Properties

Label 169.10.a.c.1.4
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,10,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3 x^{8} - 3184 x^{7} + 4328 x^{6} + 3323368 x^{5} - 2832720 x^{4} - 1268725952 x^{3} + \cdots + 390142272000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-7.18744\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.18744 q^{2} -148.535 q^{3} -427.591 q^{4} +1229.19 q^{5} +1364.65 q^{6} +8333.07 q^{7} +8632.44 q^{8} +2379.53 q^{9} -11293.1 q^{10} -75178.8 q^{11} +63512.0 q^{12} -76559.6 q^{14} -182577. q^{15} +139616. q^{16} -212677. q^{17} -21861.8 q^{18} -447815. q^{19} -525590. q^{20} -1.23775e6 q^{21} +690701. q^{22} +1.83926e6 q^{23} -1.28222e6 q^{24} -442219. q^{25} +2.57016e6 q^{27} -3.56314e6 q^{28} -1.21449e6 q^{29} +1.67742e6 q^{30} +3.80320e6 q^{31} -5.70253e6 q^{32} +1.11667e7 q^{33} +1.95396e6 q^{34} +1.02429e7 q^{35} -1.01746e6 q^{36} +1.69936e7 q^{37} +4.11427e6 q^{38} +1.06109e7 q^{40} +7.70454e6 q^{41} +1.13717e7 q^{42} +2.61552e7 q^{43} +3.21458e7 q^{44} +2.92489e6 q^{45} -1.68981e7 q^{46} -3.99265e7 q^{47} -2.07379e7 q^{48} +2.90864e7 q^{49} +4.06287e6 q^{50} +3.15899e7 q^{51} -2.84536e7 q^{53} -2.36132e7 q^{54} -9.24090e7 q^{55} +7.19347e7 q^{56} +6.65159e7 q^{57} +1.11581e7 q^{58} -6.33715e7 q^{59} +7.80683e7 q^{60} -1.20078e7 q^{61} -3.49417e7 q^{62} +1.98287e7 q^{63} -1.90920e7 q^{64} -1.02593e8 q^{66} -7.09554e7 q^{67} +9.09388e7 q^{68} -2.73193e8 q^{69} -9.41062e7 q^{70} +1.65210e8 q^{71} +2.05411e7 q^{72} +1.28511e8 q^{73} -1.56128e8 q^{74} +6.56849e7 q^{75} +1.91481e8 q^{76} -6.26470e8 q^{77} +6.32753e8 q^{79} +1.71615e8 q^{80} -4.28595e8 q^{81} -7.07850e7 q^{82} -1.34044e8 q^{83} +5.29250e8 q^{84} -2.61420e8 q^{85} -2.40299e8 q^{86} +1.80394e8 q^{87} -6.48977e8 q^{88} -8.05644e8 q^{89} -2.68722e7 q^{90} -7.86450e8 q^{92} -5.64906e8 q^{93} +3.66822e8 q^{94} -5.50449e8 q^{95} +8.47023e8 q^{96} +7.74868e7 q^{97} -2.67230e8 q^{98} -1.78890e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 15 q^{2} - 161 q^{3} + 1793 q^{4} - 1140 q^{5} - 2118 q^{6} + 1939 q^{7} - 7239 q^{8} + 33654 q^{9} - 46923 q^{10} + 5433 q^{11} + 4356 q^{12} - 4950 q^{14} + 347428 q^{15} - 400127 q^{16} - 248589 q^{17}+ \cdots + 1131074634 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.18744 −0.406031 −0.203016 0.979175i \(-0.565074\pi\)
−0.203016 + 0.979175i \(0.565074\pi\)
\(3\) −148.535 −1.05872 −0.529361 0.848397i \(-0.677568\pi\)
−0.529361 + 0.848397i \(0.677568\pi\)
\(4\) −427.591 −0.835138
\(5\) 1229.19 0.879536 0.439768 0.898111i \(-0.355061\pi\)
0.439768 + 0.898111i \(0.355061\pi\)
\(6\) 1364.65 0.429874
\(7\) 8333.07 1.31179 0.655894 0.754853i \(-0.272292\pi\)
0.655894 + 0.754853i \(0.272292\pi\)
\(8\) 8632.44 0.745124
\(9\) 2379.53 0.120892
\(10\) −11293.1 −0.357119
\(11\) −75178.8 −1.54821 −0.774103 0.633060i \(-0.781799\pi\)
−0.774103 + 0.633060i \(0.781799\pi\)
\(12\) 63512.0 0.884180
\(13\) 0 0
\(14\) −76559.6 −0.532627
\(15\) −182577. −0.931184
\(16\) 139616. 0.532595
\(17\) −212677. −0.617591 −0.308795 0.951129i \(-0.599926\pi\)
−0.308795 + 0.951129i \(0.599926\pi\)
\(18\) −21861.8 −0.0490861
\(19\) −447815. −0.788328 −0.394164 0.919040i \(-0.628966\pi\)
−0.394164 + 0.919040i \(0.628966\pi\)
\(20\) −525590. −0.734534
\(21\) −1.23775e6 −1.38882
\(22\) 690701. 0.628620
\(23\) 1.83926e6 1.37046 0.685231 0.728326i \(-0.259701\pi\)
0.685231 + 0.728326i \(0.259701\pi\)
\(24\) −1.28222e6 −0.788879
\(25\) −442219. −0.226416
\(26\) 0 0
\(27\) 2.57016e6 0.930731
\(28\) −3.56314e6 −1.09552
\(29\) −1.21449e6 −0.318862 −0.159431 0.987209i \(-0.550966\pi\)
−0.159431 + 0.987209i \(0.550966\pi\)
\(30\) 1.67742e6 0.378090
\(31\) 3.80320e6 0.739641 0.369821 0.929103i \(-0.379419\pi\)
0.369821 + 0.929103i \(0.379419\pi\)
\(32\) −5.70253e6 −0.961374
\(33\) 1.11667e7 1.63912
\(34\) 1.95396e6 0.250761
\(35\) 1.02429e7 1.15376
\(36\) −1.01746e6 −0.100962
\(37\) 1.69936e7 1.49066 0.745331 0.666695i \(-0.232292\pi\)
0.745331 + 0.666695i \(0.232292\pi\)
\(38\) 4.11427e6 0.320086
\(39\) 0 0
\(40\) 1.06109e7 0.655363
\(41\) 7.70454e6 0.425813 0.212907 0.977073i \(-0.431707\pi\)
0.212907 + 0.977073i \(0.431707\pi\)
\(42\) 1.13717e7 0.563904
\(43\) 2.61552e7 1.16668 0.583338 0.812230i \(-0.301746\pi\)
0.583338 + 0.812230i \(0.301746\pi\)
\(44\) 3.21458e7 1.29297
\(45\) 2.92489e6 0.106329
\(46\) −1.68981e7 −0.556451
\(47\) −3.99265e7 −1.19350 −0.596748 0.802429i \(-0.703541\pi\)
−0.596748 + 0.802429i \(0.703541\pi\)
\(48\) −2.07379e7 −0.563870
\(49\) 2.90864e7 0.720788
\(50\) 4.06287e6 0.0919322
\(51\) 3.15899e7 0.653857
\(52\) 0 0
\(53\) −2.84536e7 −0.495331 −0.247665 0.968846i \(-0.579663\pi\)
−0.247665 + 0.968846i \(0.579663\pi\)
\(54\) −2.36132e7 −0.377906
\(55\) −9.24090e7 −1.36170
\(56\) 7.19347e7 0.977445
\(57\) 6.65159e7 0.834620
\(58\) 1.11581e7 0.129468
\(59\) −6.33715e7 −0.680863 −0.340432 0.940269i \(-0.610573\pi\)
−0.340432 + 0.940269i \(0.610573\pi\)
\(60\) 7.80683e7 0.777668
\(61\) −1.20078e7 −0.111040 −0.0555201 0.998458i \(-0.517682\pi\)
−0.0555201 + 0.998458i \(0.517682\pi\)
\(62\) −3.49417e7 −0.300318
\(63\) 1.98287e7 0.158585
\(64\) −1.90920e7 −0.142246
\(65\) 0 0
\(66\) −1.02593e8 −0.665534
\(67\) −7.09554e7 −0.430179 −0.215089 0.976594i \(-0.569004\pi\)
−0.215089 + 0.976594i \(0.569004\pi\)
\(68\) 9.09388e7 0.515774
\(69\) −2.73193e8 −1.45094
\(70\) −9.41062e7 −0.468465
\(71\) 1.65210e8 0.771568 0.385784 0.922589i \(-0.373931\pi\)
0.385784 + 0.922589i \(0.373931\pi\)
\(72\) 2.05411e7 0.0900799
\(73\) 1.28511e8 0.529647 0.264823 0.964297i \(-0.414686\pi\)
0.264823 + 0.964297i \(0.414686\pi\)
\(74\) −1.56128e8 −0.605255
\(75\) 6.56849e7 0.239712
\(76\) 1.91481e8 0.658363
\(77\) −6.26470e8 −2.03092
\(78\) 0 0
\(79\) 6.32753e8 1.82773 0.913865 0.406018i \(-0.133083\pi\)
0.913865 + 0.406018i \(0.133083\pi\)
\(80\) 1.71615e8 0.468436
\(81\) −4.28595e8 −1.10628
\(82\) −7.07850e7 −0.172894
\(83\) −1.34044e8 −0.310025 −0.155013 0.987912i \(-0.549542\pi\)
−0.155013 + 0.987912i \(0.549542\pi\)
\(84\) 5.29250e8 1.15986
\(85\) −2.61420e8 −0.543193
\(86\) −2.40299e8 −0.473707
\(87\) 1.80394e8 0.337586
\(88\) −6.48977e8 −1.15360
\(89\) −8.05644e8 −1.36109 −0.680547 0.732705i \(-0.738258\pi\)
−0.680547 + 0.732705i \(0.738258\pi\)
\(90\) −2.68722e7 −0.0431730
\(91\) 0 0
\(92\) −7.86450e8 −1.14453
\(93\) −5.64906e8 −0.783075
\(94\) 3.66822e8 0.484597
\(95\) −5.50449e8 −0.693363
\(96\) 8.47023e8 1.01783
\(97\) 7.74868e7 0.0888699 0.0444349 0.999012i \(-0.485851\pi\)
0.0444349 + 0.999012i \(0.485851\pi\)
\(98\) −2.67230e8 −0.292663
\(99\) −1.78890e8 −0.187166
\(100\) 1.89089e8 0.189089
\(101\) −2.09131e8 −0.199973 −0.0999867 0.994989i \(-0.531880\pi\)
−0.0999867 + 0.994989i \(0.531880\pi\)
\(102\) −2.90231e8 −0.265486
\(103\) −1.84658e9 −1.61659 −0.808297 0.588775i \(-0.799610\pi\)
−0.808297 + 0.588775i \(0.799610\pi\)
\(104\) 0 0
\(105\) −1.52143e9 −1.22152
\(106\) 2.61416e8 0.201120
\(107\) 1.62081e9 1.19538 0.597689 0.801728i \(-0.296086\pi\)
0.597689 + 0.801728i \(0.296086\pi\)
\(108\) −1.09898e9 −0.777289
\(109\) 2.30586e9 1.56464 0.782319 0.622878i \(-0.214037\pi\)
0.782319 + 0.622878i \(0.214037\pi\)
\(110\) 8.49002e8 0.552894
\(111\) −2.52414e9 −1.57820
\(112\) 1.16343e9 0.698651
\(113\) 1.92207e9 1.10896 0.554479 0.832197i \(-0.312917\pi\)
0.554479 + 0.832197i \(0.312917\pi\)
\(114\) −6.11112e8 −0.338882
\(115\) 2.26079e9 1.20537
\(116\) 5.19305e8 0.266294
\(117\) 0 0
\(118\) 5.82222e8 0.276452
\(119\) −1.77225e9 −0.810148
\(120\) −1.57609e9 −0.693848
\(121\) 3.29391e9 1.39694
\(122\) 1.10321e8 0.0450858
\(123\) −1.14439e9 −0.450818
\(124\) −1.62621e9 −0.617703
\(125\) −2.94433e9 −1.07868
\(126\) −1.82176e8 −0.0643906
\(127\) −4.90251e9 −1.67225 −0.836126 0.548537i \(-0.815185\pi\)
−0.836126 + 0.548537i \(0.815185\pi\)
\(128\) 3.09510e9 1.01913
\(129\) −3.88495e9 −1.23518
\(130\) 0 0
\(131\) −8.92924e8 −0.264907 −0.132454 0.991189i \(-0.542286\pi\)
−0.132454 + 0.991189i \(0.542286\pi\)
\(132\) −4.77476e9 −1.36889
\(133\) −3.73167e9 −1.03412
\(134\) 6.51899e8 0.174666
\(135\) 3.15922e9 0.818611
\(136\) −1.83592e9 −0.460182
\(137\) −4.73483e9 −1.14832 −0.574158 0.818744i \(-0.694671\pi\)
−0.574158 + 0.818744i \(0.694671\pi\)
\(138\) 2.50995e9 0.589127
\(139\) 2.62893e9 0.597327 0.298664 0.954358i \(-0.403459\pi\)
0.298664 + 0.954358i \(0.403459\pi\)
\(140\) −4.37978e9 −0.963553
\(141\) 5.93047e9 1.26358
\(142\) −1.51786e9 −0.313281
\(143\) 0 0
\(144\) 3.32221e8 0.0643867
\(145\) −1.49284e9 −0.280451
\(146\) −1.18068e9 −0.215053
\(147\) −4.32034e9 −0.763114
\(148\) −7.26633e9 −1.24491
\(149\) 5.44559e9 0.905121 0.452560 0.891734i \(-0.350511\pi\)
0.452560 + 0.891734i \(0.350511\pi\)
\(150\) −6.03476e8 −0.0973306
\(151\) −3.29037e9 −0.515049 −0.257524 0.966272i \(-0.582907\pi\)
−0.257524 + 0.966272i \(0.582907\pi\)
\(152\) −3.86573e9 −0.587402
\(153\) −5.06071e8 −0.0746620
\(154\) 5.75566e9 0.824616
\(155\) 4.67485e9 0.650541
\(156\) 0 0
\(157\) −8.34748e9 −1.09650 −0.548248 0.836316i \(-0.684705\pi\)
−0.548248 + 0.836316i \(0.684705\pi\)
\(158\) −5.81338e9 −0.742116
\(159\) 4.22634e9 0.524418
\(160\) −7.00948e9 −0.845563
\(161\) 1.53267e10 1.79776
\(162\) 3.93769e9 0.449183
\(163\) −9.93338e9 −1.10218 −0.551090 0.834446i \(-0.685788\pi\)
−0.551090 + 0.834446i \(0.685788\pi\)
\(164\) −3.29439e9 −0.355613
\(165\) 1.37259e10 1.44166
\(166\) 1.23153e9 0.125880
\(167\) −1.72737e10 −1.71854 −0.859272 0.511518i \(-0.829083\pi\)
−0.859272 + 0.511518i \(0.829083\pi\)
\(168\) −1.06848e10 −1.03484
\(169\) 0 0
\(170\) 2.40179e9 0.220554
\(171\) −1.06559e9 −0.0953029
\(172\) −1.11837e10 −0.974335
\(173\) −1.58277e8 −0.0134341 −0.00671707 0.999977i \(-0.502138\pi\)
−0.00671707 + 0.999977i \(0.502138\pi\)
\(174\) −1.65736e9 −0.137071
\(175\) −3.68504e9 −0.297010
\(176\) −1.04962e10 −0.824566
\(177\) 9.41286e9 0.720845
\(178\) 7.40180e9 0.552647
\(179\) −7.89435e9 −0.574748 −0.287374 0.957818i \(-0.592782\pi\)
−0.287374 + 0.957818i \(0.592782\pi\)
\(180\) −1.25066e9 −0.0887997
\(181\) −2.63730e10 −1.82644 −0.913221 0.407464i \(-0.866413\pi\)
−0.913221 + 0.407464i \(0.866413\pi\)
\(182\) 0 0
\(183\) 1.78358e9 0.117561
\(184\) 1.58773e10 1.02116
\(185\) 2.08884e10 1.31109
\(186\) 5.19005e9 0.317953
\(187\) 1.59888e10 0.956157
\(188\) 1.70722e10 0.996734
\(189\) 2.14174e10 1.22092
\(190\) 5.05722e9 0.281527
\(191\) −3.57602e10 −1.94424 −0.972119 0.234490i \(-0.924658\pi\)
−0.972119 + 0.234490i \(0.924658\pi\)
\(192\) 2.83582e9 0.150599
\(193\) −1.12148e10 −0.581815 −0.290908 0.956751i \(-0.593957\pi\)
−0.290908 + 0.956751i \(0.593957\pi\)
\(194\) −7.11905e8 −0.0360840
\(195\) 0 0
\(196\) −1.24371e10 −0.601958
\(197\) 1.82279e9 0.0862259 0.0431129 0.999070i \(-0.486272\pi\)
0.0431129 + 0.999070i \(0.486272\pi\)
\(198\) 1.64354e9 0.0759954
\(199\) −1.08517e10 −0.490525 −0.245262 0.969457i \(-0.578874\pi\)
−0.245262 + 0.969457i \(0.578874\pi\)
\(200\) −3.81743e9 −0.168708
\(201\) 1.05393e10 0.455440
\(202\) 1.92138e9 0.0811955
\(203\) −1.01204e10 −0.418279
\(204\) −1.35076e10 −0.546061
\(205\) 9.47033e9 0.374518
\(206\) 1.69654e10 0.656388
\(207\) 4.37656e9 0.165679
\(208\) 0 0
\(209\) 3.36662e10 1.22049
\(210\) 1.39780e10 0.495974
\(211\) 2.73436e10 0.949695 0.474847 0.880068i \(-0.342503\pi\)
0.474847 + 0.880068i \(0.342503\pi\)
\(212\) 1.21665e10 0.413670
\(213\) −2.45394e10 −0.816876
\(214\) −1.48911e10 −0.485361
\(215\) 3.21497e10 1.02613
\(216\) 2.21868e10 0.693510
\(217\) 3.16923e10 0.970253
\(218\) −2.11850e10 −0.635293
\(219\) −1.90883e10 −0.560748
\(220\) 3.95132e10 1.13721
\(221\) 0 0
\(222\) 2.31904e10 0.640797
\(223\) −3.21823e10 −0.871454 −0.435727 0.900079i \(-0.643509\pi\)
−0.435727 + 0.900079i \(0.643509\pi\)
\(224\) −4.75195e10 −1.26112
\(225\) −1.05227e9 −0.0273720
\(226\) −1.76589e10 −0.450272
\(227\) 4.06286e9 0.101558 0.0507791 0.998710i \(-0.483830\pi\)
0.0507791 + 0.998710i \(0.483830\pi\)
\(228\) −2.84416e10 −0.697023
\(229\) −2.36623e10 −0.568587 −0.284293 0.958737i \(-0.591759\pi\)
−0.284293 + 0.958737i \(0.591759\pi\)
\(230\) −2.07709e10 −0.489419
\(231\) 9.30525e10 2.15018
\(232\) −1.04840e10 −0.237592
\(233\) 5.04339e10 1.12104 0.560519 0.828141i \(-0.310602\pi\)
0.560519 + 0.828141i \(0.310602\pi\)
\(234\) 0 0
\(235\) −4.90772e10 −1.04972
\(236\) 2.70971e10 0.568615
\(237\) −9.39857e10 −1.93506
\(238\) 1.62825e10 0.328946
\(239\) −2.75780e10 −0.546728 −0.273364 0.961911i \(-0.588136\pi\)
−0.273364 + 0.961911i \(0.588136\pi\)
\(240\) −2.54908e10 −0.495944
\(241\) 1.89393e10 0.361649 0.180824 0.983515i \(-0.442123\pi\)
0.180824 + 0.983515i \(0.442123\pi\)
\(242\) −3.02626e10 −0.567201
\(243\) 1.30726e10 0.240510
\(244\) 5.13444e9 0.0927340
\(245\) 3.57527e10 0.633959
\(246\) 1.05140e10 0.183046
\(247\) 0 0
\(248\) 3.28309e10 0.551125
\(249\) 1.99102e10 0.328231
\(250\) 2.70509e10 0.437977
\(251\) −1.85985e10 −0.295764 −0.147882 0.989005i \(-0.547246\pi\)
−0.147882 + 0.989005i \(0.547246\pi\)
\(252\) −8.47859e9 −0.132441
\(253\) −1.38273e11 −2.12176
\(254\) 4.50415e10 0.678987
\(255\) 3.88300e10 0.575091
\(256\) −1.86610e10 −0.271553
\(257\) 8.04578e10 1.15045 0.575226 0.817994i \(-0.304914\pi\)
0.575226 + 0.817994i \(0.304914\pi\)
\(258\) 3.56928e10 0.501524
\(259\) 1.41609e11 1.95543
\(260\) 0 0
\(261\) −2.88991e9 −0.0385480
\(262\) 8.20369e9 0.107561
\(263\) 1.18139e11 1.52263 0.761313 0.648385i \(-0.224555\pi\)
0.761313 + 0.648385i \(0.224555\pi\)
\(264\) 9.63955e10 1.22135
\(265\) −3.49748e10 −0.435661
\(266\) 3.42845e10 0.419885
\(267\) 1.19666e11 1.44102
\(268\) 3.03399e10 0.359259
\(269\) 9.25057e9 0.107717 0.0538584 0.998549i \(-0.482848\pi\)
0.0538584 + 0.998549i \(0.482848\pi\)
\(270\) −2.90251e10 −0.332382
\(271\) −3.14015e9 −0.0353662 −0.0176831 0.999844i \(-0.505629\pi\)
−0.0176831 + 0.999844i \(0.505629\pi\)
\(272\) −2.96932e10 −0.328925
\(273\) 0 0
\(274\) 4.35010e10 0.466253
\(275\) 3.32455e10 0.350539
\(276\) 1.16815e11 1.21173
\(277\) 6.31727e10 0.644719 0.322359 0.946617i \(-0.395524\pi\)
0.322359 + 0.946617i \(0.395524\pi\)
\(278\) −2.41531e10 −0.242534
\(279\) 9.04981e9 0.0894171
\(280\) 8.84213e10 0.859698
\(281\) −8.75717e10 −0.837886 −0.418943 0.908012i \(-0.637599\pi\)
−0.418943 + 0.908012i \(0.637599\pi\)
\(282\) −5.44858e10 −0.513053
\(283\) −1.99407e11 −1.84800 −0.924000 0.382392i \(-0.875100\pi\)
−0.924000 + 0.382392i \(0.875100\pi\)
\(284\) −7.06424e10 −0.644366
\(285\) 8.17607e10 0.734079
\(286\) 0 0
\(287\) 6.42024e10 0.558577
\(288\) −1.35693e10 −0.116223
\(289\) −7.33563e10 −0.618582
\(290\) 1.37154e10 0.113872
\(291\) −1.15095e10 −0.0940885
\(292\) −5.49500e10 −0.442328
\(293\) −1.01929e11 −0.807969 −0.403984 0.914766i \(-0.632375\pi\)
−0.403984 + 0.914766i \(0.632375\pi\)
\(294\) 3.96928e10 0.309848
\(295\) −7.78956e10 −0.598844
\(296\) 1.46697e11 1.11073
\(297\) −1.93222e11 −1.44096
\(298\) −5.00310e10 −0.367508
\(299\) 0 0
\(300\) −2.80863e10 −0.200193
\(301\) 2.17953e11 1.53043
\(302\) 3.02301e10 0.209126
\(303\) 3.10632e10 0.211716
\(304\) −6.25223e10 −0.419859
\(305\) −1.47599e10 −0.0976639
\(306\) 4.64950e9 0.0303151
\(307\) 4.72074e10 0.303311 0.151655 0.988433i \(-0.451540\pi\)
0.151655 + 0.988433i \(0.451540\pi\)
\(308\) 2.67873e11 1.69610
\(309\) 2.74281e11 1.71152
\(310\) −4.29499e10 −0.264140
\(311\) −1.93470e11 −1.17271 −0.586356 0.810053i \(-0.699438\pi\)
−0.586356 + 0.810053i \(0.699438\pi\)
\(312\) 0 0
\(313\) −1.51502e11 −0.892216 −0.446108 0.894979i \(-0.647190\pi\)
−0.446108 + 0.894979i \(0.647190\pi\)
\(314\) 7.66920e10 0.445212
\(315\) 2.43733e10 0.139481
\(316\) −2.70559e11 −1.52641
\(317\) −1.67360e10 −0.0930862 −0.0465431 0.998916i \(-0.514820\pi\)
−0.0465431 + 0.998916i \(0.514820\pi\)
\(318\) −3.88293e10 −0.212930
\(319\) 9.13039e10 0.493664
\(320\) −2.34677e10 −0.125111
\(321\) −2.40747e11 −1.26557
\(322\) −1.40813e11 −0.729946
\(323\) 9.52399e10 0.486864
\(324\) 1.83263e11 0.923895
\(325\) 0 0
\(326\) 9.12624e10 0.447520
\(327\) −3.42500e11 −1.65652
\(328\) 6.65089e10 0.317284
\(329\) −3.32710e11 −1.56561
\(330\) −1.26106e11 −0.585361
\(331\) 1.36079e11 0.623113 0.311556 0.950228i \(-0.399150\pi\)
0.311556 + 0.950228i \(0.399150\pi\)
\(332\) 5.73162e10 0.258914
\(333\) 4.04368e10 0.180210
\(334\) 1.58701e11 0.697783
\(335\) −8.72176e10 −0.378358
\(336\) −1.72810e11 −0.739678
\(337\) 1.77982e10 0.0751694 0.0375847 0.999293i \(-0.488034\pi\)
0.0375847 + 0.999293i \(0.488034\pi\)
\(338\) 0 0
\(339\) −2.85493e11 −1.17408
\(340\) 1.11781e11 0.453642
\(341\) −2.85920e11 −1.14512
\(342\) 9.79001e9 0.0386960
\(343\) −9.38905e10 −0.366267
\(344\) 2.25783e11 0.869318
\(345\) −3.35806e11 −1.27615
\(346\) 1.45416e9 0.00545468
\(347\) −7.07745e10 −0.262056 −0.131028 0.991379i \(-0.541828\pi\)
−0.131028 + 0.991379i \(0.541828\pi\)
\(348\) −7.71347e10 −0.281931
\(349\) 1.84471e11 0.665599 0.332799 0.942998i \(-0.392007\pi\)
0.332799 + 0.942998i \(0.392007\pi\)
\(350\) 3.38561e10 0.120596
\(351\) 0 0
\(352\) 4.28709e11 1.48840
\(353\) −1.92466e11 −0.659732 −0.329866 0.944028i \(-0.607004\pi\)
−0.329866 + 0.944028i \(0.607004\pi\)
\(354\) −8.64801e10 −0.292686
\(355\) 2.03075e11 0.678622
\(356\) 3.44486e11 1.13670
\(357\) 2.63241e11 0.857722
\(358\) 7.25289e10 0.233366
\(359\) 3.62698e10 0.115245 0.0576223 0.998338i \(-0.481648\pi\)
0.0576223 + 0.998338i \(0.481648\pi\)
\(360\) 2.52489e10 0.0792285
\(361\) −1.22150e11 −0.378539
\(362\) 2.42300e11 0.741593
\(363\) −4.89259e11 −1.47897
\(364\) 0 0
\(365\) 1.57964e11 0.465843
\(366\) −1.63865e10 −0.0477334
\(367\) −2.90557e11 −0.836054 −0.418027 0.908435i \(-0.637278\pi\)
−0.418027 + 0.908435i \(0.637278\pi\)
\(368\) 2.56791e11 0.729901
\(369\) 1.83331e10 0.0514776
\(370\) −1.91911e11 −0.532344
\(371\) −2.37105e11 −0.649769
\(372\) 2.41549e11 0.653976
\(373\) −5.17469e11 −1.38419 −0.692093 0.721808i \(-0.743311\pi\)
−0.692093 + 0.721808i \(0.743311\pi\)
\(374\) −1.46896e11 −0.388230
\(375\) 4.37335e11 1.14202
\(376\) −3.44663e11 −0.889302
\(377\) 0 0
\(378\) −1.96771e11 −0.495732
\(379\) −1.42775e11 −0.355447 −0.177723 0.984080i \(-0.556873\pi\)
−0.177723 + 0.984080i \(0.556873\pi\)
\(380\) 2.35367e11 0.579054
\(381\) 7.28192e11 1.77045
\(382\) 3.28544e11 0.789422
\(383\) −3.28586e11 −0.780286 −0.390143 0.920754i \(-0.627575\pi\)
−0.390143 + 0.920754i \(0.627575\pi\)
\(384\) −4.59729e11 −1.07898
\(385\) −7.70050e11 −1.78626
\(386\) 1.03036e11 0.236235
\(387\) 6.22370e10 0.141042
\(388\) −3.31326e10 −0.0742187
\(389\) 2.42006e11 0.535861 0.267930 0.963438i \(-0.413660\pi\)
0.267930 + 0.963438i \(0.413660\pi\)
\(390\) 0 0
\(391\) −3.91168e11 −0.846385
\(392\) 2.51086e11 0.537076
\(393\) 1.32630e11 0.280463
\(394\) −1.67467e10 −0.0350104
\(395\) 7.77773e11 1.60755
\(396\) 7.64917e10 0.156310
\(397\) 5.22893e10 0.105647 0.0528233 0.998604i \(-0.483178\pi\)
0.0528233 + 0.998604i \(0.483178\pi\)
\(398\) 9.96998e10 0.199168
\(399\) 5.54282e11 1.09484
\(400\) −6.17411e10 −0.120588
\(401\) 2.50729e11 0.484234 0.242117 0.970247i \(-0.422158\pi\)
0.242117 + 0.970247i \(0.422158\pi\)
\(402\) −9.68295e10 −0.184923
\(403\) 0 0
\(404\) 8.94225e10 0.167006
\(405\) −5.26824e11 −0.973011
\(406\) 9.29808e10 0.169835
\(407\) −1.27756e12 −2.30785
\(408\) 2.72698e11 0.487204
\(409\) 7.44848e11 1.31617 0.658086 0.752943i \(-0.271366\pi\)
0.658086 + 0.752943i \(0.271366\pi\)
\(410\) −8.70081e10 −0.152066
\(411\) 7.03286e11 1.21575
\(412\) 7.89582e11 1.35008
\(413\) −5.28079e11 −0.893148
\(414\) −4.02094e10 −0.0672707
\(415\) −1.64766e11 −0.272679
\(416\) 0 0
\(417\) −3.90487e11 −0.632404
\(418\) −3.09306e11 −0.495559
\(419\) −1.22699e11 −0.194481 −0.0972405 0.995261i \(-0.531002\pi\)
−0.0972405 + 0.995261i \(0.531002\pi\)
\(420\) 6.50548e11 1.02014
\(421\) 9.85222e11 1.52850 0.764249 0.644922i \(-0.223110\pi\)
0.764249 + 0.644922i \(0.223110\pi\)
\(422\) −2.51217e11 −0.385606
\(423\) −9.50061e10 −0.144285
\(424\) −2.45624e11 −0.369083
\(425\) 9.40500e10 0.139833
\(426\) 2.25455e11 0.331677
\(427\) −1.00062e11 −0.145661
\(428\) −6.93044e11 −0.998307
\(429\) 0 0
\(430\) −2.95373e11 −0.416642
\(431\) −1.16537e12 −1.62673 −0.813367 0.581751i \(-0.802368\pi\)
−0.813367 + 0.581751i \(0.802368\pi\)
\(432\) 3.58837e11 0.495702
\(433\) −7.90752e11 −1.08105 −0.540524 0.841329i \(-0.681774\pi\)
−0.540524 + 0.841329i \(0.681774\pi\)
\(434\) −2.91171e11 −0.393953
\(435\) 2.21738e11 0.296919
\(436\) −9.85966e11 −1.30669
\(437\) −8.23646e11 −1.08037
\(438\) 1.75372e11 0.227682
\(439\) 2.19270e11 0.281766 0.140883 0.990026i \(-0.455006\pi\)
0.140883 + 0.990026i \(0.455006\pi\)
\(440\) −7.97715e11 −1.01464
\(441\) 6.92118e10 0.0871378
\(442\) 0 0
\(443\) 3.60046e11 0.444162 0.222081 0.975028i \(-0.428715\pi\)
0.222081 + 0.975028i \(0.428715\pi\)
\(444\) 1.07930e12 1.31801
\(445\) −9.90288e11 −1.19713
\(446\) 2.95673e11 0.353838
\(447\) −8.08858e11 −0.958271
\(448\) −1.59095e11 −0.186597
\(449\) 6.93229e11 0.804949 0.402474 0.915431i \(-0.368150\pi\)
0.402474 + 0.915431i \(0.368150\pi\)
\(450\) 9.66770e9 0.0111139
\(451\) −5.79218e11 −0.659246
\(452\) −8.21858e11 −0.926134
\(453\) 4.88734e11 0.545293
\(454\) −3.73273e10 −0.0412358
\(455\) 0 0
\(456\) 5.74195e11 0.621896
\(457\) 8.67582e11 0.930439 0.465219 0.885195i \(-0.345975\pi\)
0.465219 + 0.885195i \(0.345975\pi\)
\(458\) 2.17396e11 0.230864
\(459\) −5.46615e11 −0.574810
\(460\) −9.66695e11 −1.00665
\(461\) −4.21197e11 −0.434342 −0.217171 0.976134i \(-0.569683\pi\)
−0.217171 + 0.976134i \(0.569683\pi\)
\(462\) −8.54915e11 −0.873039
\(463\) 3.14438e10 0.0317995 0.0158998 0.999874i \(-0.494939\pi\)
0.0158998 + 0.999874i \(0.494939\pi\)
\(464\) −1.69563e11 −0.169824
\(465\) −6.94377e11 −0.688742
\(466\) −4.63358e11 −0.455177
\(467\) −1.59083e12 −1.54774 −0.773870 0.633344i \(-0.781682\pi\)
−0.773870 + 0.633344i \(0.781682\pi\)
\(468\) 0 0
\(469\) −5.91276e11 −0.564303
\(470\) 4.50894e11 0.426220
\(471\) 1.23989e12 1.16088
\(472\) −5.47051e11 −0.507328
\(473\) −1.96632e12 −1.80625
\(474\) 8.63488e11 0.785695
\(475\) 1.98032e11 0.178490
\(476\) 7.57799e11 0.676586
\(477\) −6.77060e10 −0.0598818
\(478\) 2.53371e11 0.221989
\(479\) 5.73533e11 0.497793 0.248896 0.968530i \(-0.419932\pi\)
0.248896 + 0.968530i \(0.419932\pi\)
\(480\) 1.04115e12 0.895216
\(481\) 0 0
\(482\) −1.74004e11 −0.146841
\(483\) −2.27654e12 −1.90332
\(484\) −1.40845e12 −1.16664
\(485\) 9.52459e10 0.0781643
\(486\) −1.20104e11 −0.0976545
\(487\) −2.83199e11 −0.228145 −0.114073 0.993472i \(-0.536390\pi\)
−0.114073 + 0.993472i \(0.536390\pi\)
\(488\) −1.03657e11 −0.0827387
\(489\) 1.47545e12 1.16690
\(490\) −3.28476e11 −0.257407
\(491\) −1.56350e12 −1.21403 −0.607016 0.794689i \(-0.707634\pi\)
−0.607016 + 0.794689i \(0.707634\pi\)
\(492\) 4.89331e11 0.376495
\(493\) 2.58294e11 0.196926
\(494\) 0 0
\(495\) −2.19890e11 −0.164620
\(496\) 5.30989e11 0.393929
\(497\) 1.37671e12 1.01213
\(498\) −1.82924e11 −0.133272
\(499\) 2.35052e12 1.69712 0.848559 0.529100i \(-0.177470\pi\)
0.848559 + 0.529100i \(0.177470\pi\)
\(500\) 1.25897e12 0.900845
\(501\) 2.56574e12 1.81946
\(502\) 1.70872e11 0.120089
\(503\) −2.10967e12 −1.46946 −0.734732 0.678357i \(-0.762692\pi\)
−0.734732 + 0.678357i \(0.762692\pi\)
\(504\) 1.71170e11 0.118166
\(505\) −2.57062e11 −0.175884
\(506\) 1.27038e12 0.861500
\(507\) 0 0
\(508\) 2.09627e12 1.39656
\(509\) 1.30397e12 0.861065 0.430533 0.902575i \(-0.358326\pi\)
0.430533 + 0.902575i \(0.358326\pi\)
\(510\) −3.56748e11 −0.233505
\(511\) 1.07089e12 0.694784
\(512\) −1.41324e12 −0.908872
\(513\) −1.15096e12 −0.733721
\(514\) −7.39201e11 −0.467120
\(515\) −2.26980e12 −1.42185
\(516\) 1.66117e12 1.03155
\(517\) 3.00163e12 1.84778
\(518\) −1.30103e12 −0.793967
\(519\) 2.35096e10 0.0142230
\(520\) 0 0
\(521\) −2.93717e12 −1.74646 −0.873230 0.487308i \(-0.837979\pi\)
−0.873230 + 0.487308i \(0.837979\pi\)
\(522\) 2.65509e10 0.0156517
\(523\) 1.49283e11 0.0872472 0.0436236 0.999048i \(-0.486110\pi\)
0.0436236 + 0.999048i \(0.486110\pi\)
\(524\) 3.81806e11 0.221234
\(525\) 5.47357e11 0.314451
\(526\) −1.08540e12 −0.618234
\(527\) −8.08853e11 −0.456796
\(528\) 1.55905e12 0.872986
\(529\) 1.58171e12 0.878168
\(530\) 3.21329e11 0.176892
\(531\) −1.50794e11 −0.0823112
\(532\) 1.59563e12 0.863633
\(533\) 0 0
\(534\) −1.09942e12 −0.585099
\(535\) 1.99228e12 1.05138
\(536\) −6.12518e11 −0.320537
\(537\) 1.17258e12 0.608499
\(538\) −8.49891e10 −0.0437364
\(539\) −2.18668e12 −1.11593
\(540\) −1.35085e12 −0.683654
\(541\) −6.48443e11 −0.325450 −0.162725 0.986671i \(-0.552028\pi\)
−0.162725 + 0.986671i \(0.552028\pi\)
\(542\) 2.88499e10 0.0143598
\(543\) 3.91730e12 1.93369
\(544\) 1.21280e12 0.593736
\(545\) 2.83434e12 1.37616
\(546\) 0 0
\(547\) 1.75877e12 0.839972 0.419986 0.907531i \(-0.362035\pi\)
0.419986 + 0.907531i \(0.362035\pi\)
\(548\) 2.02457e12 0.959003
\(549\) −2.85730e10 −0.0134239
\(550\) −3.05442e11 −0.142330
\(551\) 5.43866e11 0.251368
\(552\) −2.35832e12 −1.08113
\(553\) 5.27277e12 2.39759
\(554\) −5.80396e11 −0.261776
\(555\) −3.10265e12 −1.38808
\(556\) −1.12411e12 −0.498851
\(557\) −1.69162e12 −0.744652 −0.372326 0.928102i \(-0.621440\pi\)
−0.372326 + 0.928102i \(0.621440\pi\)
\(558\) −8.31446e10 −0.0363061
\(559\) 0 0
\(560\) 1.43008e12 0.614489
\(561\) −2.37489e12 −1.01230
\(562\) 8.04560e11 0.340208
\(563\) 4.28312e12 1.79669 0.898344 0.439292i \(-0.144771\pi\)
0.898344 + 0.439292i \(0.144771\pi\)
\(564\) −2.53581e12 −1.05526
\(565\) 2.36258e12 0.975369
\(566\) 1.83204e12 0.750346
\(567\) −3.57151e12 −1.45120
\(568\) 1.42617e12 0.574914
\(569\) 2.10721e12 0.842757 0.421378 0.906885i \(-0.361546\pi\)
0.421378 + 0.906885i \(0.361546\pi\)
\(570\) −7.51172e11 −0.298059
\(571\) 1.29222e12 0.508713 0.254356 0.967111i \(-0.418136\pi\)
0.254356 + 0.967111i \(0.418136\pi\)
\(572\) 0 0
\(573\) 5.31162e12 2.05841
\(574\) −5.89856e11 −0.226800
\(575\) −8.13355e11 −0.310295
\(576\) −4.54299e10 −0.0171965
\(577\) 1.67362e12 0.628589 0.314295 0.949326i \(-0.398232\pi\)
0.314295 + 0.949326i \(0.398232\pi\)
\(578\) 6.73957e11 0.251164
\(579\) 1.66579e12 0.615981
\(580\) 6.38324e11 0.234215
\(581\) −1.11700e12 −0.406688
\(582\) 1.05743e11 0.0382029
\(583\) 2.13911e12 0.766874
\(584\) 1.10936e12 0.394652
\(585\) 0 0
\(586\) 9.36470e11 0.328061
\(587\) −3.48906e11 −0.121293 −0.0606467 0.998159i \(-0.519316\pi\)
−0.0606467 + 0.998159i \(0.519316\pi\)
\(588\) 1.84734e12 0.637306
\(589\) −1.70313e12 −0.583080
\(590\) 7.15661e11 0.243149
\(591\) −2.70747e11 −0.0912892
\(592\) 2.37259e12 0.793918
\(593\) 3.90032e12 1.29525 0.647626 0.761958i \(-0.275762\pi\)
0.647626 + 0.761958i \(0.275762\pi\)
\(594\) 1.77522e12 0.585076
\(595\) −2.17843e12 −0.712554
\(596\) −2.32848e12 −0.755901
\(597\) 1.61186e12 0.519329
\(598\) 0 0
\(599\) −8.07785e11 −0.256375 −0.128187 0.991750i \(-0.540916\pi\)
−0.128187 + 0.991750i \(0.540916\pi\)
\(600\) 5.67021e11 0.178615
\(601\) 1.90083e11 0.0594304 0.0297152 0.999558i \(-0.490540\pi\)
0.0297152 + 0.999558i \(0.490540\pi\)
\(602\) −2.00243e12 −0.621403
\(603\) −1.68840e11 −0.0520054
\(604\) 1.40693e12 0.430137
\(605\) 4.04884e12 1.22866
\(606\) −2.85391e11 −0.0859635
\(607\) −7.42787e11 −0.222083 −0.111041 0.993816i \(-0.535419\pi\)
−0.111041 + 0.993816i \(0.535419\pi\)
\(608\) 2.55367e12 0.757878
\(609\) 1.50323e12 0.442842
\(610\) 1.35606e11 0.0396546
\(611\) 0 0
\(612\) 2.16391e11 0.0623531
\(613\) 1.84386e12 0.527419 0.263709 0.964602i \(-0.415054\pi\)
0.263709 + 0.964602i \(0.415054\pi\)
\(614\) −4.33716e11 −0.123154
\(615\) −1.40667e12 −0.396511
\(616\) −5.40797e12 −1.51328
\(617\) −5.10083e12 −1.41696 −0.708480 0.705731i \(-0.750619\pi\)
−0.708480 + 0.705731i \(0.750619\pi\)
\(618\) −2.51994e12 −0.694933
\(619\) −1.32741e12 −0.363409 −0.181705 0.983353i \(-0.558161\pi\)
−0.181705 + 0.983353i \(0.558161\pi\)
\(620\) −1.99892e12 −0.543292
\(621\) 4.72719e12 1.27553
\(622\) 1.77749e12 0.476158
\(623\) −6.71348e12 −1.78547
\(624\) 0 0
\(625\) −2.75543e12 −0.722319
\(626\) 1.39192e12 0.362268
\(627\) −5.00059e12 −1.29216
\(628\) 3.56931e12 0.915726
\(629\) −3.61416e12 −0.920618
\(630\) −2.23928e11 −0.0566339
\(631\) −5.19030e12 −1.30335 −0.651674 0.758499i \(-0.725933\pi\)
−0.651674 + 0.758499i \(0.725933\pi\)
\(632\) 5.46220e12 1.36189
\(633\) −4.06147e12 −1.00546
\(634\) 1.53761e11 0.0377959
\(635\) −6.02611e12 −1.47081
\(636\) −1.80714e12 −0.437961
\(637\) 0 0
\(638\) −8.38850e11 −0.200443
\(639\) 3.93122e11 0.0932768
\(640\) 3.80446e12 0.896362
\(641\) −5.90413e12 −1.38132 −0.690661 0.723179i \(-0.742680\pi\)
−0.690661 + 0.723179i \(0.742680\pi\)
\(642\) 2.21185e12 0.513863
\(643\) 5.05767e12 1.16681 0.583406 0.812181i \(-0.301720\pi\)
0.583406 + 0.812181i \(0.301720\pi\)
\(644\) −6.55354e12 −1.50138
\(645\) −4.77534e12 −1.08639
\(646\) −8.75011e11 −0.197682
\(647\) −5.00696e12 −1.12332 −0.561662 0.827367i \(-0.689838\pi\)
−0.561662 + 0.827367i \(0.689838\pi\)
\(648\) −3.69982e12 −0.824314
\(649\) 4.76420e12 1.05412
\(650\) 0 0
\(651\) −4.70740e12 −1.02723
\(652\) 4.24742e12 0.920473
\(653\) −3.70421e11 −0.0797236 −0.0398618 0.999205i \(-0.512692\pi\)
−0.0398618 + 0.999205i \(0.512692\pi\)
\(654\) 3.14670e12 0.672598
\(655\) −1.09757e12 −0.232995
\(656\) 1.07568e12 0.226786
\(657\) 3.05794e11 0.0640303
\(658\) 3.05676e12 0.635688
\(659\) 2.63115e12 0.543451 0.271726 0.962375i \(-0.412406\pi\)
0.271726 + 0.962375i \(0.412406\pi\)
\(660\) −5.86908e12 −1.20399
\(661\) 2.29142e12 0.466872 0.233436 0.972372i \(-0.425003\pi\)
0.233436 + 0.972372i \(0.425003\pi\)
\(662\) −1.25022e12 −0.253003
\(663\) 0 0
\(664\) −1.15713e12 −0.231007
\(665\) −4.58693e12 −0.909545
\(666\) −3.71511e11 −0.0731708
\(667\) −2.23376e12 −0.436989
\(668\) 7.38607e12 1.43522
\(669\) 4.78018e12 0.922628
\(670\) 8.01307e11 0.153625
\(671\) 9.02735e11 0.171913
\(672\) 7.05830e12 1.33517
\(673\) −6.32811e11 −0.118907 −0.0594534 0.998231i \(-0.518936\pi\)
−0.0594534 + 0.998231i \(0.518936\pi\)
\(674\) −1.63520e11 −0.0305211
\(675\) −1.13658e12 −0.210733
\(676\) 0 0
\(677\) −4.59387e11 −0.0840484 −0.0420242 0.999117i \(-0.513381\pi\)
−0.0420242 + 0.999117i \(0.513381\pi\)
\(678\) 2.62295e12 0.476713
\(679\) 6.45702e11 0.116578
\(680\) −2.25670e12 −0.404746
\(681\) −6.03475e11 −0.107522
\(682\) 2.62687e12 0.464953
\(683\) −1.19724e12 −0.210518 −0.105259 0.994445i \(-0.533567\pi\)
−0.105259 + 0.994445i \(0.533567\pi\)
\(684\) 4.55635e11 0.0795911
\(685\) −5.82000e12 −1.00999
\(686\) 8.62613e11 0.148716
\(687\) 3.51467e12 0.601976
\(688\) 3.65170e12 0.621365
\(689\) 0 0
\(690\) 3.08520e12 0.518158
\(691\) −1.14390e13 −1.90870 −0.954350 0.298689i \(-0.903451\pi\)
−0.954350 + 0.298689i \(0.903451\pi\)
\(692\) 6.76777e10 0.0112194
\(693\) −1.49070e12 −0.245523
\(694\) 6.50236e11 0.106403
\(695\) 3.23145e12 0.525371
\(696\) 1.55724e12 0.251544
\(697\) −1.63858e12 −0.262978
\(698\) −1.69481e12 −0.270254
\(699\) −7.49118e12 −1.18687
\(700\) 1.57569e12 0.248045
\(701\) −7.96702e12 −1.24613 −0.623067 0.782169i \(-0.714114\pi\)
−0.623067 + 0.782169i \(0.714114\pi\)
\(702\) 0 0
\(703\) −7.61000e12 −1.17513
\(704\) 1.43531e12 0.220227
\(705\) 7.28966e12 1.11136
\(706\) 1.76827e12 0.267872
\(707\) −1.74270e12 −0.262323
\(708\) −4.02485e12 −0.602005
\(709\) −3.32499e12 −0.494177 −0.247088 0.968993i \(-0.579474\pi\)
−0.247088 + 0.968993i \(0.579474\pi\)
\(710\) −1.86574e12 −0.275542
\(711\) 1.50565e12 0.220959
\(712\) −6.95467e12 −1.01418
\(713\) 6.99506e12 1.01365
\(714\) −2.41851e12 −0.348262
\(715\) 0 0
\(716\) 3.37555e12 0.479995
\(717\) 4.09628e12 0.578834
\(718\) −3.33227e11 −0.0467929
\(719\) 1.47726e12 0.206147 0.103074 0.994674i \(-0.467132\pi\)
0.103074 + 0.994674i \(0.467132\pi\)
\(720\) 4.08362e11 0.0566304
\(721\) −1.53877e13 −2.12063
\(722\) 1.12224e12 0.153699
\(723\) −2.81314e12 −0.382886
\(724\) 1.12769e13 1.52533
\(725\) 5.37071e11 0.0721956
\(726\) 4.49504e12 0.600508
\(727\) −5.16476e12 −0.685717 −0.342859 0.939387i \(-0.611395\pi\)
−0.342859 + 0.939387i \(0.611395\pi\)
\(728\) 0 0
\(729\) 6.49430e12 0.851644
\(730\) −1.45128e12 −0.189147
\(731\) −5.56261e12 −0.720528
\(732\) −7.62642e11 −0.0981795
\(733\) 2.65026e12 0.339094 0.169547 0.985522i \(-0.445770\pi\)
0.169547 + 0.985522i \(0.445770\pi\)
\(734\) 2.66948e12 0.339464
\(735\) −5.31051e12 −0.671186
\(736\) −1.04884e13 −1.31753
\(737\) 5.33435e12 0.666005
\(738\) −1.68435e11 −0.0209015
\(739\) 3.46066e12 0.426834 0.213417 0.976961i \(-0.431541\pi\)
0.213417 + 0.976961i \(0.431541\pi\)
\(740\) −8.93169e12 −1.09494
\(741\) 0 0
\(742\) 2.17839e12 0.263827
\(743\) −7.44309e12 −0.895990 −0.447995 0.894036i \(-0.647862\pi\)
−0.447995 + 0.894036i \(0.647862\pi\)
\(744\) −4.87652e12 −0.583488
\(745\) 6.69366e12 0.796086
\(746\) 4.75422e12 0.562023
\(747\) −3.18962e11 −0.0374797
\(748\) −6.83667e12 −0.798523
\(749\) 1.35063e13 1.56808
\(750\) −4.01799e12 −0.463696
\(751\) 7.42849e12 0.852159 0.426080 0.904686i \(-0.359894\pi\)
0.426080 + 0.904686i \(0.359894\pi\)
\(752\) −5.57440e12 −0.635649
\(753\) 2.76251e12 0.313132
\(754\) 0 0
\(755\) −4.04448e12 −0.453004
\(756\) −9.15786e12 −1.01964
\(757\) −7.98178e12 −0.883422 −0.441711 0.897157i \(-0.645628\pi\)
−0.441711 + 0.897157i \(0.645628\pi\)
\(758\) 1.31173e12 0.144323
\(759\) 2.05384e13 2.24635
\(760\) −4.75171e12 −0.516641
\(761\) −1.14181e12 −0.123414 −0.0617070 0.998094i \(-0.519654\pi\)
−0.0617070 + 0.998094i \(0.519654\pi\)
\(762\) −6.69023e12 −0.718859
\(763\) 1.92149e13 2.05247
\(764\) 1.52907e13 1.62371
\(765\) −6.22057e11 −0.0656680
\(766\) 3.01886e12 0.316821
\(767\) 0 0
\(768\) 2.77180e12 0.287499
\(769\) −1.43398e13 −1.47868 −0.739340 0.673332i \(-0.764862\pi\)
−0.739340 + 0.673332i \(0.764862\pi\)
\(770\) 7.07479e12 0.725280
\(771\) −1.19508e13 −1.21801
\(772\) 4.79536e12 0.485896
\(773\) 1.42374e13 1.43424 0.717119 0.696950i \(-0.245460\pi\)
0.717119 + 0.696950i \(0.245460\pi\)
\(774\) −5.71799e11 −0.0572676
\(775\) −1.68185e12 −0.167467
\(776\) 6.68900e11 0.0662191
\(777\) −2.10339e13 −2.07026
\(778\) −2.22341e12 −0.217576
\(779\) −3.45020e12 −0.335680
\(780\) 0 0
\(781\) −1.24203e13 −1.19455
\(782\) 3.59383e12 0.343659
\(783\) −3.12144e12 −0.296775
\(784\) 4.06094e12 0.383888
\(785\) −1.02606e13 −0.964407
\(786\) −1.21853e12 −0.113877
\(787\) −1.31208e13 −1.21920 −0.609598 0.792711i \(-0.708669\pi\)
−0.609598 + 0.792711i \(0.708669\pi\)
\(788\) −7.79407e11 −0.0720105
\(789\) −1.75478e13 −1.61204
\(790\) −7.14574e12 −0.652718
\(791\) 1.60167e13 1.45472
\(792\) −1.54426e12 −0.139462
\(793\) 0 0
\(794\) −4.80405e11 −0.0428958
\(795\) 5.19497e12 0.461244
\(796\) 4.64011e12 0.409656
\(797\) 1.99597e12 0.175223 0.0876117 0.996155i \(-0.472077\pi\)
0.0876117 + 0.996155i \(0.472077\pi\)
\(798\) −5.09243e12 −0.444541
\(799\) 8.49145e12 0.737092
\(800\) 2.52177e12 0.217671
\(801\) −1.91705e12 −0.164546
\(802\) −2.30356e12 −0.196614
\(803\) −9.66128e12 −0.820001
\(804\) −4.50652e12 −0.380355
\(805\) 1.88394e13 1.58119
\(806\) 0 0
\(807\) −1.37403e12 −0.114042
\(808\) −1.80531e12 −0.149005
\(809\) 1.47118e13 1.20753 0.603763 0.797164i \(-0.293667\pi\)
0.603763 + 0.797164i \(0.293667\pi\)
\(810\) 4.84016e12 0.395073
\(811\) 1.06958e13 0.868199 0.434100 0.900865i \(-0.357067\pi\)
0.434100 + 0.900865i \(0.357067\pi\)
\(812\) 4.32740e12 0.349321
\(813\) 4.66420e11 0.0374429
\(814\) 1.17375e13 0.937059
\(815\) −1.22100e13 −0.969408
\(816\) 4.41047e12 0.348241
\(817\) −1.17127e13 −0.919723
\(818\) −6.84325e12 −0.534407
\(819\) 0 0
\(820\) −4.04943e12 −0.312774
\(821\) 1.63358e13 1.25487 0.627433 0.778671i \(-0.284106\pi\)
0.627433 + 0.778671i \(0.284106\pi\)
\(822\) −6.46140e12 −0.493632
\(823\) −1.10509e13 −0.839648 −0.419824 0.907606i \(-0.637908\pi\)
−0.419824 + 0.907606i \(0.637908\pi\)
\(824\) −1.59405e13 −1.20456
\(825\) −4.93811e12 −0.371123
\(826\) 4.85170e12 0.362646
\(827\) 1.02665e13 0.763215 0.381608 0.924324i \(-0.375371\pi\)
0.381608 + 0.924324i \(0.375371\pi\)
\(828\) −1.87138e12 −0.138365
\(829\) 2.47482e13 1.81990 0.909952 0.414713i \(-0.136118\pi\)
0.909952 + 0.414713i \(0.136118\pi\)
\(830\) 1.51378e12 0.110716
\(831\) −9.38333e12 −0.682578
\(832\) 0 0
\(833\) −6.18601e12 −0.445152
\(834\) 3.58758e12 0.256776
\(835\) −2.12326e13 −1.51152
\(836\) −1.43953e13 −1.01928
\(837\) 9.77484e12 0.688407
\(838\) 1.12729e12 0.0789654
\(839\) −3.99121e12 −0.278084 −0.139042 0.990287i \(-0.544402\pi\)
−0.139042 + 0.990287i \(0.544402\pi\)
\(840\) −1.31336e13 −0.910181
\(841\) −1.30322e13 −0.898327
\(842\) −9.05167e12 −0.620618
\(843\) 1.30074e13 0.887089
\(844\) −1.16919e13 −0.793127
\(845\) 0 0
\(846\) 8.72864e11 0.0585841
\(847\) 2.74484e13 1.83249
\(848\) −3.97259e12 −0.263811
\(849\) 2.96189e13 1.95652
\(850\) −8.64079e11 −0.0567764
\(851\) 3.12557e13 2.04290
\(852\) 1.04928e13 0.682205
\(853\) −3.00925e11 −0.0194620 −0.00973099 0.999953i \(-0.503098\pi\)
−0.00973099 + 0.999953i \(0.503098\pi\)
\(854\) 9.19315e11 0.0591431
\(855\) −1.30981e12 −0.0838223
\(856\) 1.39916e13 0.890705
\(857\) −7.65732e12 −0.484912 −0.242456 0.970162i \(-0.577953\pi\)
−0.242456 + 0.970162i \(0.577953\pi\)
\(858\) 0 0
\(859\) 1.94999e13 1.22198 0.610988 0.791640i \(-0.290773\pi\)
0.610988 + 0.791640i \(0.290773\pi\)
\(860\) −1.37469e13 −0.856963
\(861\) −9.53628e12 −0.591377
\(862\) 1.07068e13 0.660505
\(863\) −1.52132e13 −0.933626 −0.466813 0.884356i \(-0.654598\pi\)
−0.466813 + 0.884356i \(0.654598\pi\)
\(864\) −1.46564e13 −0.894780
\(865\) −1.94552e11 −0.0118158
\(866\) 7.26499e12 0.438940
\(867\) 1.08959e13 0.654906
\(868\) −1.35513e13 −0.810295
\(869\) −4.75696e13 −2.82970
\(870\) −2.03721e12 −0.120559
\(871\) 0 0
\(872\) 1.99052e13 1.16585
\(873\) 1.84382e11 0.0107437
\(874\) 7.56720e12 0.438666
\(875\) −2.45353e13 −1.41500
\(876\) 8.16197e12 0.468303
\(877\) −3.08434e12 −0.176061 −0.0880307 0.996118i \(-0.528057\pi\)
−0.0880307 + 0.996118i \(0.528057\pi\)
\(878\) −2.01453e12 −0.114406
\(879\) 1.51400e13 0.855415
\(880\) −1.29018e13 −0.725235
\(881\) 1.25912e13 0.704165 0.352082 0.935969i \(-0.385474\pi\)
0.352082 + 0.935969i \(0.385474\pi\)
\(882\) −6.35880e11 −0.0353807
\(883\) 1.13028e13 0.625696 0.312848 0.949803i \(-0.398717\pi\)
0.312848 + 0.949803i \(0.398717\pi\)
\(884\) 0 0
\(885\) 1.15702e13 0.634009
\(886\) −3.30790e12 −0.180344
\(887\) 2.94785e13 1.59900 0.799501 0.600665i \(-0.205097\pi\)
0.799501 + 0.600665i \(0.205097\pi\)
\(888\) −2.17895e13 −1.17595
\(889\) −4.08529e13 −2.19364
\(890\) 9.09822e12 0.486073
\(891\) 3.22212e13 1.71274
\(892\) 1.37608e13 0.727785
\(893\) 1.78797e13 0.940866
\(894\) 7.43134e12 0.389088
\(895\) −9.70365e12 −0.505512
\(896\) 2.57917e13 1.33688
\(897\) 0 0
\(898\) −6.36900e12 −0.326834
\(899\) −4.61894e12 −0.235844
\(900\) 4.49942e11 0.0228594
\(901\) 6.05142e12 0.305912
\(902\) 5.32153e12 0.267675
\(903\) −3.23736e13 −1.62030
\(904\) 1.65921e13 0.826312
\(905\) −3.24174e13 −1.60642
\(906\) −4.49021e12 −0.221406
\(907\) 1.58747e13 0.778884 0.389442 0.921051i \(-0.372668\pi\)
0.389442 + 0.921051i \(0.372668\pi\)
\(908\) −1.73724e12 −0.0848152
\(909\) −4.97633e11 −0.0241753
\(910\) 0 0
\(911\) −9.45057e12 −0.454596 −0.227298 0.973825i \(-0.572989\pi\)
−0.227298 + 0.973825i \(0.572989\pi\)
\(912\) 9.28672e12 0.444514
\(913\) 1.00773e13 0.479983
\(914\) −7.97086e12 −0.377787
\(915\) 2.19236e12 0.103399
\(916\) 1.01178e13 0.474849
\(917\) −7.44080e12 −0.347502
\(918\) 5.02200e12 0.233391
\(919\) 1.51181e13 0.699160 0.349580 0.936907i \(-0.386324\pi\)
0.349580 + 0.936907i \(0.386324\pi\)
\(920\) 1.95162e13 0.898151
\(921\) −7.01194e12 −0.321122
\(922\) 3.86973e12 0.176356
\(923\) 0 0
\(924\) −3.97884e13 −1.79570
\(925\) −7.51492e12 −0.337510
\(926\) −2.88888e11 −0.0129116
\(927\) −4.39399e12 −0.195434
\(928\) 6.92566e12 0.306546
\(929\) −3.32560e13 −1.46487 −0.732435 0.680837i \(-0.761616\pi\)
−0.732435 + 0.680837i \(0.761616\pi\)
\(930\) 6.37955e12 0.279651
\(931\) −1.30253e13 −0.568217
\(932\) −2.15651e13 −0.936223
\(933\) 2.87370e13 1.24158
\(934\) 1.46157e13 0.628431
\(935\) 1.96533e13 0.840974
\(936\) 0 0
\(937\) 3.60385e13 1.52735 0.763674 0.645602i \(-0.223393\pi\)
0.763674 + 0.645602i \(0.223393\pi\)
\(938\) 5.43232e12 0.229125
\(939\) 2.25033e13 0.944609
\(940\) 2.09850e13 0.876664
\(941\) −1.35496e13 −0.563341 −0.281671 0.959511i \(-0.590889\pi\)
−0.281671 + 0.959511i \(0.590889\pi\)
\(942\) −1.13914e13 −0.471355
\(943\) 1.41706e13 0.583561
\(944\) −8.84771e12 −0.362624
\(945\) 2.63260e13 1.07384
\(946\) 1.80654e13 0.733395
\(947\) −3.38186e13 −1.36641 −0.683205 0.730226i \(-0.739415\pi\)
−0.683205 + 0.730226i \(0.739415\pi\)
\(948\) 4.01874e13 1.61604
\(949\) 0 0
\(950\) −1.81941e12 −0.0724727
\(951\) 2.48588e12 0.0985524
\(952\) −1.52989e13 −0.603661
\(953\) 1.84267e13 0.723652 0.361826 0.932246i \(-0.382153\pi\)
0.361826 + 0.932246i \(0.382153\pi\)
\(954\) 6.22045e11 0.0243139
\(955\) −4.39560e13 −1.71003
\(956\) 1.17921e13 0.456594
\(957\) −1.35618e13 −0.522653
\(958\) −5.26930e12 −0.202120
\(959\) −3.94556e13 −1.50635
\(960\) 3.48576e12 0.132458
\(961\) −1.19753e13 −0.452930
\(962\) 0 0
\(963\) 3.85676e12 0.144512
\(964\) −8.09827e12 −0.302027
\(965\) −1.37852e13 −0.511728
\(966\) 2.09156e13 0.772810
\(967\) 1.53512e13 0.564577 0.282288 0.959330i \(-0.408906\pi\)
0.282288 + 0.959330i \(0.408906\pi\)
\(968\) 2.84345e13 1.04089
\(969\) −1.41464e13 −0.515454
\(970\) −8.75066e11 −0.0317372
\(971\) −3.33716e13 −1.20473 −0.602366 0.798220i \(-0.705775\pi\)
−0.602366 + 0.798220i \(0.705775\pi\)
\(972\) −5.58971e12 −0.200859
\(973\) 2.19070e13 0.783567
\(974\) 2.60188e12 0.0926342
\(975\) 0 0
\(976\) −1.67649e12 −0.0591394
\(977\) 3.82689e13 1.34375 0.671877 0.740663i \(-0.265488\pi\)
0.671877 + 0.740663i \(0.265488\pi\)
\(978\) −1.35556e13 −0.473799
\(979\) 6.05673e13 2.10725
\(980\) −1.52875e13 −0.529443
\(981\) 5.48686e12 0.189153
\(982\) 1.43645e13 0.492935
\(983\) 1.14311e13 0.390478 0.195239 0.980756i \(-0.437452\pi\)
0.195239 + 0.980756i \(0.437452\pi\)
\(984\) −9.87888e12 −0.335915
\(985\) 2.24055e12 0.0758388
\(986\) −2.37306e12 −0.0799583
\(987\) 4.94190e13 1.65755
\(988\) 0 0
\(989\) 4.81061e13 1.59888
\(990\) 2.02022e12 0.0668407
\(991\) −1.23861e13 −0.407946 −0.203973 0.978977i \(-0.565385\pi\)
−0.203973 + 0.978977i \(0.565385\pi\)
\(992\) −2.16878e13 −0.711072
\(993\) −2.02125e13 −0.659703
\(994\) −1.26484e13 −0.410958
\(995\) −1.33388e13 −0.431434
\(996\) −8.51343e12 −0.274118
\(997\) 3.47283e13 1.11315 0.556577 0.830796i \(-0.312115\pi\)
0.556577 + 0.830796i \(0.312115\pi\)
\(998\) −2.15953e13 −0.689084
\(999\) 4.36765e13 1.38740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.c.1.4 9
13.3 even 3 13.10.c.a.9.6 yes 18
13.9 even 3 13.10.c.a.3.6 18
13.12 even 2 169.10.a.d.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.c.a.3.6 18 13.9 even 3
13.10.c.a.9.6 yes 18 13.3 even 3
169.10.a.c.1.4 9 1.1 even 1 trivial
169.10.a.d.1.6 9 13.12 even 2