Properties

Label 169.10.a.c
Level $169$
Weight $10$
Character orbit 169.a
Self dual yes
Analytic conductor $87.041$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3 x^{8} - 3184 x^{7} + 4328 x^{6} + 3323368 x^{5} - 2832720 x^{4} - 1268725952 x^{3} + \cdots + 390142272000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 13^{2} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{2} + (\beta_{3} - 18) q^{3} + (\beta_{2} - 2 \beta_1 + 200) q^{4} + ( - \beta_{4} + \beta_{3} - 7 \beta_1 - 124) q^{5} + ( - \beta_{6} - 2 \beta_{3} + \cdots - 230) q^{6}+ \cdots + (\beta_{8} + \beta_{7} + \beta_{6} + \cdots + 3745) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 2) q^{2} + (\beta_{3} - 18) q^{3} + (\beta_{2} - 2 \beta_1 + 200) q^{4} + ( - \beta_{4} + \beta_{3} - 7 \beta_1 - 124) q^{5} + ( - \beta_{6} - 2 \beta_{3} + \cdots - 230) q^{6}+ \cdots + (22876 \beta_{8} + 19573 \beta_{7} + \cdots + 125070211) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 15 q^{2} - 161 q^{3} + 1793 q^{4} - 1140 q^{5} - 2118 q^{6} + 1939 q^{7} - 7239 q^{8} + 33654 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 15 q^{2} - 161 q^{3} + 1793 q^{4} - 1140 q^{5} - 2118 q^{6} + 1939 q^{7} - 7239 q^{8} + 33654 q^{9} - 46923 q^{10} + 5433 q^{11} + 4356 q^{12} - 4950 q^{14} + 347428 q^{15} - 400127 q^{16} - 248589 q^{17} - 19369 q^{18} + 311001 q^{19} - 927069 q^{20} + 776515 q^{21} - 1857242 q^{22} - 591609 q^{23} + 4492800 q^{24} + 3504499 q^{25} - 5801741 q^{27} - 2697168 q^{28} - 11014155 q^{29} + 6597836 q^{30} - 11574038 q^{31} + 11868417 q^{32} - 14131427 q^{33} + 10929931 q^{34} - 21112794 q^{35} - 10792871 q^{36} + 29215749 q^{37} + 7286094 q^{38} + 13661111 q^{40} - 3328377 q^{41} - 39828306 q^{42} - 6074381 q^{43} + 15912312 q^{44} - 32857342 q^{45} - 36693338 q^{46} - 22787526 q^{47} + 30270064 q^{48} - 10293266 q^{49} + 49601730 q^{50} - 68293747 q^{51} - 14740008 q^{53} - 152965386 q^{54} + 18710998 q^{55} + 7665444 q^{56} + 261681615 q^{57} + 163479359 q^{58} + 32715855 q^{59} - 94319208 q^{60} + 220502845 q^{61} + 59980476 q^{62} - 166572574 q^{63} - 462302015 q^{64} - 24064038 q^{66} - 112659045 q^{67} + 238942419 q^{68} - 86003951 q^{69} + 1020075496 q^{70} + 236450709 q^{71} - 995206683 q^{72} - 105940610 q^{73} + 455580507 q^{74} - 968954813 q^{75} + 365789708 q^{76} - 1199615445 q^{77} - 408759548 q^{79} - 580424625 q^{80} - 176914851 q^{81} - 941792217 q^{82} + 1112845728 q^{83} + 1819004068 q^{84} - 1812284636 q^{85} + 145660038 q^{86} - 69564799 q^{87} - 3178375740 q^{88} + 1154379039 q^{89} - 5112904755 q^{90} - 2272753296 q^{92} - 3136878060 q^{93} - 2755131560 q^{94} - 1779441012 q^{95} + 2953482784 q^{96} + 3616470111 q^{97} - 8263323501 q^{98} + 1131074634 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 3 x^{8} - 3184 x^{7} + 4328 x^{6} + 3323368 x^{5} - 2832720 x^{4} - 1268725952 x^{3} + \cdots + 390142272000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 708 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 60199 \nu^{8} - 23080813 \nu^{7} - 543953414 \nu^{6} + 83217824628 \nu^{5} + \cdots + 10\!\cdots\!20 ) / 417575199150080 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 31848991 \nu^{8} + 959555337 \nu^{7} - 116006648294 \nu^{6} - 2042879267332 \nu^{5} + \cdots + 21\!\cdots\!00 ) / 730756598512640 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 136245217 \nu^{8} + 7231100859 \nu^{7} - 384065441318 \nu^{6} - 20404537289644 \nu^{5} + \cdots + 80\!\cdots\!00 ) / 29\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2326141 \nu^{8} + 73562703 \nu^{7} - 8347836590 \nu^{6} - 162190499836 \nu^{5} + \cdots - 43\!\cdots\!92 ) / 41757519915008 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 295739873 \nu^{8} + 3080314837 \nu^{7} + 1144549491446 \nu^{6} - 9922631049620 \nu^{5} + \cdots - 41\!\cdots\!40 ) / 584605278810112 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 862743299 \nu^{8} - 13119464927 \nu^{7} - 2428839028066 \nu^{6} + 28600740670332 \nu^{5} + \cdots + 45\!\cdots\!00 ) / 14\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 708 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} + 21\beta_{3} + 9\beta_{2} + 1111\beta _1 + 1373 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -44\beta_{6} + 19\beta_{5} + 37\beta_{4} + 327\beta_{3} + 1507\beta_{2} + 7017\beta _1 + 780567 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 48 \beta_{8} + 112 \beta_{7} - 500 \beta_{6} + 1929 \beta_{5} - 577 \beta_{4} + 59573 \beta_{3} + \cdots + 4825349 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2096 \beta_{8} + 3280 \beta_{7} - 103676 \beta_{6} + 47251 \beta_{5} + 95109 \beta_{4} + \cdots + 986992551 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 103888 \beta_{8} + 300208 \beta_{7} - 1582868 \beta_{6} + 3287801 \beta_{5} + 958607 \beta_{4} + \cdots + 12016457973 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 7583344 \beta_{8} + 10086288 \beta_{7} - 186733116 \beta_{6} + 94197483 \beta_{5} + 182981037 \beta_{4} + \cdots + 1364356391391 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−34.5476
−32.5507
−26.9303
−7.18744
−4.38428
14.0491
24.2574
29.1723
41.1215
−36.5476 −184.214 823.724 529.393 6732.57 −8675.83 −11392.7 14251.8 −19348.0
1.2 −34.5507 57.7993 681.751 −2017.22 −1997.01 11757.7 −5865.01 −16342.2 69696.2
1.3 −28.9303 190.754 324.962 1752.49 −5518.56 −4404.48 5411.06 16704.0 −50700.2
1.4 −9.18744 −148.535 −427.591 1229.19 1364.65 8333.07 8632.44 2379.53 −11293.1
1.5 −6.38428 −5.82434 −471.241 −1063.81 37.1842 −6475.20 6277.28 −19649.1 6791.63
1.6 12.0491 193.813 −366.820 −26.3134 2335.27 2696.19 −10589.0 17880.6 −317.053
1.7 22.2574 −256.527 −16.6063 −2488.59 −5709.64 167.896 −11765.4 46123.2 −55389.7
1.8 27.1723 −80.4157 226.333 1952.16 −2185.08 −1080.19 −7762.23 −13216.3 53044.7
1.9 39.1215 72.1497 1018.49 −1007.31 2822.60 −380.109 19814.6 −14477.4 −39407.4
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.10.a.c 9
13.b even 2 1 169.10.a.d 9
13.c even 3 2 13.10.c.a 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.10.c.a 18 13.c even 3 2
169.10.a.c 9 1.a even 1 1 trivial
169.10.a.d 9 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{9} + 15 T_{2}^{8} - 3088 T_{2}^{7} - 39912 T_{2}^{6} + 3108520 T_{2}^{5} + 29769792 T_{2}^{4} + \cdots + 610864349184 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} + \cdots + 610864349184 \) Copy content Toggle raw display
$3$ \( T^{9} + \cdots + 50\!\cdots\!40 \) Copy content Toggle raw display
$5$ \( T^{9} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{9} + \cdots + 45\!\cdots\!20 \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots + 53\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{9} \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots - 44\!\cdots\!43 \) Copy content Toggle raw display
$19$ \( T^{9} + \cdots + 24\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{9} + \cdots - 32\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots - 43\!\cdots\!61 \) Copy content Toggle raw display
$31$ \( T^{9} + \cdots - 33\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots + 96\!\cdots\!43 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots - 20\!\cdots\!75 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots - 34\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots - 65\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots - 47\!\cdots\!85 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots - 24\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots - 48\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots - 95\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots + 73\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
show more
show less