Properties

Label 576.2.y.a.335.4
Level $576$
Weight $2$
Character 576.335
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 335.4
Character \(\chi\) \(=\) 576.335
Dual form 576.2.y.a.239.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.52574 - 0.819834i) q^{3} +(-0.769670 - 0.206232i) q^{5} +(2.17574 - 3.76849i) q^{7} +(1.65574 + 2.50170i) q^{9} +(-3.93991 + 1.05570i) q^{11} +(1.69772 + 0.454903i) q^{13} +(1.00524 + 0.945658i) q^{15} -6.68683i q^{17} +(0.708282 + 0.708282i) q^{19} +(-6.40914 + 3.96598i) q^{21} +(-3.88191 + 2.24122i) q^{23} +(-3.78027 - 2.18254i) q^{25} +(-0.475249 - 5.17437i) q^{27} +(-3.98981 + 1.06907i) q^{29} +(-4.94177 + 2.85313i) q^{31} +(6.87676 + 1.61936i) q^{33} +(-2.45179 + 2.45179i) q^{35} +(-1.51665 - 1.51665i) q^{37} +(-2.21733 - 2.08591i) q^{39} +(-1.36389 - 2.36233i) q^{41} +(-2.30553 - 8.60436i) q^{43} +(-0.758445 - 2.26695i) q^{45} +(1.23164 - 2.13327i) q^{47} +(-5.96768 - 10.3363i) q^{49} +(-5.48209 + 10.2023i) q^{51} +(-1.68291 + 1.68291i) q^{53} +3.25015 q^{55} +(-0.499978 - 1.66133i) q^{57} +(0.269331 - 1.00516i) q^{59} +(-0.528935 - 1.97401i) q^{61} +(13.0301 - 0.796606i) q^{63} +(-1.21287 - 0.700250i) q^{65} +(2.14659 - 8.01120i) q^{67} +(7.76019 - 0.236992i) q^{69} +8.05218i q^{71} +9.73126i q^{73} +(3.97837 + 6.42917i) q^{75} +(-4.59383 + 17.1444i) q^{77} +(11.9835 + 6.91865i) q^{79} +(-3.51702 + 8.28436i) q^{81} +(-0.817277 - 3.05012i) q^{83} +(-1.37904 + 5.14666i) q^{85} +(6.96385 + 1.63987i) q^{87} -1.71120 q^{89} +(5.40809 - 5.40809i) q^{91} +(9.87893 - 0.301697i) q^{93} +(-0.399073 - 0.691214i) q^{95} +(3.66561 - 6.34903i) q^{97} +(-9.16451 - 8.10851i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.52574 0.819834i −0.880884 0.473331i
\(4\) 0 0
\(5\) −0.769670 0.206232i −0.344207 0.0922300i 0.0825742 0.996585i \(-0.473686\pi\)
−0.426781 + 0.904355i \(0.640353\pi\)
\(6\) 0 0
\(7\) 2.17574 3.76849i 0.822352 1.42436i −0.0815745 0.996667i \(-0.525995\pi\)
0.903926 0.427688i \(-0.140672\pi\)
\(8\) 0 0
\(9\) 1.65574 + 2.50170i 0.551915 + 0.833901i
\(10\) 0 0
\(11\) −3.93991 + 1.05570i −1.18793 + 0.318304i −0.798066 0.602570i \(-0.794144\pi\)
−0.389861 + 0.920874i \(0.627477\pi\)
\(12\) 0 0
\(13\) 1.69772 + 0.454903i 0.470863 + 0.126167i 0.486445 0.873711i \(-0.338293\pi\)
−0.0155820 + 0.999879i \(0.504960\pi\)
\(14\) 0 0
\(15\) 1.00524 + 0.945658i 0.259551 + 0.244168i
\(16\) 0 0
\(17\) 6.68683i 1.62180i −0.585188 0.810898i \(-0.698979\pi\)
0.585188 0.810898i \(-0.301021\pi\)
\(18\) 0 0
\(19\) 0.708282 + 0.708282i 0.162491 + 0.162491i 0.783669 0.621178i \(-0.213346\pi\)
−0.621178 + 0.783669i \(0.713346\pi\)
\(20\) 0 0
\(21\) −6.40914 + 3.96598i −1.39859 + 0.865447i
\(22\) 0 0
\(23\) −3.88191 + 2.24122i −0.809433 + 0.467327i −0.846759 0.531977i \(-0.821449\pi\)
0.0373258 + 0.999303i \(0.488116\pi\)
\(24\) 0 0
\(25\) −3.78027 2.18254i −0.756053 0.436508i
\(26\) 0 0
\(27\) −0.475249 5.17437i −0.0914618 0.995809i
\(28\) 0 0
\(29\) −3.98981 + 1.06907i −0.740888 + 0.198520i −0.609473 0.792807i \(-0.708619\pi\)
−0.131415 + 0.991327i \(0.541952\pi\)
\(30\) 0 0
\(31\) −4.94177 + 2.85313i −0.887568 + 0.512437i −0.873146 0.487459i \(-0.837924\pi\)
−0.0144215 + 0.999896i \(0.504591\pi\)
\(32\) 0 0
\(33\) 6.87676 + 1.61936i 1.19709 + 0.281894i
\(34\) 0 0
\(35\) −2.45179 + 2.45179i −0.414427 + 0.414427i
\(36\) 0 0
\(37\) −1.51665 1.51665i −0.249335 0.249335i 0.571363 0.820698i \(-0.306415\pi\)
−0.820698 + 0.571363i \(0.806415\pi\)
\(38\) 0 0
\(39\) −2.21733 2.08591i −0.355057 0.334013i
\(40\) 0 0
\(41\) −1.36389 2.36233i −0.213005 0.368935i 0.739649 0.672993i \(-0.234992\pi\)
−0.952653 + 0.304058i \(0.901658\pi\)
\(42\) 0 0
\(43\) −2.30553 8.60436i −0.351590 1.31215i −0.884722 0.466120i \(-0.845652\pi\)
0.533131 0.846033i \(-0.321015\pi\)
\(44\) 0 0
\(45\) −0.758445 2.26695i −0.113062 0.337937i
\(46\) 0 0
\(47\) 1.23164 2.13327i 0.179654 0.311169i −0.762108 0.647449i \(-0.775836\pi\)
0.941762 + 0.336280i \(0.109169\pi\)
\(48\) 0 0
\(49\) −5.96768 10.3363i −0.852525 1.47662i
\(50\) 0 0
\(51\) −5.48209 + 10.2023i −0.767647 + 1.42861i
\(52\) 0 0
\(53\) −1.68291 + 1.68291i −0.231165 + 0.231165i −0.813179 0.582014i \(-0.802265\pi\)
0.582014 + 0.813179i \(0.302265\pi\)
\(54\) 0 0
\(55\) 3.25015 0.438250
\(56\) 0 0
\(57\) −0.499978 1.66133i −0.0662237 0.220048i
\(58\) 0 0
\(59\) 0.269331 1.00516i 0.0350640 0.130860i −0.946175 0.323655i \(-0.895088\pi\)
0.981239 + 0.192794i \(0.0617550\pi\)
\(60\) 0 0
\(61\) −0.528935 1.97401i −0.0677232 0.252747i 0.923762 0.382968i \(-0.125098\pi\)
−0.991485 + 0.130221i \(0.958431\pi\)
\(62\) 0 0
\(63\) 13.0301 0.796606i 1.64164 0.100363i
\(64\) 0 0
\(65\) −1.21287 0.700250i −0.150438 0.0868553i
\(66\) 0 0
\(67\) 2.14659 8.01120i 0.262248 0.978723i −0.701665 0.712507i \(-0.747560\pi\)
0.963913 0.266217i \(-0.0857736\pi\)
\(68\) 0 0
\(69\) 7.76019 0.236992i 0.934217 0.0285305i
\(70\) 0 0
\(71\) 8.05218i 0.955618i 0.878464 + 0.477809i \(0.158569\pi\)
−0.878464 + 0.477809i \(0.841431\pi\)
\(72\) 0 0
\(73\) 9.73126i 1.13896i 0.822006 + 0.569479i \(0.192855\pi\)
−0.822006 + 0.569479i \(0.807145\pi\)
\(74\) 0 0
\(75\) 3.97837 + 6.42917i 0.459383 + 0.742377i
\(76\) 0 0
\(77\) −4.59383 + 17.1444i −0.523516 + 1.95379i
\(78\) 0 0
\(79\) 11.9835 + 6.91865i 1.34824 + 0.778409i 0.988001 0.154449i \(-0.0493604\pi\)
0.360243 + 0.932858i \(0.382694\pi\)
\(80\) 0 0
\(81\) −3.51702 + 8.28436i −0.390780 + 0.920484i
\(82\) 0 0
\(83\) −0.817277 3.05012i −0.0897078 0.334794i 0.906456 0.422300i \(-0.138777\pi\)
−0.996164 + 0.0875058i \(0.972110\pi\)
\(84\) 0 0
\(85\) −1.37904 + 5.14666i −0.149578 + 0.558233i
\(86\) 0 0
\(87\) 6.96385 + 1.63987i 0.746603 + 0.175812i
\(88\) 0 0
\(89\) −1.71120 −0.181386 −0.0906932 0.995879i \(-0.528908\pi\)
−0.0906932 + 0.995879i \(0.528908\pi\)
\(90\) 0 0
\(91\) 5.40809 5.40809i 0.566922 0.566922i
\(92\) 0 0
\(93\) 9.87893 0.301697i 1.02440 0.0312845i
\(94\) 0 0
\(95\) −0.399073 0.691214i −0.0409440 0.0709171i
\(96\) 0 0
\(97\) 3.66561 6.34903i 0.372187 0.644646i −0.617715 0.786402i \(-0.711941\pi\)
0.989902 + 0.141756i \(0.0452748\pi\)
\(98\) 0 0
\(99\) −9.16451 8.10851i −0.921068 0.814936i
\(100\) 0 0
\(101\) −3.75813 14.0255i −0.373948 1.39559i −0.854876 0.518833i \(-0.826367\pi\)
0.480928 0.876760i \(-0.340300\pi\)
\(102\) 0 0
\(103\) 7.43866 + 12.8841i 0.732953 + 1.26951i 0.955616 + 0.294616i \(0.0951917\pi\)
−0.222663 + 0.974895i \(0.571475\pi\)
\(104\) 0 0
\(105\) 5.75084 1.73072i 0.561224 0.168901i
\(106\) 0 0
\(107\) −0.0974799 0.0974799i −0.00942374 0.00942374i 0.702379 0.711803i \(-0.252121\pi\)
−0.711803 + 0.702379i \(0.752121\pi\)
\(108\) 0 0
\(109\) 8.80665 8.80665i 0.843524 0.843524i −0.145791 0.989315i \(-0.546573\pi\)
0.989315 + 0.145791i \(0.0465728\pi\)
\(110\) 0 0
\(111\) 1.07060 + 3.55740i 0.101617 + 0.337654i
\(112\) 0 0
\(113\) 7.22037 4.16868i 0.679235 0.392157i −0.120331 0.992734i \(-0.538396\pi\)
0.799567 + 0.600577i \(0.205062\pi\)
\(114\) 0 0
\(115\) 3.45000 0.924424i 0.321714 0.0862030i
\(116\) 0 0
\(117\) 1.67296 + 5.00039i 0.154665 + 0.462286i
\(118\) 0 0
\(119\) −25.1993 14.5488i −2.31001 1.33369i
\(120\) 0 0
\(121\) 4.88210 2.81868i 0.443827 0.256244i
\(122\) 0 0
\(123\) 0.144221 + 4.72247i 0.0130040 + 0.425811i
\(124\) 0 0
\(125\) 5.27664 + 5.27664i 0.471957 + 0.471957i
\(126\) 0 0
\(127\) 4.84829i 0.430216i −0.976590 0.215108i \(-0.930990\pi\)
0.976590 0.215108i \(-0.0690103\pi\)
\(128\) 0 0
\(129\) −3.53651 + 15.0181i −0.311373 + 1.32227i
\(130\) 0 0
\(131\) 20.4961 + 5.49193i 1.79076 + 0.479832i 0.992474 0.122452i \(-0.0390758\pi\)
0.798282 + 0.602284i \(0.205742\pi\)
\(132\) 0 0
\(133\) 4.21019 1.12812i 0.365070 0.0978201i
\(134\) 0 0
\(135\) −0.701338 + 4.08057i −0.0603616 + 0.351200i
\(136\) 0 0
\(137\) 2.93860 5.08981i 0.251062 0.434852i −0.712757 0.701411i \(-0.752554\pi\)
0.963818 + 0.266560i \(0.0858869\pi\)
\(138\) 0 0
\(139\) −6.97384 1.86863i −0.591513 0.158496i −0.0493686 0.998781i \(-0.515721\pi\)
−0.542145 + 0.840285i \(0.682388\pi\)
\(140\) 0 0
\(141\) −3.62809 + 2.24506i −0.305540 + 0.189068i
\(142\) 0 0
\(143\) −7.16910 −0.599510
\(144\) 0 0
\(145\) 3.29131 0.273328
\(146\) 0 0
\(147\) 0.631036 + 20.6630i 0.0520470 + 1.70426i
\(148\) 0 0
\(149\) 4.34504 + 1.16425i 0.355960 + 0.0953792i 0.432367 0.901698i \(-0.357678\pi\)
−0.0764076 + 0.997077i \(0.524345\pi\)
\(150\) 0 0
\(151\) 4.23499 7.33521i 0.344638 0.596931i −0.640650 0.767833i \(-0.721335\pi\)
0.985288 + 0.170902i \(0.0546683\pi\)
\(152\) 0 0
\(153\) 16.7285 11.0717i 1.35242 0.895093i
\(154\) 0 0
\(155\) 4.39194 1.17682i 0.352769 0.0945241i
\(156\) 0 0
\(157\) 16.3507 + 4.38117i 1.30493 + 0.349655i 0.843313 0.537423i \(-0.180602\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(158\) 0 0
\(159\) 3.94738 1.18797i 0.313048 0.0942121i
\(160\) 0 0
\(161\) 19.5052i 1.53723i
\(162\) 0 0
\(163\) −13.6982 13.6982i −1.07293 1.07293i −0.997123 0.0758059i \(-0.975847\pi\)
−0.0758059 0.997123i \(-0.524153\pi\)
\(164\) 0 0
\(165\) −4.95887 2.66458i −0.386047 0.207437i
\(166\) 0 0
\(167\) 7.11859 4.10992i 0.550853 0.318035i −0.198613 0.980078i \(-0.563644\pi\)
0.749466 + 0.662043i \(0.230310\pi\)
\(168\) 0 0
\(169\) −8.58301 4.95540i −0.660232 0.381185i
\(170\) 0 0
\(171\) −0.599176 + 2.94464i −0.0458202 + 0.225183i
\(172\) 0 0
\(173\) −9.41440 + 2.52258i −0.715764 + 0.191788i −0.598281 0.801287i \(-0.704149\pi\)
−0.117483 + 0.993075i \(0.537483\pi\)
\(174\) 0 0
\(175\) −16.4497 + 9.49727i −1.24348 + 0.717926i
\(176\) 0 0
\(177\) −1.23499 + 1.31280i −0.0928277 + 0.0986761i
\(178\) 0 0
\(179\) 2.59887 2.59887i 0.194248 0.194248i −0.603281 0.797529i \(-0.706140\pi\)
0.797529 + 0.603281i \(0.206140\pi\)
\(180\) 0 0
\(181\) 6.92926 + 6.92926i 0.515048 + 0.515048i 0.916069 0.401021i \(-0.131345\pi\)
−0.401021 + 0.916069i \(0.631345\pi\)
\(182\) 0 0
\(183\) −0.811348 + 3.44546i −0.0599765 + 0.254696i
\(184\) 0 0
\(185\) 0.854536 + 1.48010i 0.0628267 + 0.108819i
\(186\) 0 0
\(187\) 7.05926 + 26.3455i 0.516224 + 1.92657i
\(188\) 0 0
\(189\) −20.5336 9.46711i −1.49360 0.688631i
\(190\) 0 0
\(191\) 6.96728 12.0677i 0.504135 0.873187i −0.495854 0.868406i \(-0.665145\pi\)
0.999989 0.00478132i \(-0.00152195\pi\)
\(192\) 0 0
\(193\) −1.34094 2.32257i −0.0965226 0.167182i 0.813720 0.581256i \(-0.197439\pi\)
−0.910243 + 0.414074i \(0.864105\pi\)
\(194\) 0 0
\(195\) 1.27643 + 2.06275i 0.0914070 + 0.147716i
\(196\) 0 0
\(197\) −14.2363 + 14.2363i −1.01430 + 1.01430i −0.0144009 + 0.999896i \(0.504584\pi\)
−0.999896 + 0.0144009i \(0.995416\pi\)
\(198\) 0 0
\(199\) −7.90078 −0.560072 −0.280036 0.959990i \(-0.590346\pi\)
−0.280036 + 0.959990i \(0.590346\pi\)
\(200\) 0 0
\(201\) −9.84299 + 10.4631i −0.694271 + 0.738012i
\(202\) 0 0
\(203\) −4.65201 + 17.3615i −0.326507 + 1.21854i
\(204\) 0 0
\(205\) 0.562559 + 2.09950i 0.0392908 + 0.146635i
\(206\) 0 0
\(207\) −12.0343 6.00048i −0.836442 0.417062i
\(208\) 0 0
\(209\) −3.53830 2.04284i −0.244749 0.141306i
\(210\) 0 0
\(211\) 3.53982 13.2108i 0.243691 0.909469i −0.730345 0.683078i \(-0.760641\pi\)
0.974037 0.226391i \(-0.0726926\pi\)
\(212\) 0 0
\(213\) 6.60145 12.2855i 0.452324 0.841789i
\(214\) 0 0
\(215\) 7.09799i 0.484079i
\(216\) 0 0
\(217\) 24.8307i 1.68562i
\(218\) 0 0
\(219\) 7.97802 14.8473i 0.539105 1.00329i
\(220\) 0 0
\(221\) 3.04186 11.3524i 0.204618 0.763643i
\(222\) 0 0
\(223\) −24.3372 14.0511i −1.62974 0.940931i −0.984169 0.177230i \(-0.943286\pi\)
−0.645570 0.763701i \(-0.723380\pi\)
\(224\) 0 0
\(225\) −0.799096 13.0708i −0.0532731 0.871388i
\(226\) 0 0
\(227\) −0.131295 0.489998i −0.00871433 0.0325223i 0.961432 0.275044i \(-0.0886923\pi\)
−0.970146 + 0.242521i \(0.922026\pi\)
\(228\) 0 0
\(229\) 3.91690 14.6181i 0.258836 0.965988i −0.707080 0.707133i \(-0.749988\pi\)
0.965916 0.258855i \(-0.0833452\pi\)
\(230\) 0 0
\(231\) 21.0646 22.3917i 1.38595 1.47326i
\(232\) 0 0
\(233\) −15.4968 −1.01523 −0.507614 0.861584i \(-0.669473\pi\)
−0.507614 + 0.861584i \(0.669473\pi\)
\(234\) 0 0
\(235\) −1.38791 + 1.38791i −0.0905371 + 0.0905371i
\(236\) 0 0
\(237\) −12.6114 20.3805i −0.819202 1.32385i
\(238\) 0 0
\(239\) −7.61709 13.1932i −0.492709 0.853397i 0.507256 0.861796i \(-0.330660\pi\)
−0.999965 + 0.00839869i \(0.997327\pi\)
\(240\) 0 0
\(241\) −9.10697 + 15.7737i −0.586632 + 1.01608i 0.408038 + 0.912965i \(0.366213\pi\)
−0.994670 + 0.103111i \(0.967120\pi\)
\(242\) 0 0
\(243\) 12.1578 9.75637i 0.779926 0.625871i
\(244\) 0 0
\(245\) 2.46146 + 9.18628i 0.157257 + 0.586890i
\(246\) 0 0
\(247\) 0.880265 + 1.52466i 0.0560099 + 0.0970121i
\(248\) 0 0
\(249\) −1.25364 + 5.32371i −0.0794463 + 0.337376i
\(250\) 0 0
\(251\) 2.18418 + 2.18418i 0.137864 + 0.137864i 0.772671 0.634807i \(-0.218920\pi\)
−0.634807 + 0.772671i \(0.718920\pi\)
\(252\) 0 0
\(253\) 12.9283 12.9283i 0.812796 0.812796i
\(254\) 0 0
\(255\) 6.32346 6.72185i 0.395990 0.420939i
\(256\) 0 0
\(257\) 16.6777 9.62887i 1.04033 0.600633i 0.120400 0.992725i \(-0.461582\pi\)
0.919926 + 0.392093i \(0.128249\pi\)
\(258\) 0 0
\(259\) −9.01529 + 2.41564i −0.560183 + 0.150101i
\(260\) 0 0
\(261\) −9.28058 8.21121i −0.574453 0.508261i
\(262\) 0 0
\(263\) 22.8254 + 13.1782i 1.40747 + 0.812605i 0.995144 0.0984300i \(-0.0313821\pi\)
0.412329 + 0.911035i \(0.364715\pi\)
\(264\) 0 0
\(265\) 1.64235 0.948214i 0.100889 0.0582483i
\(266\) 0 0
\(267\) 2.61083 + 1.40290i 0.159781 + 0.0858559i
\(268\) 0 0
\(269\) 0.605506 + 0.605506i 0.0369184 + 0.0369184i 0.725325 0.688407i \(-0.241690\pi\)
−0.688407 + 0.725325i \(0.741690\pi\)
\(270\) 0 0
\(271\) 19.1084i 1.16075i 0.814349 + 0.580376i \(0.197094\pi\)
−0.814349 + 0.580376i \(0.802906\pi\)
\(272\) 0 0
\(273\) −12.6851 + 3.81759i −0.767735 + 0.231051i
\(274\) 0 0
\(275\) 17.1980 + 4.60819i 1.03708 + 0.277884i
\(276\) 0 0
\(277\) 6.82191 1.82792i 0.409889 0.109829i −0.0479819 0.998848i \(-0.515279\pi\)
0.457871 + 0.889019i \(0.348612\pi\)
\(278\) 0 0
\(279\) −15.3200 7.63877i −0.917183 0.457321i
\(280\) 0 0
\(281\) 11.8490 20.5230i 0.706849 1.22430i −0.259171 0.965831i \(-0.583449\pi\)
0.966020 0.258467i \(-0.0832174\pi\)
\(282\) 0 0
\(283\) −0.727099 0.194826i −0.0432215 0.0115812i 0.237143 0.971475i \(-0.423789\pi\)
−0.280365 + 0.959893i \(0.590456\pi\)
\(284\) 0 0
\(285\) 0.0421989 + 1.38178i 0.00249965 + 0.0818498i
\(286\) 0 0
\(287\) −11.8699 −0.700659
\(288\) 0 0
\(289\) −27.7137 −1.63022
\(290\) 0 0
\(291\) −10.7979 + 6.68175i −0.632985 + 0.391691i
\(292\) 0 0
\(293\) 19.8198 + 5.31070i 1.15789 + 0.310255i 0.786121 0.618072i \(-0.212086\pi\)
0.371765 + 0.928327i \(0.378753\pi\)
\(294\) 0 0
\(295\) −0.414592 + 0.718095i −0.0241385 + 0.0418091i
\(296\) 0 0
\(297\) 7.33500 + 19.8848i 0.425620 + 1.15384i
\(298\) 0 0
\(299\) −7.60993 + 2.03907i −0.440093 + 0.117923i
\(300\) 0 0
\(301\) −37.4417 10.0325i −2.15810 0.578262i
\(302\) 0 0
\(303\) −5.76469 + 24.4803i −0.331173 + 1.40636i
\(304\) 0 0
\(305\) 1.62842i 0.0932432i
\(306\) 0 0
\(307\) 15.3450 + 15.3450i 0.875783 + 0.875783i 0.993095 0.117312i \(-0.0374277\pi\)
−0.117312 + 0.993095i \(0.537428\pi\)
\(308\) 0 0
\(309\) −0.786581 25.7563i −0.0447470 1.46522i
\(310\) 0 0
\(311\) −0.576605 + 0.332903i −0.0326963 + 0.0188772i −0.516259 0.856432i \(-0.672676\pi\)
0.483563 + 0.875310i \(0.339342\pi\)
\(312\) 0 0
\(313\) −14.3283 8.27244i −0.809882 0.467586i 0.0370327 0.999314i \(-0.488209\pi\)
−0.846915 + 0.531728i \(0.821543\pi\)
\(314\) 0 0
\(315\) −10.1932 2.07411i −0.574320 0.116863i
\(316\) 0 0
\(317\) −6.56570 + 1.75927i −0.368767 + 0.0988107i −0.438443 0.898759i \(-0.644470\pi\)
0.0696766 + 0.997570i \(0.477803\pi\)
\(318\) 0 0
\(319\) 14.5909 8.42404i 0.816931 0.471656i
\(320\) 0 0
\(321\) 0.0688113 + 0.228646i 0.00384067 + 0.0127618i
\(322\) 0 0
\(323\) 4.73616 4.73616i 0.263527 0.263527i
\(324\) 0 0
\(325\) −5.42499 5.42499i −0.300924 0.300924i
\(326\) 0 0
\(327\) −20.6566 + 6.21664i −1.14231 + 0.343781i
\(328\) 0 0
\(329\) −5.35946 9.28286i −0.295477 0.511781i
\(330\) 0 0
\(331\) 2.51757 + 9.39568i 0.138378 + 0.516434i 0.999961 + 0.00881711i \(0.00280661\pi\)
−0.861583 + 0.507616i \(0.830527\pi\)
\(332\) 0 0
\(333\) 1.28302 6.30538i 0.0703090 0.345532i
\(334\) 0 0
\(335\) −3.30434 + 5.72328i −0.180535 + 0.312696i
\(336\) 0 0
\(337\) 13.5580 + 23.4832i 0.738553 + 1.27921i 0.953147 + 0.302509i \(0.0978241\pi\)
−0.214593 + 0.976704i \(0.568843\pi\)
\(338\) 0 0
\(339\) −14.4340 + 0.440806i −0.783948 + 0.0239413i
\(340\) 0 0
\(341\) 16.4581 16.4581i 0.891254 0.891254i
\(342\) 0 0
\(343\) −21.4761 −1.15960
\(344\) 0 0
\(345\) −6.02166 1.41800i −0.324195 0.0763425i
\(346\) 0 0
\(347\) 8.08347 30.1679i 0.433944 1.61950i −0.309638 0.950854i \(-0.600208\pi\)
0.743582 0.668645i \(-0.233125\pi\)
\(348\) 0 0
\(349\) 8.48634 + 31.6714i 0.454263 + 1.69533i 0.690245 + 0.723576i \(0.257503\pi\)
−0.235982 + 0.971757i \(0.575831\pi\)
\(350\) 0 0
\(351\) 1.54700 9.00083i 0.0825726 0.480429i
\(352\) 0 0
\(353\) −3.48989 2.01489i −0.185748 0.107242i 0.404243 0.914652i \(-0.367535\pi\)
−0.589990 + 0.807410i \(0.700869\pi\)
\(354\) 0 0
\(355\) 1.66062 6.19752i 0.0881366 0.328930i
\(356\) 0 0
\(357\) 26.5198 + 42.8569i 1.40358 + 2.26823i
\(358\) 0 0
\(359\) 14.8043i 0.781342i −0.920530 0.390671i \(-0.872243\pi\)
0.920530 0.390671i \(-0.127757\pi\)
\(360\) 0 0
\(361\) 17.9967i 0.947193i
\(362\) 0 0
\(363\) −9.75965 + 0.298054i −0.512249 + 0.0156438i
\(364\) 0 0
\(365\) 2.00690 7.48986i 0.105046 0.392037i
\(366\) 0 0
\(367\) −2.66934 1.54114i −0.139338 0.0804470i 0.428710 0.903442i \(-0.358968\pi\)
−0.568049 + 0.822995i \(0.692301\pi\)
\(368\) 0 0
\(369\) 3.65160 7.32348i 0.190094 0.381245i
\(370\) 0 0
\(371\) 2.68045 + 10.0036i 0.139162 + 0.519361i
\(372\) 0 0
\(373\) −7.57804 + 28.2816i −0.392376 + 1.46437i 0.433828 + 0.900996i \(0.357163\pi\)
−0.826204 + 0.563372i \(0.809504\pi\)
\(374\) 0 0
\(375\) −3.72479 12.3767i −0.192347 0.639131i
\(376\) 0 0
\(377\) −7.25990 −0.373904
\(378\) 0 0
\(379\) 13.0654 13.0654i 0.671124 0.671124i −0.286851 0.957975i \(-0.592608\pi\)
0.957975 + 0.286851i \(0.0926085\pi\)
\(380\) 0 0
\(381\) −3.97479 + 7.39721i −0.203635 + 0.378970i
\(382\) 0 0
\(383\) 1.66394 + 2.88203i 0.0850235 + 0.147265i 0.905401 0.424557i \(-0.139570\pi\)
−0.820378 + 0.571822i \(0.806237\pi\)
\(384\) 0 0
\(385\) 7.07147 12.2481i 0.360396 0.624223i
\(386\) 0 0
\(387\) 17.7082 20.0144i 0.900157 1.01739i
\(388\) 0 0
\(389\) −1.77451 6.62255i −0.0899711 0.335777i 0.906238 0.422768i \(-0.138941\pi\)
−0.996209 + 0.0869912i \(0.972275\pi\)
\(390\) 0 0
\(391\) 14.9867 + 25.9577i 0.757908 + 1.31274i
\(392\) 0 0
\(393\) −26.7693 25.1827i −1.35033 1.27030i
\(394\) 0 0
\(395\) −7.79645 7.79645i −0.392282 0.392282i
\(396\) 0 0
\(397\) 2.33820 2.33820i 0.117351 0.117351i −0.645993 0.763344i \(-0.723556\pi\)
0.763344 + 0.645993i \(0.223556\pi\)
\(398\) 0 0
\(399\) −7.34851 1.73045i −0.367886 0.0866307i
\(400\) 0 0
\(401\) 3.32787 1.92135i 0.166186 0.0959474i −0.414600 0.910004i \(-0.636079\pi\)
0.580786 + 0.814056i \(0.302745\pi\)
\(402\) 0 0
\(403\) −9.68764 + 2.59579i −0.482575 + 0.129306i
\(404\) 0 0
\(405\) 4.41545 5.65090i 0.219405 0.280795i
\(406\) 0 0
\(407\) 7.57656 + 4.37433i 0.375556 + 0.216828i
\(408\) 0 0
\(409\) −4.36888 + 2.52237i −0.216027 + 0.124723i −0.604109 0.796901i \(-0.706471\pi\)
0.388082 + 0.921625i \(0.373138\pi\)
\(410\) 0 0
\(411\) −8.65634 + 5.35654i −0.426986 + 0.264219i
\(412\) 0 0
\(413\) −3.20193 3.20193i −0.157557 0.157557i
\(414\) 0 0
\(415\) 2.51613i 0.123512i
\(416\) 0 0
\(417\) 9.10827 + 8.56844i 0.446034 + 0.419598i
\(418\) 0 0
\(419\) −21.3504 5.72083i −1.04304 0.279481i −0.303665 0.952779i \(-0.598210\pi\)
−0.739371 + 0.673298i \(0.764877\pi\)
\(420\) 0 0
\(421\) −7.95298 + 2.13099i −0.387604 + 0.103858i −0.447358 0.894355i \(-0.647635\pi\)
0.0597538 + 0.998213i \(0.480968\pi\)
\(422\) 0 0
\(423\) 7.37608 0.450943i 0.358637 0.0219256i
\(424\) 0 0
\(425\) −14.5943 + 25.2780i −0.707926 + 1.22616i
\(426\) 0 0
\(427\) −8.58988 2.30165i −0.415693 0.111385i
\(428\) 0 0
\(429\) 10.9382 + 5.87747i 0.528099 + 0.283767i
\(430\) 0 0
\(431\) −1.08094 −0.0520671 −0.0260336 0.999661i \(-0.508288\pi\)
−0.0260336 + 0.999661i \(0.508288\pi\)
\(432\) 0 0
\(433\) −15.5307 −0.746359 −0.373179 0.927759i \(-0.621732\pi\)
−0.373179 + 0.927759i \(0.621732\pi\)
\(434\) 0 0
\(435\) −5.02167 2.69833i −0.240771 0.129375i
\(436\) 0 0
\(437\) −4.33690 1.16207i −0.207462 0.0555893i
\(438\) 0 0
\(439\) 2.26321 3.91999i 0.108017 0.187091i −0.806950 0.590620i \(-0.798883\pi\)
0.914967 + 0.403529i \(0.132217\pi\)
\(440\) 0 0
\(441\) 15.9774 32.0437i 0.760831 1.52589i
\(442\) 0 0
\(443\) 25.4883 6.82958i 1.21099 0.324483i 0.403838 0.914830i \(-0.367676\pi\)
0.807149 + 0.590347i \(0.201009\pi\)
\(444\) 0 0
\(445\) 1.31706 + 0.352904i 0.0624345 + 0.0167293i
\(446\) 0 0
\(447\) −5.67490 5.33856i −0.268414 0.252505i
\(448\) 0 0
\(449\) 5.94688i 0.280650i 0.990105 + 0.140325i \(0.0448148\pi\)
−0.990105 + 0.140325i \(0.955185\pi\)
\(450\) 0 0
\(451\) 7.86752 + 7.86752i 0.370467 + 0.370467i
\(452\) 0 0
\(453\) −12.4751 + 7.71961i −0.586133 + 0.362699i
\(454\) 0 0
\(455\) −5.27777 + 3.04712i −0.247426 + 0.142851i
\(456\) 0 0
\(457\) 18.2318 + 10.5261i 0.852846 + 0.492391i 0.861610 0.507571i \(-0.169456\pi\)
−0.00876413 + 0.999962i \(0.502790\pi\)
\(458\) 0 0
\(459\) −34.6002 + 3.17791i −1.61500 + 0.148332i
\(460\) 0 0
\(461\) 38.2603 10.2518i 1.78196 0.477475i 0.791021 0.611788i \(-0.209550\pi\)
0.990939 + 0.134314i \(0.0428829\pi\)
\(462\) 0 0
\(463\) 9.98020 5.76207i 0.463819 0.267786i −0.249829 0.968290i \(-0.580375\pi\)
0.713649 + 0.700504i \(0.247041\pi\)
\(464\) 0 0
\(465\) −7.66573 1.80515i −0.355490 0.0837118i
\(466\) 0 0
\(467\) −25.1476 + 25.1476i −1.16369 + 1.16369i −0.180032 + 0.983661i \(0.557620\pi\)
−0.983661 + 0.180032i \(0.942380\pi\)
\(468\) 0 0
\(469\) −25.5197 25.5197i −1.17839 1.17839i
\(470\) 0 0
\(471\) −21.3551 20.0894i −0.983990 0.925671i
\(472\) 0 0
\(473\) 18.1672 + 31.4664i 0.835327 + 1.44683i
\(474\) 0 0
\(475\) −1.13164 4.22335i −0.0519233 0.193780i
\(476\) 0 0
\(477\) −6.99660 1.42367i −0.320352 0.0651853i
\(478\) 0 0
\(479\) 2.64784 4.58619i 0.120983 0.209548i −0.799173 0.601101i \(-0.794729\pi\)
0.920155 + 0.391553i \(0.128062\pi\)
\(480\) 0 0
\(481\) −1.88491 3.26477i −0.0859447 0.148861i
\(482\) 0 0
\(483\) 15.9911 29.7598i 0.727618 1.35412i
\(484\) 0 0
\(485\) −4.13069 + 4.13069i −0.187565 + 0.187565i
\(486\) 0 0
\(487\) −1.85543 −0.0840775 −0.0420387 0.999116i \(-0.513385\pi\)
−0.0420387 + 0.999116i \(0.513385\pi\)
\(488\) 0 0
\(489\) 9.66962 + 32.1302i 0.437275 + 1.45298i
\(490\) 0 0
\(491\) 0.936497 3.49505i 0.0422635 0.157730i −0.941569 0.336820i \(-0.890649\pi\)
0.983833 + 0.179090i \(0.0573154\pi\)
\(492\) 0 0
\(493\) 7.14866 + 26.6792i 0.321960 + 1.20157i
\(494\) 0 0
\(495\) 5.38141 + 8.13090i 0.241877 + 0.365457i
\(496\) 0 0
\(497\) 30.3446 + 17.5194i 1.36114 + 0.785854i
\(498\) 0 0
\(499\) −3.22216 + 12.0253i −0.144244 + 0.538325i 0.855544 + 0.517730i \(0.173223\pi\)
−0.999788 + 0.0205953i \(0.993444\pi\)
\(500\) 0 0
\(501\) −14.2305 + 0.434592i −0.635774 + 0.0194162i
\(502\) 0 0
\(503\) 16.6233i 0.741198i 0.928793 + 0.370599i \(0.120848\pi\)
−0.928793 + 0.370599i \(0.879152\pi\)
\(504\) 0 0
\(505\) 11.5701i 0.514862i
\(506\) 0 0
\(507\) 9.03281 + 14.5973i 0.401161 + 0.648288i
\(508\) 0 0
\(509\) 4.04848 15.1091i 0.179446 0.669700i −0.816306 0.577620i \(-0.803982\pi\)
0.995752 0.0920802i \(-0.0293516\pi\)
\(510\) 0 0
\(511\) 36.6722 + 21.1727i 1.62228 + 0.936624i
\(512\) 0 0
\(513\) 3.32830 4.00153i 0.146948 0.176672i
\(514\) 0 0
\(515\) −3.06819 11.4506i −0.135200 0.504575i
\(516\) 0 0
\(517\) −2.60048 + 9.70511i −0.114369 + 0.426830i
\(518\) 0 0
\(519\) 16.4320 + 3.86945i 0.721285 + 0.169850i
\(520\) 0 0
\(521\) 40.4461 1.77198 0.885988 0.463709i \(-0.153482\pi\)
0.885988 + 0.463709i \(0.153482\pi\)
\(522\) 0 0
\(523\) −7.69126 + 7.69126i −0.336315 + 0.336315i −0.854979 0.518663i \(-0.826430\pi\)
0.518663 + 0.854979i \(0.326430\pi\)
\(524\) 0 0
\(525\) 32.8842 1.00426i 1.43518 0.0438296i
\(526\) 0 0
\(527\) 19.0784 + 33.0448i 0.831069 + 1.43945i
\(528\) 0 0
\(529\) −1.45387 + 2.51818i −0.0632119 + 0.109486i
\(530\) 0 0
\(531\) 2.96055 0.990498i 0.128477 0.0429840i
\(532\) 0 0
\(533\) −1.24088 4.63102i −0.0537484 0.200592i
\(534\) 0 0
\(535\) 0.0549239 + 0.0951309i 0.00237457 + 0.00411287i
\(536\) 0 0
\(537\) −6.09583 + 1.83455i −0.263054 + 0.0791666i
\(538\) 0 0
\(539\) 34.4241 + 34.4241i 1.48275 + 1.48275i
\(540\) 0 0
\(541\) −17.0176 + 17.0176i −0.731643 + 0.731643i −0.970945 0.239302i \(-0.923081\pi\)
0.239302 + 0.970945i \(0.423081\pi\)
\(542\) 0 0
\(543\) −4.89138 16.2531i −0.209909 0.697486i
\(544\) 0 0
\(545\) −8.59443 + 4.96200i −0.368145 + 0.212549i
\(546\) 0 0
\(547\) −21.5530 + 5.77510i −0.921539 + 0.246926i −0.688243 0.725480i \(-0.741618\pi\)
−0.233296 + 0.972406i \(0.574951\pi\)
\(548\) 0 0
\(549\) 4.06261 4.59170i 0.173388 0.195969i
\(550\) 0 0
\(551\) −3.58311 2.06871i −0.152645 0.0881299i
\(552\) 0 0
\(553\) 52.1457 30.1064i 2.21746 1.28025i
\(554\) 0 0
\(555\) −0.0903606 2.95882i −0.00383559 0.125595i
\(556\) 0 0
\(557\) 11.6516 + 11.6516i 0.493695 + 0.493695i 0.909468 0.415773i \(-0.136489\pi\)
−0.415773 + 0.909468i \(0.636489\pi\)
\(558\) 0 0
\(559\) 15.6566i 0.662203i
\(560\) 0 0
\(561\) 10.8284 45.9837i 0.457174 1.94143i
\(562\) 0 0
\(563\) 4.88249 + 1.30826i 0.205772 + 0.0551365i 0.360233 0.932862i \(-0.382697\pi\)
−0.154460 + 0.987999i \(0.549364\pi\)
\(564\) 0 0
\(565\) −6.41702 + 1.71944i −0.269966 + 0.0723372i
\(566\) 0 0
\(567\) 23.5674 + 31.2785i 0.989737 + 1.31357i
\(568\) 0 0
\(569\) −2.79764 + 4.84565i −0.117283 + 0.203140i −0.918690 0.394979i \(-0.870752\pi\)
0.801407 + 0.598119i \(0.204085\pi\)
\(570\) 0 0
\(571\) −8.65808 2.31993i −0.362329 0.0970859i 0.0730613 0.997327i \(-0.476723\pi\)
−0.435391 + 0.900242i \(0.643390\pi\)
\(572\) 0 0
\(573\) −20.5237 + 12.7001i −0.857392 + 0.530554i
\(574\) 0 0
\(575\) 19.5662 0.815966
\(576\) 0 0
\(577\) 16.6893 0.694785 0.347393 0.937720i \(-0.387067\pi\)
0.347393 + 0.937720i \(0.387067\pi\)
\(578\) 0 0
\(579\) 0.141794 + 4.64297i 0.00589274 + 0.192955i
\(580\) 0 0
\(581\) −13.2725 3.55636i −0.550637 0.147543i
\(582\) 0 0
\(583\) 4.85387 8.40714i 0.201027 0.348188i
\(584\) 0 0
\(585\) −0.256384 4.19367i −0.0106002 0.173387i
\(586\) 0 0
\(587\) −5.02128 + 1.34545i −0.207250 + 0.0555325i −0.360950 0.932585i \(-0.617548\pi\)
0.153700 + 0.988118i \(0.450881\pi\)
\(588\) 0 0
\(589\) −5.52099 1.47934i −0.227488 0.0609553i
\(590\) 0 0
\(591\) 33.3923 10.0495i 1.37358 0.413380i
\(592\) 0 0
\(593\) 44.7927i 1.83942i −0.392602 0.919708i \(-0.628425\pi\)
0.392602 0.919708i \(-0.371575\pi\)
\(594\) 0 0
\(595\) 16.3947 + 16.3947i 0.672116 + 0.672116i
\(596\) 0 0
\(597\) 12.0545 + 6.47733i 0.493358 + 0.265100i
\(598\) 0 0
\(599\) 27.1165 15.6557i 1.10795 0.639674i 0.169651 0.985504i \(-0.445736\pi\)
0.938297 + 0.345830i \(0.112403\pi\)
\(600\) 0 0
\(601\) −15.4248 8.90549i −0.629189 0.363262i 0.151249 0.988496i \(-0.451670\pi\)
−0.780438 + 0.625233i \(0.785004\pi\)
\(602\) 0 0
\(603\) 23.5958 7.89436i 0.960897 0.321483i
\(604\) 0 0
\(605\) −4.33891 + 1.16261i −0.176402 + 0.0472667i
\(606\) 0 0
\(607\) 29.3159 16.9255i 1.18989 0.686986i 0.231612 0.972808i \(-0.425600\pi\)
0.958283 + 0.285823i \(0.0922668\pi\)
\(608\) 0 0
\(609\) 21.3313 22.6753i 0.864389 0.918848i
\(610\) 0 0
\(611\) 3.06141 3.06141i 0.123852 0.123852i
\(612\) 0 0
\(613\) −11.3734 11.3734i −0.459367 0.459367i 0.439081 0.898448i \(-0.355304\pi\)
−0.898448 + 0.439081i \(0.855304\pi\)
\(614\) 0 0
\(615\) 0.862923 3.66448i 0.0347964 0.147766i
\(616\) 0 0
\(617\) −18.0269 31.2236i −0.725738 1.25701i −0.958670 0.284521i \(-0.908165\pi\)
0.232932 0.972493i \(-0.425168\pi\)
\(618\) 0 0
\(619\) 4.29280 + 16.0209i 0.172542 + 0.643936i 0.996957 + 0.0779503i \(0.0248375\pi\)
−0.824415 + 0.565986i \(0.808496\pi\)
\(620\) 0 0
\(621\) 13.4418 + 19.0213i 0.539400 + 0.763298i
\(622\) 0 0
\(623\) −3.72312 + 6.44863i −0.149163 + 0.258359i
\(624\) 0 0
\(625\) 7.93964 + 13.7519i 0.317585 + 0.550074i
\(626\) 0 0
\(627\) 3.72372 + 6.01764i 0.148711 + 0.240322i
\(628\) 0 0
\(629\) −10.1416 + 10.1416i −0.404371 + 0.404371i
\(630\) 0 0
\(631\) −24.4330 −0.972664 −0.486332 0.873774i \(-0.661665\pi\)
−0.486332 + 0.873774i \(0.661665\pi\)
\(632\) 0 0
\(633\) −16.2315 + 17.2541i −0.645144 + 0.685790i
\(634\) 0 0
\(635\) −0.999874 + 3.73158i −0.0396788 + 0.148083i
\(636\) 0 0
\(637\) −5.42943 20.2629i −0.215122 0.802845i
\(638\) 0 0
\(639\) −20.1441 + 13.3323i −0.796890 + 0.527420i
\(640\) 0 0
\(641\) −40.0952 23.1490i −1.58366 0.914329i −0.994318 0.106448i \(-0.966052\pi\)
−0.589346 0.807881i \(-0.700615\pi\)
\(642\) 0 0
\(643\) 2.83678 10.5870i 0.111872 0.417511i −0.887162 0.461458i \(-0.847326\pi\)
0.999034 + 0.0439466i \(0.0139932\pi\)
\(644\) 0 0
\(645\) 5.81918 10.8297i 0.229130 0.426418i
\(646\) 0 0
\(647\) 10.0479i 0.395025i 0.980300 + 0.197512i \(0.0632863\pi\)
−0.980300 + 0.197512i \(0.936714\pi\)
\(648\) 0 0
\(649\) 4.24456i 0.166614i
\(650\) 0 0
\(651\) 20.3570 37.8851i 0.797855 1.48483i
\(652\) 0 0
\(653\) −6.85777 + 25.5935i −0.268365 + 1.00155i 0.691793 + 0.722096i \(0.256821\pi\)
−0.960158 + 0.279457i \(0.909846\pi\)
\(654\) 0 0
\(655\) −14.6427 8.45394i −0.572136 0.330323i
\(656\) 0 0
\(657\) −24.3447 + 16.1125i −0.949778 + 0.628608i
\(658\) 0 0
\(659\) −1.81196 6.76233i −0.0705840 0.263423i 0.921612 0.388113i \(-0.126873\pi\)
−0.992196 + 0.124690i \(0.960206\pi\)
\(660\) 0 0
\(661\) −5.40993 + 20.1902i −0.210422 + 0.785306i 0.777306 + 0.629123i \(0.216586\pi\)
−0.987728 + 0.156183i \(0.950081\pi\)
\(662\) 0 0
\(663\) −13.9481 + 14.8269i −0.541701 + 0.575830i
\(664\) 0 0
\(665\) −3.47311 −0.134681
\(666\) 0 0
\(667\) 13.0920 13.0920i 0.506926 0.506926i
\(668\) 0 0
\(669\) 25.6126 + 41.3907i 0.990240 + 1.60026i
\(670\) 0 0
\(671\) 4.16791 + 7.21904i 0.160901 + 0.278688i
\(672\) 0 0
\(673\) 3.86200 6.68918i 0.148869 0.257849i −0.781941 0.623353i \(-0.785770\pi\)
0.930810 + 0.365504i \(0.119103\pi\)
\(674\) 0 0
\(675\) −9.49670 + 20.5978i −0.365528 + 0.792808i
\(676\) 0 0
\(677\) 2.04220 + 7.62160i 0.0784882 + 0.292922i 0.994002 0.109366i \(-0.0348819\pi\)
−0.915513 + 0.402287i \(0.868215\pi\)
\(678\) 0 0
\(679\) −15.9508 27.6277i −0.612137 1.06025i
\(680\) 0 0
\(681\) −0.201396 + 0.855248i −0.00771752 + 0.0327732i
\(682\) 0 0
\(683\) −23.0318 23.0318i −0.881288 0.881288i 0.112378 0.993666i \(-0.464153\pi\)
−0.993666 + 0.112378i \(0.964153\pi\)
\(684\) 0 0
\(685\) −3.31144 + 3.31144i −0.126524 + 0.126524i
\(686\) 0 0
\(687\) −17.9605 + 19.0921i −0.685237 + 0.728409i
\(688\) 0 0
\(689\) −3.62267 + 2.09155i −0.138013 + 0.0796816i
\(690\) 0 0
\(691\) −24.8749 + 6.66520i −0.946285 + 0.253556i −0.698785 0.715332i \(-0.746276\pi\)
−0.247500 + 0.968888i \(0.579609\pi\)
\(692\) 0 0
\(693\) −50.4964 + 16.8944i −1.91820 + 0.641764i
\(694\) 0 0
\(695\) 4.98218 + 2.87646i 0.188985 + 0.109111i
\(696\) 0 0
\(697\) −15.7965 + 9.12014i −0.598337 + 0.345450i
\(698\) 0 0
\(699\) 23.6440 + 12.7048i 0.894299 + 0.480540i
\(700\) 0 0
\(701\) −35.0396 35.0396i −1.32343 1.32343i −0.910983 0.412443i \(-0.864675\pi\)
−0.412443 0.910983i \(-0.635325\pi\)
\(702\) 0 0
\(703\) 2.14843i 0.0810295i
\(704\) 0 0
\(705\) 3.25543 0.979727i 0.122607 0.0368987i
\(706\) 0 0
\(707\) −61.0318 16.3534i −2.29534 0.615034i
\(708\) 0 0
\(709\) 45.5722 12.2110i 1.71150 0.458595i 0.735710 0.677297i \(-0.236849\pi\)
0.975792 + 0.218702i \(0.0701821\pi\)
\(710\) 0 0
\(711\) 2.53314 + 41.4345i 0.0950000 + 1.55392i
\(712\) 0 0
\(713\) 12.7890 22.1512i 0.478951 0.829568i
\(714\) 0 0
\(715\) 5.51784 + 1.47850i 0.206356 + 0.0552928i
\(716\) 0 0
\(717\) 0.805449 + 26.3741i 0.0300801 + 0.984959i
\(718\) 0 0
\(719\) 26.0582 0.971806 0.485903 0.874013i \(-0.338491\pi\)
0.485903 + 0.874013i \(0.338491\pi\)
\(720\) 0 0
\(721\) 64.7383 2.41098
\(722\) 0 0
\(723\) 26.8267 16.6004i 0.997695 0.617374i
\(724\) 0 0
\(725\) 17.4158 + 4.66655i 0.646807 + 0.173311i
\(726\) 0 0
\(727\) 4.96698 8.60307i 0.184215 0.319070i −0.759097 0.650978i \(-0.774359\pi\)
0.943312 + 0.331908i \(0.107692\pi\)
\(728\) 0 0
\(729\) −26.5483 + 4.91824i −0.983269 + 0.182157i
\(730\) 0 0
\(731\) −57.5359 + 15.4167i −2.12804 + 0.570207i
\(732\) 0 0
\(733\) −12.7081 3.40512i −0.469384 0.125771i 0.0163712 0.999866i \(-0.494789\pi\)
−0.485755 + 0.874095i \(0.661455\pi\)
\(734\) 0 0
\(735\) 3.77569 16.0338i 0.139269 0.591417i
\(736\) 0 0
\(737\) 33.8295i 1.24613i
\(738\) 0 0
\(739\) 32.6637 + 32.6637i 1.20155 + 1.20155i 0.973694 + 0.227861i \(0.0731732\pi\)
0.227861 + 0.973694i \(0.426827\pi\)
\(740\) 0 0
\(741\) −0.0930813 3.04791i −0.00341943 0.111968i
\(742\) 0 0
\(743\) 8.76936 5.06299i 0.321717 0.185743i −0.330441 0.943827i \(-0.607197\pi\)
0.652157 + 0.758084i \(0.273864\pi\)
\(744\) 0 0
\(745\) −3.10414 1.79218i −0.113727 0.0656603i
\(746\) 0 0
\(747\) 6.27728 7.09480i 0.229674 0.259585i
\(748\) 0 0
\(749\) −0.579443 + 0.155261i −0.0211724 + 0.00567312i
\(750\) 0 0
\(751\) −22.6187 + 13.0589i −0.825368 + 0.476526i −0.852264 0.523112i \(-0.824771\pi\)
0.0268964 + 0.999638i \(0.491438\pi\)
\(752\) 0 0
\(753\) −1.54182 5.12315i −0.0561870 0.186698i
\(754\) 0 0
\(755\) −4.77230 + 4.77230i −0.173682 + 0.173682i
\(756\) 0 0
\(757\) 2.39808 + 2.39808i 0.0871596 + 0.0871596i 0.749342 0.662183i \(-0.230370\pi\)
−0.662183 + 0.749342i \(0.730370\pi\)
\(758\) 0 0
\(759\) −30.3243 + 9.12612i −1.10070 + 0.331257i
\(760\) 0 0
\(761\) 23.1857 + 40.1589i 0.840482 + 1.45576i 0.889488 + 0.456959i \(0.151061\pi\)
−0.0490055 + 0.998799i \(0.515605\pi\)
\(762\) 0 0
\(763\) −14.0268 52.3487i −0.507804 1.89515i
\(764\) 0 0
\(765\) −15.1587 + 5.07159i −0.548065 + 0.183364i
\(766\) 0 0
\(767\) 0.914499 1.58396i 0.0330206 0.0571934i
\(768\) 0 0
\(769\) −7.38255 12.7870i −0.266222 0.461109i 0.701661 0.712511i \(-0.252442\pi\)
−0.967883 + 0.251401i \(0.919109\pi\)
\(770\) 0 0
\(771\) −33.3398 + 1.01818i −1.20071 + 0.0366688i
\(772\) 0 0
\(773\) −22.1409 + 22.1409i −0.796353 + 0.796353i −0.982518 0.186165i \(-0.940394\pi\)
0.186165 + 0.982518i \(0.440394\pi\)
\(774\) 0 0
\(775\) 24.9083 0.894731
\(776\) 0 0
\(777\) 15.7354 + 3.70541i 0.564504 + 0.132931i
\(778\) 0 0
\(779\) 0.707177 2.63922i 0.0253372 0.0945599i
\(780\) 0 0
\(781\) −8.50064 31.7248i −0.304177 1.13520i
\(782\) 0 0
\(783\) 7.42790 + 20.1367i 0.265451 + 0.719626i
\(784\) 0 0
\(785\) −11.6811 6.74410i −0.416917 0.240707i
\(786\) 0 0
\(787\) −1.12039 + 4.18136i −0.0399377 + 0.149050i −0.983015 0.183523i \(-0.941250\pi\)
0.943078 + 0.332572i \(0.107917\pi\)
\(788\) 0 0
\(789\) −24.0215 38.8195i −0.855190 1.38201i
\(790\) 0 0
\(791\) 36.2799i 1.28996i
\(792\) 0 0
\(793\) 3.59194i 0.127553i
\(794\) 0 0
\(795\) −3.28318 + 0.100266i −0.116442 + 0.00355608i
\(796\) 0 0
\(797\) 13.8032 51.5141i 0.488933 1.82472i −0.0727237 0.997352i \(-0.523169\pi\)
0.561657 0.827370i \(-0.310164\pi\)
\(798\) 0 0
\(799\) −14.2648 8.23579i −0.504652 0.291361i
\(800\) 0 0
\(801\) −2.83330 4.28090i −0.100110 0.151258i
\(802\) 0 0
\(803\) −10.2732 38.3403i −0.362535 1.35300i
\(804\) 0 0
\(805\) 4.02261 15.0126i 0.141778 0.529124i
\(806\) 0 0
\(807\) −0.427428 1.42026i −0.0150462 0.0499954i
\(808\) 0 0
\(809\) −30.1140 −1.05875 −0.529375 0.848388i \(-0.677574\pi\)
−0.529375 + 0.848388i \(0.677574\pi\)
\(810\) 0 0
\(811\) −20.5672 + 20.5672i −0.722214 + 0.722214i −0.969056 0.246842i \(-0.920607\pi\)
0.246842 + 0.969056i \(0.420607\pi\)
\(812\) 0 0
\(813\) 15.6657 29.1544i 0.549420 1.02249i
\(814\) 0 0
\(815\) 7.71810 + 13.3681i 0.270353 + 0.468265i
\(816\) 0 0
\(817\) 4.46135 7.72728i 0.156083 0.270343i
\(818\) 0 0
\(819\) 22.4839 + 4.57502i 0.785649 + 0.159864i
\(820\) 0 0
\(821\) 8.53541 + 31.8546i 0.297888 + 1.11173i 0.938897 + 0.344199i \(0.111849\pi\)
−0.641009 + 0.767533i \(0.721484\pi\)
\(822\) 0 0
\(823\) −4.71220 8.16178i −0.164257 0.284502i 0.772134 0.635460i \(-0.219189\pi\)
−0.936391 + 0.350958i \(0.885856\pi\)
\(824\) 0 0
\(825\) −22.4617 21.1304i −0.782015 0.735666i
\(826\) 0 0
\(827\) −38.7468 38.7468i −1.34736 1.34736i −0.888518 0.458841i \(-0.848265\pi\)
−0.458841 0.888518i \(-0.651735\pi\)
\(828\) 0 0
\(829\) 11.0569 11.0569i 0.384021 0.384021i −0.488528 0.872548i \(-0.662466\pi\)
0.872548 + 0.488528i \(0.162466\pi\)
\(830\) 0 0
\(831\) −11.9070 2.80390i −0.413050 0.0972662i
\(832\) 0 0
\(833\) −69.1173 + 39.9049i −2.39477 + 1.38262i
\(834\) 0 0
\(835\) −6.32656 + 1.69520i −0.218940 + 0.0586647i
\(836\) 0 0
\(837\) 17.1117 + 24.2146i 0.591468 + 0.836979i
\(838\) 0 0
\(839\) −25.3695 14.6471i −0.875853 0.505674i −0.00656388 0.999978i \(-0.502089\pi\)
−0.869289 + 0.494305i \(0.835423\pi\)
\(840\) 0 0
\(841\) −10.3391 + 5.96927i −0.356520 + 0.205837i
\(842\) 0 0
\(843\) −34.9038 + 21.5985i −1.20215 + 0.743892i
\(844\) 0 0
\(845\) 5.58412 + 5.58412i 0.192100 + 0.192100i
\(846\) 0 0
\(847\) 24.5309i 0.842891i
\(848\) 0 0
\(849\) 0.949637 + 0.893353i 0.0325914 + 0.0306598i
\(850\) 0 0
\(851\) 9.28662 + 2.48834i 0.318341 + 0.0852992i
\(852\) 0 0
\(853\) 40.6922 10.9035i 1.39328 0.373327i 0.517350 0.855774i \(-0.326918\pi\)
0.875925 + 0.482447i \(0.160252\pi\)
\(854\) 0 0
\(855\) 1.06845 2.14283i 0.0365402 0.0732834i
\(856\) 0 0
\(857\) −14.2207 + 24.6310i −0.485769 + 0.841377i −0.999866 0.0163548i \(-0.994794\pi\)
0.514097 + 0.857732i \(0.328127\pi\)
\(858\) 0 0
\(859\) −3.34555 0.896437i −0.114149 0.0305860i 0.201293 0.979531i \(-0.435486\pi\)
−0.315441 + 0.948945i \(0.602152\pi\)
\(860\) 0 0
\(861\) 18.1104 + 9.73136i 0.617199 + 0.331644i
\(862\) 0 0
\(863\) −11.1356 −0.379062 −0.189531 0.981875i \(-0.560697\pi\)
−0.189531 + 0.981875i \(0.560697\pi\)
\(864\) 0 0
\(865\) 7.76622 0.264059
\(866\) 0 0
\(867\) 42.2839 + 22.7207i 1.43604 + 0.771635i
\(868\) 0 0
\(869\) −54.5177 14.6080i −1.84939 0.495541i
\(870\) 0 0
\(871\) 7.28863 12.6243i 0.246966 0.427757i
\(872\) 0 0
\(873\) 21.9527 1.34210i 0.742986 0.0454231i
\(874\) 0 0
\(875\) 31.3655 8.40437i 1.06035 0.284119i
\(876\) 0 0
\(877\) −27.3387 7.32539i −0.923163 0.247361i −0.234226 0.972182i \(-0.575256\pi\)
−0.688937 + 0.724821i \(0.741922\pi\)
\(878\) 0 0
\(879\) −25.8859 24.3517i −0.873111 0.821362i
\(880\) 0 0
\(881\) 4.86363i 0.163860i 0.996638 + 0.0819299i \(0.0261084\pi\)
−0.996638 + 0.0819299i \(0.973892\pi\)
\(882\) 0 0
\(883\) −8.56478 8.56478i −0.288228 0.288228i 0.548151 0.836379i \(-0.315332\pi\)
−0.836379 + 0.548151i \(0.815332\pi\)
\(884\) 0 0
\(885\) 1.22128 0.755727i 0.0410528 0.0254035i
\(886\) 0 0
\(887\) −3.99885 + 2.30874i −0.134268 + 0.0775199i −0.565630 0.824659i \(-0.691367\pi\)
0.431361 + 0.902179i \(0.358033\pi\)
\(888\) 0 0
\(889\) −18.2707 10.5486i −0.612780 0.353789i
\(890\) 0 0
\(891\) 5.11099 36.3525i 0.171225 1.21785i
\(892\) 0 0
\(893\) 2.38330 0.638605i 0.0797543 0.0213701i
\(894\) 0 0
\(895\) −2.53624 + 1.46430i −0.0847772 + 0.0489461i
\(896\) 0 0
\(897\) 13.2824 + 3.12779i 0.443488 + 0.104434i
\(898\) 0 0
\(899\) 16.6665 16.6665i 0.555859 0.555859i
\(900\) 0 0
\(901\) 11.2533 + 11.2533i 0.374903 + 0.374903i
\(902\) 0 0
\(903\) 48.9012 + 46.0029i 1.62733 + 1.53088i
\(904\) 0 0
\(905\) −3.90421 6.76228i −0.129780 0.224786i
\(906\) 0 0
\(907\) 2.23987 + 8.35931i 0.0743737 + 0.277566i 0.993091 0.117350i \(-0.0374401\pi\)
−0.918717 + 0.394917i \(0.870773\pi\)
\(908\) 0 0
\(909\) 28.8652 32.6244i 0.957398 1.08208i
\(910\) 0 0
\(911\) −23.9969 + 41.5638i −0.795052 + 1.37707i 0.127755 + 0.991806i \(0.459223\pi\)
−0.922806 + 0.385264i \(0.874110\pi\)
\(912\) 0 0
\(913\) 6.43999 + 11.1544i 0.213133 + 0.369156i
\(914\) 0 0
\(915\) 1.33504 2.48454i 0.0441349 0.0821365i
\(916\) 0 0
\(917\) 65.2905 65.2905i 2.15608 2.15608i
\(918\) 0 0
\(919\) −51.8939 −1.71182 −0.855910 0.517124i \(-0.827003\pi\)
−0.855910 + 0.517124i \(0.827003\pi\)
\(920\) 0 0
\(921\) −10.8320 35.9927i −0.356928 1.18600i
\(922\) 0 0
\(923\) −3.66296 + 13.6703i −0.120568 + 0.449965i
\(924\) 0 0
\(925\) 2.42319 + 9.04347i 0.0796740 + 0.297347i
\(926\) 0 0
\(927\) −19.9157 + 39.9421i −0.654119 + 1.31187i
\(928\) 0 0
\(929\) 8.80130 + 5.08143i 0.288761 + 0.166716i 0.637383 0.770547i \(-0.280017\pi\)
−0.348622 + 0.937263i \(0.613350\pi\)
\(930\) 0 0
\(931\) 3.09423 11.5478i 0.101409 0.378465i
\(932\) 0 0
\(933\) 1.15267 0.0352020i 0.0377368 0.00115246i
\(934\) 0 0
\(935\) 21.7332i 0.710751i
\(936\) 0 0
\(937\) 37.8157i 1.23539i −0.786420 0.617693i \(-0.788068\pi\)
0.786420 0.617693i \(-0.211932\pi\)
\(938\) 0 0
\(939\) 15.0792 + 24.3684i 0.492090 + 0.795232i
\(940\) 0 0
\(941\) −9.21025 + 34.3731i −0.300246 + 1.12053i 0.636716 + 0.771099i \(0.280293\pi\)
−0.936961 + 0.349433i \(0.886374\pi\)
\(942\) 0 0
\(943\) 10.5890 + 6.11357i 0.344826 + 0.199085i
\(944\) 0 0
\(945\) 13.8517 + 11.5212i 0.450595 + 0.374786i
\(946\) 0 0
\(947\) 2.69018 + 10.0399i 0.0874191 + 0.326253i 0.995761 0.0919752i \(-0.0293181\pi\)
−0.908342 + 0.418228i \(0.862651\pi\)
\(948\) 0 0
\(949\) −4.42678 + 16.5210i −0.143699 + 0.536293i
\(950\) 0 0
\(951\) 11.4598 + 2.69860i 0.371611 + 0.0875080i
\(952\) 0 0
\(953\) 24.6743 0.799280 0.399640 0.916672i \(-0.369135\pi\)
0.399640 + 0.916672i \(0.369135\pi\)
\(954\) 0 0
\(955\) −7.85126 + 7.85126i −0.254061 + 0.254061i
\(956\) 0 0
\(957\) −29.1681 + 0.890777i −0.942871 + 0.0287947i
\(958\) 0 0
\(959\) −12.7873 22.1482i −0.412922 0.715203i
\(960\) 0 0
\(961\) 0.780708 1.35223i 0.0251841 0.0436202i
\(962\) 0 0
\(963\) 0.0824639 0.405268i 0.00265736 0.0130596i
\(964\) 0 0
\(965\) 0.553089 + 2.06416i 0.0178046 + 0.0664475i
\(966\) 0 0
\(967\) −12.5371 21.7150i −0.403167 0.698306i 0.590939 0.806716i \(-0.298757\pi\)
−0.994106 + 0.108410i \(0.965424\pi\)
\(968\) 0 0
\(969\) −11.1090 + 3.34327i −0.356873 + 0.107401i
\(970\) 0 0
\(971\) 18.9203 + 18.9203i 0.607180 + 0.607180i 0.942208 0.335028i \(-0.108746\pi\)
−0.335028 + 0.942208i \(0.608746\pi\)
\(972\) 0 0
\(973\) −22.2152 + 22.2152i −0.712186 + 0.712186i
\(974\) 0 0
\(975\) 3.82952 + 12.7247i 0.122643 + 0.407517i
\(976\) 0 0
\(977\) −12.1897 + 7.03771i −0.389982 + 0.225156i −0.682152 0.731210i \(-0.738956\pi\)
0.292170 + 0.956366i \(0.405623\pi\)
\(978\) 0 0
\(979\) 6.74196 1.80650i 0.215474 0.0577360i
\(980\) 0 0
\(981\) 36.6132 + 7.45005i 1.16897 + 0.237862i
\(982\) 0 0
\(983\) 0.562149 + 0.324557i 0.0179298 + 0.0103518i 0.508938 0.860803i \(-0.330038\pi\)
−0.491008 + 0.871155i \(0.663372\pi\)
\(984\) 0 0
\(985\) 13.8933 8.02129i 0.442677 0.255579i
\(986\) 0 0
\(987\) 0.566722 + 18.5571i 0.0180390 + 0.590678i
\(988\) 0 0
\(989\) 28.2341 + 28.2341i 0.897792 + 0.897792i
\(990\) 0 0
\(991\) 36.5529i 1.16114i −0.814210 0.580571i \(-0.802829\pi\)
0.814210 0.580571i \(-0.197171\pi\)
\(992\) 0 0
\(993\) 3.86176 16.3993i 0.122549 0.520417i
\(994\) 0 0
\(995\) 6.08100 + 1.62940i 0.192781 + 0.0516554i
\(996\) 0 0
\(997\) 7.74395 2.07498i 0.245253 0.0657154i −0.134098 0.990968i \(-0.542814\pi\)
0.379352 + 0.925253i \(0.376147\pi\)
\(998\) 0 0
\(999\) −7.12691 + 8.56848i −0.225485 + 0.271095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.335.4 88
3.2 odd 2 1728.2.z.a.143.13 88
4.3 odd 2 144.2.u.a.11.12 88
9.4 even 3 1728.2.z.a.719.13 88
9.5 odd 6 inner 576.2.y.a.527.8 88
12.11 even 2 432.2.v.a.251.11 88
16.3 odd 4 inner 576.2.y.a.47.8 88
16.13 even 4 144.2.u.a.83.20 yes 88
36.23 even 6 144.2.u.a.59.20 yes 88
36.31 odd 6 432.2.v.a.395.3 88
48.29 odd 4 432.2.v.a.35.3 88
48.35 even 4 1728.2.z.a.1007.13 88
144.13 even 12 432.2.v.a.179.11 88
144.67 odd 12 1728.2.z.a.1583.13 88
144.77 odd 12 144.2.u.a.131.12 yes 88
144.131 even 12 inner 576.2.y.a.239.4 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.12 88 4.3 odd 2
144.2.u.a.59.20 yes 88 36.23 even 6
144.2.u.a.83.20 yes 88 16.13 even 4
144.2.u.a.131.12 yes 88 144.77 odd 12
432.2.v.a.35.3 88 48.29 odd 4
432.2.v.a.179.11 88 144.13 even 12
432.2.v.a.251.11 88 12.11 even 2
432.2.v.a.395.3 88 36.31 odd 6
576.2.y.a.47.8 88 16.3 odd 4 inner
576.2.y.a.239.4 88 144.131 even 12 inner
576.2.y.a.335.4 88 1.1 even 1 trivial
576.2.y.a.527.8 88 9.5 odd 6 inner
1728.2.z.a.143.13 88 3.2 odd 2
1728.2.z.a.719.13 88 9.4 even 3
1728.2.z.a.1007.13 88 48.35 even 4
1728.2.z.a.1583.13 88 144.67 odd 12