811\) 20.5672 + 20.5672i 0.722214 + 0.722214i 0.969056 0.246842i \(-0.0793929\pi\)
−0.246842 + 0.969056i \(0.579393\pi\)
\(812\) 11.3257 + 34.1173i 0.397454 + 1.19728i
\(813\) 0 0
\(814\) 6.49811 + 10.5287i 0.227759 + 0.369030i
\(815\) 7.71810 13.3681i 0.270353 0.468265i
\(816\) 0 0
\(817\) 4.46135 + 7.72728i 0.156083 + 0.270343i
\(818\) 3.38426 6.28057i 0.118328 0.219595i
\(819\) 0 0
\(820\) −0.876761 + 4.25779i −0.0306178 + 0.148688i
\(821\) −8.53541 + 31.8546i −0.297888 + 1.11173i 0.641009 + 0.767533i \(0.278516\pi\)
−0.938897 + 0.344199i \(0.888151\pi\)
\(822\) 0 0
\(823\) 4.71220 8.16178i 0.164257 0.284502i −0.772134 0.635460i \(-0.780811\pi\)
0.936391 + 0.350958i \(0.114144\pi\)
\(824\) 38.1513 + 17.7526i 1.32906 + 0.618440i
\(825\) 0 0
\(826\) 4.65919 + 4.39334i 0.162114 + 0.152864i
\(827\) −38.7468 + 38.7468i −1.34736 + 1.34736i −0.458841 + 0.888518i \(0.651735\pi\)
−0.888518 + 0.458841i \(0.848265\pi\)
\(828\) 0 0
\(829\) 11.0569 + 11.0569i 0.384021 + 0.384021i 0.872548 0.488528i \(-0.162466\pi\)
−0.488528 + 0.872548i \(0.662466\pi\)
\(830\) −3.55682 + 0.104455i −0.123459 + 0.00362570i
\(831\) 0 0
\(832\) −12.7338 + 5.96305i −0.441466 + 0.206732i
\(833\) 69.1173 + 39.9049i 2.39477 + 1.38262i
\(834\) 0 0
\(835\) 6.32656 + 1.69520i 0.218940 + 0.0586647i
\(836\) −6.82463 + 4.49392i −0.236035 + 0.155425i
\(837\) 0 0
\(838\) −8.97333 29.9435i −0.309978 1.03438i
\(839\) −25.3695 + 14.6471i −0.875853 + 0.505674i −0.869289 0.494305i \(-0.835423\pi\)
−0.00656388 + 0.999978i \(0.502089\pi\)
\(840\) 0 0
\(841\) −10.3391 5.96927i −0.356520 0.205837i
\(842\) 2.68222 11.3308i 0.0924354 0.390486i
\(843\) 0 0
\(844\) 8.61799 + 25.9606i 0.296643 + 0.893601i
\(845\) −5.58412 + 5.58412i −0.192100 + 0.192100i
\(846\) 0 0
\(847\) 24.5309i 0.842891i
\(848\) 7.47399 + 5.89654i 0.256658 + 0.202488i
\(849\) 0 0
\(850\) −35.1272 + 21.6799i −1.20485 + 0.743615i
\(851\) 9.28662 2.48834i 0.318341 0.0852992i
\(852\) 0 0
\(853\) 40.6922 + 10.9035i 1.39328 + 0.373327i 0.875925 0.482447i \(-0.160252\pi\)
0.517350 + 0.855774i \(0.326918\pi\)
\(854\) 3.61022 + 12.0471i 0.123539 + 0.412244i
\(855\) 0 0
\(856\) 0.298899 + 0.250393i 0.0102162 + 0.00855826i
\(857\) 14.2207 + 24.6310i 0.485769 + 0.841377i 0.999866 0.0163548i \(-0.00520611\pi\)
−0.514097 + 0.857732i \(0.671873\pi\)
\(858\) 0 0
\(859\) 3.34555 0.896437i 0.114149 0.0305860i −0.201293 0.979531i \(-0.564514\pi\)
0.315441 + 0.948945i \(0.397848\pi\)
\(860\) 0.833087 + 14.1715i 0.0284080 + 0.483245i
\(861\) 0 0
\(862\) −0.0448745 1.52802i −0.00152843 0.0520447i
\(863\) −11.1356 −0.379062 −0.189531 0.981875i \(-0.560697\pi\)
−0.189531 + 0.981875i \(0.560697\pi\)
\(864\) 0 0
\(865\) 7.76622 0.264059
\(866\) −0.644746 21.9543i −0.0219094 0.746037i
\(867\) 0 0
\(868\) 2.91436 + 49.5757i 0.0989198 + 1.68271i
\(869\) 54.5177 14.6080i 1.84939 0.495541i
\(870\) 0 0
\(871\) −7.28863 12.6243i −0.246966 0.427757i
\(872\) 22.6213 27.0035i 0.766055 0.914454i
\(873\) 0 0
\(874\) 1.82275 + 6.08242i 0.0616554 + 0.205741i
\(875\) 31.3655 + 8.40437i 1.06035 + 0.284119i
\(876\) 0 0
\(877\) −27.3387 + 7.32539i −0.923163 + 0.247361i −0.688937 0.724821i \(-0.741922\pi\)
−0.234226 + 0.972182i \(0.575256\pi\)
\(878\) 5.44736 3.36202i 0.183839 0.113463i
\(879\) 0 0
\(880\) −12.9110 + 1.52324i −0.435231 + 0.0513485i
\(881\) 4.86363i 0.163860i 0.996638 + 0.0819299i \(0.0261084\pi\)
−0.996638 + 0.0819299i \(0.973892\pi\)
\(882\) 0 0
\(883\) 8.56478 8.56478i 0.288228 0.288228i −0.548151 0.836379i \(-0.684668\pi\)
0.836379 + 0.548151i \(0.184668\pi\)
\(884\) 7.40566 + 22.3086i 0.249079 + 0.750319i
\(885\) 0 0
\(886\) −8.59619 + 36.3139i −0.288795 + 1.21999i
\(887\) −3.99885 2.30874i −0.134268 0.0775199i 0.431361 0.902179i \(-0.358033\pi\)
−0.565630 + 0.824659i \(0.691367\pi\)
\(888\) 0 0
\(889\) −18.2707 + 10.5486i −0.612780 + 0.353789i
\(890\) 0.553543 + 1.84715i 0.0185548 + 0.0619165i
\(891\) 0 0
\(892\) −46.9414 + 30.9102i −1.57171 + 1.03495i
\(893\) −2.38330 0.638605i −0.0797543 0.0213701i
\(894\) 0 0
\(895\) 2.53624 + 1.46430i 0.0847772 + 0.0489461i
\(896\) −36.7150 + 32.7983i −1.22656 + 1.09572i
\(897\) 0 0
\(898\) −8.40653 + 0.246880i −0.280529 + 0.00823849i
\(899\) 16.6665 + 16.6665i 0.555859 + 0.555859i
\(900\) 0 0
\(901\) 11.2533 11.2533i 0.374903 0.374903i
\(902\) −11.4482 10.7949i −0.381183 0.359433i
\(903\) 0 0
\(904\) −9.94869 + 21.3803i −0.330888 + 0.711098i
\(905\) 3.90421 6.76228i 0.129780 0.224786i
\(906\) 0 0
\(907\) −2.23987 + 8.35931i −0.0743737 + 0.277566i −0.993091 0.117350i \(-0.962560\pi\)
0.918717 + 0.394917i \(0.129227\pi\)
\(908\) 0.204626 0.993717i 0.00679075 0.0329777i
\(909\) 0 0
\(910\) 4.08832 7.58718i 0.135527 0.251512i
\(911\) −23.9969 41.5638i −0.795052 1.37707i −0.922806 0.385264i \(-0.874110\pi\)
0.127755 0.991806i \(-0.459223\pi\)
\(912\) 0 0
\(913\) 6.43999 11.1544i 0.213133 0.369156i
\(914\) 15.6366 + 25.3355i 0.517214 + 0.838024i
\(915\) 0 0
\(916\) −9.53600 28.7260i −0.315078 0.949134i
\(917\) −65.2905 65.2905i −2.15608 2.15608i
\(918\) 0 0
\(919\) 51.8939 1.71182 0.855910 0.517124i \(-0.172997\pi\)
0.855910 + 0.517124i \(0.172997\pi\)
\(920\) −1.74617 + 9.95024i −0.0575697 + 0.328050i
\(921\) 0 0
\(922\) 12.9037 54.5105i 0.424960 1.79521i
\(923\) −3.66296 13.6703i −0.120568 0.449965i
\(924\) 0 0
\(925\) 2.42319 9.04347i 0.0796740 0.297347i
\(926\) 7.73097 14.3473i 0.254055 0.471480i
\(927\) 0 0
\(928\) −2.68124 + 23.2116i −0.0880160 + 0.761957i
\(929\) −8.80130 + 5.08143i −0.288761 + 0.166716i −0.637383 0.770547i \(-0.719983\pi\)
0.348622 + 0.937263i \(0.386650\pi\)
\(930\) 0 0
\(931\) −3.09423 11.5478i −0.101409 0.378465i
\(932\) −30.9402 + 1.81885i −1.01348 + 0.0595784i
\(933\) 0 0
\(934\) 34.5048 36.5928i 1.12903 1.19735i
\(935\) 21.7332i 0.710751i
\(936\) 0 0
\(937\) 37.8157i 1.23539i 0.786420 + 0.617693i \(0.211932\pi\)
−0.786420 + 0.617693i \(0.788068\pi\)
\(938\) −37.1342 35.0153i −1.21247 1.14329i
\(939\) 0 0
\(940\) −2.93393 2.60813i −0.0956942 0.0850679i
\(941\) 9.21025 + 34.3731i 0.300246 + 1.12053i 0.936961 + 0.349433i \(0.113626\pi\)
−0.636716 + 0.771099i \(0.719707\pi\)
\(942\) 0 0
\(943\) −10.5890 + 6.11357i −0.344826 + 0.199085i
\(944\) 1.54099 + 3.86671i 0.0501550 + 0.125851i
\(945\) 0 0
\(946\) −45.2353 24.3749i −1.47073 0.792495i
\(947\) 2.69018 10.0399i 0.0874191 0.326253i −0.908342 0.418228i \(-0.862651\pi\)
0.995761 + 0.0919752i \(0.0293181\pi\)
\(948\) 0 0
\(949\) −4.42678 16.5210i −0.143699 0.536293i
\(950\) 6.01712 + 1.42437i 0.195221 + 0.0462125i
\(951\) 0 0
\(952\) 47.2603 + 67.3783i 1.53171 + 2.18374i
\(953\) −24.6743 −0.799280 −0.399640 0.916672i \(-0.630865\pi\)
−0.399640 + 0.916672i \(0.630865\pi\)
\(954\) 0 0
\(955\) 7.85126 + 7.85126i 0.254061 + 0.254061i
\(956\) 13.6595 27.2349i 0.441778 0.880841i
\(957\) 0 0
\(958\) −6.37313 + 3.93339i −0.205907 + 0.127082i
\(959\) −12.7873 + 22.1482i −0.412922 + 0.715203i
\(960\) 0 0
\(961\) 0.780708 + 1.35223i 0.0251841 + 0.0436202i
\(962\) −4.69334 2.52899i −0.151319 0.0815379i
\(963\) 0 0
\(964\) 20.0339 + 30.4242i 0.645249 + 0.979898i
\(965\) −0.553089 + 2.06416i −0.0178046 + 0.0664475i
\(966\) 0 0
\(967\) 12.5371 21.7150i 0.403167 0.698306i −0.590939 0.806716i \(-0.701243\pi\)
0.994106 + 0.108410i \(0.0345759\pi\)
\(968\) 6.72687 14.4564i 0.216210 0.464647i
\(969\) 0 0
\(970\) −5.66768 + 6.01064i −0.181978 + 0.192990i
\(971\) 18.9203 18.9203i 0.607180 0.607180i −0.335028 0.942208i \(-0.608746\pi\)
0.942208 + 0.335028i \(0.108746\pi\)
\(972\) 0 0
\(973\) −22.2152 22.2152i −0.712186 0.712186i
\(974\) 0.0770267 + 2.62284i 0.00246809 + 0.0840412i
\(975\) 0 0
\(976\) −1.17601 + 8.08956i −0.0376432 + 0.258941i
\(977\) 12.1897 + 7.03771i 0.389982 + 0.225156i 0.682152 0.731210i \(-0.261044\pi\)
−0.292170 + 0.956366i \(0.594377\pi\)
\(978\) 0 0
\(979\) −6.74196 1.80650i −0.215474 0.0577360i
\(980\) 3.83624 18.6298i 0.122544 0.595107i
\(981\) 0 0
\(982\) −4.90175 + 1.46893i −0.156421 + 0.0468755i
\(983\) 0.562149 0.324557i 0.0179298 0.0103518i −0.491008 0.871155i \(-0.663372\pi\)
0.508938 + 0.860803i \(0.330038\pi\)
\(984\) 0 0
\(985\) 13.8933 + 8.02129i 0.442677 + 0.255579i
\(986\) 38.0106 + 8.99781i 1.21050 + 0.286549i
\(987\) 0 0
\(988\) 1.57855 3.14739i 0.0502203 0.100132i
\(989\) −28.2341 + 28.2341i −0.897792 + 0.897792i
\(990\) 0 0
\(991\) 36.5529i 1.16114i −0.814210 0.580571i \(-0.802829\pi\)
0.814210 0.580571i \(-0.197171\pi\)
\(992\) −11.8772 + 30.0149i −0.377102 + 0.952976i
\(993\) 0 0
\(994\) −26.0253 42.1679i −0.825472 1.33748i
\(995\) 6.08100 1.62940i 0.192781 0.0516554i
\(996\) 0 0
\(997\) 7.74395 + 2.07498i 0.245253 + 0.0657154i 0.379352 0.925253i \(-0.376147\pi\)
−0.134098 + 0.990968i \(0.542814\pi\)
\(998\) −16.8652 + 5.05408i −0.533859 + 0.159984i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.179.11 88
3.2 odd 2 144.2.u.a.131.12 yes 88
4.3 odd 2 1728.2.z.a.1583.13 88
9.2 odd 6 inner 432.2.v.a.35.3 88
9.7 even 3 144.2.u.a.83.20 yes 88
12.11 even 2 576.2.y.a.239.4 88
16.5 even 4 1728.2.z.a.719.13 88
16.11 odd 4 inner 432.2.v.a.395.3 88
36.7 odd 6 576.2.y.a.47.8 88
36.11 even 6 1728.2.z.a.1007.13 88
48.5 odd 4 576.2.y.a.527.8 88
48.11 even 4 144.2.u.a.59.20 yes 88
144.11 even 12 inner 432.2.v.a.251.11 88
144.43 odd 12 144.2.u.a.11.12 88
144.101 odd 12 1728.2.z.a.143.13 88
144.133 even 12 576.2.y.a.335.4 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.12 88 144.43 odd 12
144.2.u.a.59.20 yes 88 48.11 even 4
144.2.u.a.83.20 yes 88 9.7 even 3
144.2.u.a.131.12 yes 88 3.2 odd 2
432.2.v.a.35.3 88 9.2 odd 6 inner
432.2.v.a.179.11 88 1.1 even 1 trivial
432.2.v.a.251.11 88 144.11 even 12 inner
432.2.v.a.395.3 88 16.11 odd 4 inner
576.2.y.a.47.8 88 36.7 odd 6
576.2.y.a.239.4 88 12.11 even 2
576.2.y.a.335.4 88 144.133 even 12
576.2.y.a.527.8 88 48.5 odd 4
1728.2.z.a.143.13 88 144.101 odd 12
1728.2.z.a.719.13 88 16.5 even 4
1728.2.z.a.1007.13 88 36.11 even 6
1728.2.z.a.1583.13 88 4.3 odd 2