Properties

Label 1680.2.bl.c.127.4
Level $1680$
Weight $2$
Character 1680.127
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.4
Root \(-0.394157 - 1.35818i\) of defining polynomial
Character \(\chi\) \(=\) 1680.127
Dual form 1680.2.bl.c.463.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(-1.75233 - 1.38900i) q^{5} +(-0.707107 + 0.707107i) q^{7} +1.00000i q^{9} -2.82843i q^{11} +(-0.363328 + 0.363328i) q^{13} +(-0.256912 - 2.22126i) q^{15} +(3.86799 + 3.86799i) q^{17} -0.900390 q^{19} -1.00000 q^{21} +(4.40621 + 4.40621i) q^{23} +(1.14134 + 4.86799i) q^{25} +(-0.707107 + 0.707107i) q^{27} -4.28267i q^{29} -10.8131i q^{31} +(2.00000 - 2.00000i) q^{33} +(2.22126 - 0.256912i) q^{35} +(1.00000 + 1.00000i) q^{37} -0.513824 q^{39} +9.06068 q^{41} +(-2.12792 - 2.12792i) q^{43} +(1.38900 - 1.75233i) q^{45} +(4.95634 - 4.95634i) q^{47} -1.00000i q^{49} +5.47017i q^{51} +(8.64600 - 8.64600i) q^{53} +(-3.92870 + 4.95634i) q^{55} +(-0.636672 - 0.636672i) q^{57} +6.05661 q^{59} +11.2920 q^{61} +(-0.707107 - 0.707107i) q^{63} +(1.14134 - 0.132007i) q^{65} +(-4.95634 + 4.95634i) q^{67} +6.23132i q^{69} +8.18453i q^{71} +(9.91934 - 9.91934i) q^{73} +(-2.63514 + 4.24924i) q^{75} +(2.00000 + 2.00000i) q^{77} -6.05661 q^{79} -1.00000 q^{81} +(6.75712 + 6.75712i) q^{83} +(-1.40535 - 12.1507i) q^{85} +(3.02831 - 3.02831i) q^{87} +14.5140i q^{89} -0.513824i q^{91} +(7.64600 - 7.64600i) q^{93} +(1.57778 + 1.25065i) q^{95} +(8.64600 + 8.64600i) q^{97} +2.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{17} - 12 q^{21} - 20 q^{25} + 24 q^{33} + 12 q^{37} + 16 q^{41} + 4 q^{45} + 28 q^{53} - 16 q^{57} - 16 q^{61} - 20 q^{65} + 60 q^{73} + 24 q^{77} - 12 q^{81} - 84 q^{85} + 16 q^{93}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) −1.75233 1.38900i −0.783667 0.621181i
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) −0.363328 + 0.363328i −0.100769 + 0.100769i −0.755694 0.654925i \(-0.772700\pi\)
0.654925 + 0.755694i \(0.272700\pi\)
\(14\) 0 0
\(15\) −0.256912 2.22126i −0.0663344 0.573527i
\(16\) 0 0
\(17\) 3.86799 + 3.86799i 0.938126 + 0.938126i 0.998194 0.0600683i \(-0.0191318\pi\)
−0.0600683 + 0.998194i \(0.519132\pi\)
\(18\) 0 0
\(19\) −0.900390 −0.206564 −0.103282 0.994652i \(-0.532934\pi\)
−0.103282 + 0.994652i \(0.532934\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 4.40621 + 4.40621i 0.918758 + 0.918758i 0.996939 0.0781810i \(-0.0249112\pi\)
−0.0781810 + 0.996939i \(0.524911\pi\)
\(24\) 0 0
\(25\) 1.14134 + 4.86799i 0.228267 + 0.973599i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 4.28267i 0.795272i −0.917543 0.397636i \(-0.869831\pi\)
0.917543 0.397636i \(-0.130169\pi\)
\(30\) 0 0
\(31\) 10.8131i 1.94209i −0.238905 0.971043i \(-0.576788\pi\)
0.238905 0.971043i \(-0.423212\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) 2.22126 0.256912i 0.375461 0.0434260i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) −0.513824 −0.0822776
\(40\) 0 0
\(41\) 9.06068 1.41504 0.707520 0.706693i \(-0.249814\pi\)
0.707520 + 0.706693i \(0.249814\pi\)
\(42\) 0 0
\(43\) −2.12792 2.12792i −0.324504 0.324504i 0.525988 0.850492i \(-0.323696\pi\)
−0.850492 + 0.525988i \(0.823696\pi\)
\(44\) 0 0
\(45\) 1.38900 1.75233i 0.207060 0.261222i
\(46\) 0 0
\(47\) 4.95634 4.95634i 0.722957 0.722957i −0.246249 0.969206i \(-0.579198\pi\)
0.969206 + 0.246249i \(0.0791982\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 5.47017i 0.765977i
\(52\) 0 0
\(53\) 8.64600 8.64600i 1.18762 1.18762i 0.209896 0.977724i \(-0.432688\pi\)
0.977724 0.209896i \(-0.0673125\pi\)
\(54\) 0 0
\(55\) −3.92870 + 4.95634i −0.529745 + 0.668313i
\(56\) 0 0
\(57\) −0.636672 0.636672i −0.0843292 0.0843292i
\(58\) 0 0
\(59\) 6.05661 0.788504 0.394252 0.919002i \(-0.371004\pi\)
0.394252 + 0.919002i \(0.371004\pi\)
\(60\) 0 0
\(61\) 11.2920 1.44579 0.722896 0.690957i \(-0.242810\pi\)
0.722896 + 0.690957i \(0.242810\pi\)
\(62\) 0 0
\(63\) −0.707107 0.707107i −0.0890871 0.0890871i
\(64\) 0 0
\(65\) 1.14134 0.132007i 0.141565 0.0163735i
\(66\) 0 0
\(67\) −4.95634 + 4.95634i −0.605514 + 0.605514i −0.941770 0.336257i \(-0.890839\pi\)
0.336257 + 0.941770i \(0.390839\pi\)
\(68\) 0 0
\(69\) 6.23132i 0.750163i
\(70\) 0 0
\(71\) 8.18453i 0.971325i 0.874146 + 0.485662i \(0.161422\pi\)
−0.874146 + 0.485662i \(0.838578\pi\)
\(72\) 0 0
\(73\) 9.91934 9.91934i 1.16097 1.16097i 0.176708 0.984263i \(-0.443455\pi\)
0.984263 0.176708i \(-0.0565449\pi\)
\(74\) 0 0
\(75\) −2.63514 + 4.24924i −0.304280 + 0.490660i
\(76\) 0 0
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) −6.05661 −0.681422 −0.340711 0.940168i \(-0.610668\pi\)
−0.340711 + 0.940168i \(0.610668\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 6.75712 + 6.75712i 0.741691 + 0.741691i 0.972903 0.231213i \(-0.0742693\pi\)
−0.231213 + 0.972903i \(0.574269\pi\)
\(84\) 0 0
\(85\) −1.40535 12.1507i −0.152432 1.31792i
\(86\) 0 0
\(87\) 3.02831 3.02831i 0.324669 0.324669i
\(88\) 0 0
\(89\) 14.5140i 1.53848i 0.638960 + 0.769240i \(0.279365\pi\)
−0.638960 + 0.769240i \(0.720635\pi\)
\(90\) 0 0
\(91\) 0.513824i 0.0538634i
\(92\) 0 0
\(93\) 7.64600 7.64600i 0.792853 0.792853i
\(94\) 0 0
\(95\) 1.57778 + 1.25065i 0.161877 + 0.128313i
\(96\) 0 0
\(97\) 8.64600 + 8.64600i 0.877868 + 0.877868i 0.993314 0.115445i \(-0.0368296\pi\)
−0.115445 + 0.993314i \(0.536830\pi\)
\(98\) 0 0
\(99\) 2.82843 0.284268
\(100\) 0 0
\(101\) −10.7780 −1.07245 −0.536226 0.844074i \(-0.680150\pi\)
−0.536226 + 0.844074i \(0.680150\pi\)
\(102\) 0 0
\(103\) −11.8407 11.8407i −1.16670 1.16670i −0.982978 0.183723i \(-0.941185\pi\)
−0.183723 0.982978i \(-0.558815\pi\)
\(104\) 0 0
\(105\) 1.75233 + 1.38900i 0.171010 + 0.135553i
\(106\) 0 0
\(107\) 1.25065 1.25065i 0.120904 0.120904i −0.644066 0.764970i \(-0.722754\pi\)
0.764970 + 0.644066i \(0.222754\pi\)
\(108\) 0 0
\(109\) 4.82936i 0.462569i −0.972886 0.231284i \(-0.925707\pi\)
0.972886 0.231284i \(-0.0742928\pi\)
\(110\) 0 0
\(111\) 1.41421i 0.134231i
\(112\) 0 0
\(113\) 3.63667 3.63667i 0.342109 0.342109i −0.515051 0.857160i \(-0.672227\pi\)
0.857160 + 0.515051i \(0.172227\pi\)
\(114\) 0 0
\(115\) −1.60090 13.8414i −0.149285 1.29072i
\(116\) 0 0
\(117\) −0.363328 0.363328i −0.0335897 0.0335897i
\(118\) 0 0
\(119\) −5.47017 −0.501449
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 6.40687 + 6.40687i 0.577688 + 0.577688i
\(124\) 0 0
\(125\) 4.76166 10.1157i 0.425896 0.904772i
\(126\) 0 0
\(127\) −10.6858 + 10.6858i −0.948213 + 0.948213i −0.998724 0.0505103i \(-0.983915\pi\)
0.0505103 + 0.998724i \(0.483915\pi\)
\(128\) 0 0
\(129\) 3.00933i 0.264957i
\(130\) 0 0
\(131\) 11.7135i 1.02341i −0.859161 0.511705i \(-0.829014\pi\)
0.859161 0.511705i \(-0.170986\pi\)
\(132\) 0 0
\(133\) 0.636672 0.636672i 0.0552064 0.0552064i
\(134\) 0 0
\(135\) 2.22126 0.256912i 0.191176 0.0221115i
\(136\) 0 0
\(137\) 2.91002 + 2.91002i 0.248619 + 0.248619i 0.820404 0.571784i \(-0.193749\pi\)
−0.571784 + 0.820404i \(0.693749\pi\)
\(138\) 0 0
\(139\) −1.30015 −0.110277 −0.0551386 0.998479i \(-0.517560\pi\)
−0.0551386 + 0.998479i \(0.517560\pi\)
\(140\) 0 0
\(141\) 7.00933 0.590292
\(142\) 0 0
\(143\) 1.02765 + 1.02765i 0.0859362 + 0.0859362i
\(144\) 0 0
\(145\) −5.94865 + 7.50466i −0.494008 + 0.623228i
\(146\) 0 0
\(147\) 0.707107 0.707107i 0.0583212 0.0583212i
\(148\) 0 0
\(149\) 11.4533i 0.938292i 0.883121 + 0.469146i \(0.155438\pi\)
−0.883121 + 0.469146i \(0.844562\pi\)
\(150\) 0 0
\(151\) 5.91137i 0.481060i −0.970642 0.240530i \(-0.922679\pi\)
0.970642 0.240530i \(-0.0773213\pi\)
\(152\) 0 0
\(153\) −3.86799 + 3.86799i −0.312709 + 0.312709i
\(154\) 0 0
\(155\) −15.0194 + 18.9481i −1.20639 + 1.52195i
\(156\) 0 0
\(157\) 2.08066 + 2.08066i 0.166054 + 0.166054i 0.785243 0.619188i \(-0.212538\pi\)
−0.619188 + 0.785243i \(0.712538\pi\)
\(158\) 0 0
\(159\) 12.2273 0.969687
\(160\) 0 0
\(161\) −6.23132 −0.491097
\(162\) 0 0
\(163\) 4.88372 + 4.88372i 0.382523 + 0.382523i 0.872010 0.489488i \(-0.162816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(164\) 0 0
\(165\) −6.28267 + 0.726656i −0.489105 + 0.0565701i
\(166\) 0 0
\(167\) −10.9403 + 10.9403i −0.846589 + 0.846589i −0.989706 0.143117i \(-0.954287\pi\)
0.143117 + 0.989706i \(0.454287\pi\)
\(168\) 0 0
\(169\) 12.7360i 0.979691i
\(170\) 0 0
\(171\) 0.900390i 0.0688545i
\(172\) 0 0
\(173\) 4.13201 4.13201i 0.314151 0.314151i −0.532365 0.846515i \(-0.678696\pi\)
0.846515 + 0.532365i \(0.178696\pi\)
\(174\) 0 0
\(175\) −4.24924 2.63514i −0.321212 0.199198i
\(176\) 0 0
\(177\) 4.28267 + 4.28267i 0.321905 + 0.321905i
\(178\) 0 0
\(179\) −11.6408 −0.870078 −0.435039 0.900412i \(-0.643265\pi\)
−0.435039 + 0.900412i \(0.643265\pi\)
\(180\) 0 0
\(181\) −17.5747 −1.30632 −0.653158 0.757222i \(-0.726556\pi\)
−0.653158 + 0.757222i \(0.726556\pi\)
\(182\) 0 0
\(183\) 7.98465 + 7.98465i 0.590242 + 0.590242i
\(184\) 0 0
\(185\) −0.363328 3.14134i −0.0267124 0.230956i
\(186\) 0 0
\(187\) 10.9403 10.9403i 0.800037 0.800037i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 5.02897i 0.363883i −0.983309 0.181942i \(-0.941762\pi\)
0.983309 0.181942i \(-0.0582382\pi\)
\(192\) 0 0
\(193\) 1.44398 1.44398i 0.103940 0.103940i −0.653224 0.757165i \(-0.726584\pi\)
0.757165 + 0.653224i \(0.226584\pi\)
\(194\) 0 0
\(195\) 0.900390 + 0.713703i 0.0644783 + 0.0511093i
\(196\) 0 0
\(197\) 2.80731 + 2.80731i 0.200013 + 0.200013i 0.800005 0.599993i \(-0.204830\pi\)
−0.599993 + 0.800005i \(0.704830\pi\)
\(198\) 0 0
\(199\) 12.4686 0.883877 0.441938 0.897045i \(-0.354291\pi\)
0.441938 + 0.897045i \(0.354291\pi\)
\(200\) 0 0
\(201\) −7.00933 −0.494400
\(202\) 0 0
\(203\) 3.02831 + 3.02831i 0.212545 + 0.212545i
\(204\) 0 0
\(205\) −15.8773 12.5853i −1.10892 0.878997i
\(206\) 0 0
\(207\) −4.40621 + 4.40621i −0.306253 + 0.306253i
\(208\) 0 0
\(209\) 2.54669i 0.176158i
\(210\) 0 0
\(211\) 5.65685i 0.389434i −0.980859 0.194717i \(-0.937621\pi\)
0.980859 0.194717i \(-0.0623788\pi\)
\(212\) 0 0
\(213\) −5.78734 + 5.78734i −0.396542 + 0.396542i
\(214\) 0 0
\(215\) 0.773132 + 6.68450i 0.0527272 + 0.455879i
\(216\) 0 0
\(217\) 7.64600 + 7.64600i 0.519044 + 0.519044i
\(218\) 0 0
\(219\) 14.0281 0.947929
\(220\) 0 0
\(221\) −2.81070 −0.189068
\(222\) 0 0
\(223\) −20.3260 20.3260i −1.36113 1.36113i −0.872480 0.488650i \(-0.837489\pi\)
−0.488650 0.872480i \(-0.662511\pi\)
\(224\) 0 0
\(225\) −4.86799 + 1.14134i −0.324533 + 0.0760891i
\(226\) 0 0
\(227\) 17.7701 17.7701i 1.17944 1.17944i 0.199555 0.979887i \(-0.436050\pi\)
0.979887 0.199555i \(-0.0639497\pi\)
\(228\) 0 0
\(229\) 1.73599i 0.114717i −0.998354 0.0573586i \(-0.981732\pi\)
0.998354 0.0573586i \(-0.0182678\pi\)
\(230\) 0 0
\(231\) 2.82843i 0.186097i
\(232\) 0 0
\(233\) −10.0993 + 10.0993i −0.661628 + 0.661628i −0.955764 0.294136i \(-0.904968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(234\) 0 0
\(235\) −15.5695 + 1.80078i −1.01564 + 0.117470i
\(236\) 0 0
\(237\) −4.28267 4.28267i −0.278189 0.278189i
\(238\) 0 0
\(239\) 16.3427 1.05712 0.528560 0.848896i \(-0.322732\pi\)
0.528560 + 0.848896i \(0.322732\pi\)
\(240\) 0 0
\(241\) −7.71733 −0.497117 −0.248558 0.968617i \(-0.579957\pi\)
−0.248558 + 0.968617i \(0.579957\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) −1.38900 + 1.75233i −0.0887402 + 0.111952i
\(246\) 0 0
\(247\) 0.327137 0.327137i 0.0208152 0.0208152i
\(248\) 0 0
\(249\) 9.55602i 0.605588i
\(250\) 0 0
\(251\) 13.9140i 0.878244i 0.898427 + 0.439122i \(0.144710\pi\)
−0.898427 + 0.439122i \(0.855290\pi\)
\(252\) 0 0
\(253\) 12.4626 12.4626i 0.783520 0.783520i
\(254\) 0 0
\(255\) 7.59808 9.58555i 0.475810 0.600270i
\(256\) 0 0
\(257\) −1.08998 1.08998i −0.0679914 0.0679914i 0.672293 0.740285i \(-0.265309\pi\)
−0.740285 + 0.672293i \(0.765309\pi\)
\(258\) 0 0
\(259\) −1.41421 −0.0878750
\(260\) 0 0
\(261\) 4.28267 0.265091
\(262\) 0 0
\(263\) 4.07907 + 4.07907i 0.251526 + 0.251526i 0.821596 0.570070i \(-0.193084\pi\)
−0.570070 + 0.821596i \(0.693084\pi\)
\(264\) 0 0
\(265\) −27.1600 + 3.14134i −1.66843 + 0.192971i
\(266\) 0 0
\(267\) −10.2629 + 10.2629i −0.628082 + 0.628082i
\(268\) 0 0
\(269\) 16.6940i 1.01785i −0.860811 0.508924i \(-0.830043\pi\)
0.860811 0.508924i \(-0.169957\pi\)
\(270\) 0 0
\(271\) 22.3813i 1.35957i 0.733413 + 0.679784i \(0.237926\pi\)
−0.733413 + 0.679784i \(0.762074\pi\)
\(272\) 0 0
\(273\) 0.363328 0.363328i 0.0219896 0.0219896i
\(274\) 0 0
\(275\) 13.7688 3.22819i 0.830288 0.194667i
\(276\) 0 0
\(277\) 2.71733 + 2.71733i 0.163268 + 0.163268i 0.784013 0.620745i \(-0.213170\pi\)
−0.620745 + 0.784013i \(0.713170\pi\)
\(278\) 0 0
\(279\) 10.8131 0.647362
\(280\) 0 0
\(281\) −8.28267 −0.494103 −0.247051 0.969002i \(-0.579462\pi\)
−0.247051 + 0.969002i \(0.579462\pi\)
\(282\) 0 0
\(283\) −4.90171 4.90171i −0.291376 0.291376i 0.546248 0.837624i \(-0.316056\pi\)
−0.837624 + 0.546248i \(0.816056\pi\)
\(284\) 0 0
\(285\) 0.231321 + 2.00000i 0.0137023 + 0.118470i
\(286\) 0 0
\(287\) −6.40687 + 6.40687i −0.378185 + 0.378185i
\(288\) 0 0
\(289\) 12.9227i 0.760161i
\(290\) 0 0
\(291\) 12.2273i 0.716776i
\(292\) 0 0
\(293\) 16.8260 16.8260i 0.982984 0.982984i −0.0168740 0.999858i \(-0.505371\pi\)
0.999858 + 0.0168740i \(0.00537141\pi\)
\(294\) 0 0
\(295\) −10.6132 8.41266i −0.617924 0.489804i
\(296\) 0 0
\(297\) 2.00000 + 2.00000i 0.116052 + 0.116052i
\(298\) 0 0
\(299\) −3.20180 −0.185165
\(300\) 0 0
\(301\) 3.00933 0.173455
\(302\) 0 0
\(303\) −7.62120 7.62120i −0.437827 0.437827i
\(304\) 0 0
\(305\) −19.7873 15.6846i −1.13302 0.898100i
\(306\) 0 0
\(307\) 3.85607 3.85607i 0.220078 0.220078i −0.588453 0.808531i \(-0.700263\pi\)
0.808531 + 0.588453i \(0.200263\pi\)
\(308\) 0 0
\(309\) 16.7453i 0.952608i
\(310\) 0 0
\(311\) 33.0851i 1.87608i −0.346521 0.938042i \(-0.612637\pi\)
0.346521 0.938042i \(-0.387363\pi\)
\(312\) 0 0
\(313\) 15.6367 15.6367i 0.883837 0.883837i −0.110085 0.993922i \(-0.535112\pi\)
0.993922 + 0.110085i \(0.0351124\pi\)
\(314\) 0 0
\(315\) 0.256912 + 2.22126i 0.0144753 + 0.125154i
\(316\) 0 0
\(317\) 10.3633 + 10.3633i 0.582063 + 0.582063i 0.935470 0.353407i \(-0.114977\pi\)
−0.353407 + 0.935470i \(0.614977\pi\)
\(318\) 0 0
\(319\) −12.1132 −0.678210
\(320\) 0 0
\(321\) 1.76868 0.0987180
\(322\) 0 0
\(323\) −3.48270 3.48270i −0.193783 0.193783i
\(324\) 0 0
\(325\) −2.18336 1.35400i −0.121111 0.0751064i
\(326\) 0 0
\(327\) 3.41487 3.41487i 0.188843 0.188843i
\(328\) 0 0
\(329\) 7.00933i 0.386437i
\(330\) 0 0
\(331\) 33.3396i 1.83251i −0.400594 0.916256i \(-0.631196\pi\)
0.400594 0.916256i \(-0.368804\pi\)
\(332\) 0 0
\(333\) −1.00000 + 1.00000i −0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) 15.5695 1.80078i 0.850655 0.0983871i
\(336\) 0 0
\(337\) −14.1893 14.1893i −0.772940 0.772940i 0.205679 0.978619i \(-0.434060\pi\)
−0.978619 + 0.205679i \(0.934060\pi\)
\(338\) 0 0
\(339\) 5.14303 0.279331
\(340\) 0 0
\(341\) −30.5840 −1.65622
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) 8.65533 10.9193i 0.465987 0.587878i
\(346\) 0 0
\(347\) −2.67805 + 2.67805i −0.143765 + 0.143765i −0.775326 0.631561i \(-0.782415\pi\)
0.631561 + 0.775326i \(0.282415\pi\)
\(348\) 0 0
\(349\) 15.8200i 0.846827i 0.905937 + 0.423413i \(0.139168\pi\)
−0.905937 + 0.423413i \(0.860832\pi\)
\(350\) 0 0
\(351\) 0.513824i 0.0274259i
\(352\) 0 0
\(353\) 3.53397 3.53397i 0.188094 0.188094i −0.606778 0.794872i \(-0.707538\pi\)
0.794872 + 0.606778i \(0.207538\pi\)
\(354\) 0 0
\(355\) 11.3683 14.3420i 0.603369 0.761195i
\(356\) 0 0
\(357\) −3.86799 3.86799i −0.204716 0.204716i
\(358\) 0 0
\(359\) −9.88630 −0.521779 −0.260890 0.965369i \(-0.584016\pi\)
−0.260890 + 0.965369i \(0.584016\pi\)
\(360\) 0 0
\(361\) −18.1893 −0.957331
\(362\) 0 0
\(363\) 2.12132 + 2.12132i 0.111340 + 0.111340i
\(364\) 0 0
\(365\) −31.1600 + 3.60398i −1.63099 + 0.188641i
\(366\) 0 0
\(367\) 11.2128 11.2128i 0.585305 0.585305i −0.351051 0.936356i \(-0.614176\pi\)
0.936356 + 0.351051i \(0.114176\pi\)
\(368\) 0 0
\(369\) 9.06068i 0.471680i
\(370\) 0 0
\(371\) 12.2273i 0.634809i
\(372\) 0 0
\(373\) −14.3947 + 14.3947i −0.745330 + 0.745330i −0.973598 0.228269i \(-0.926694\pi\)
0.228269 + 0.973598i \(0.426694\pi\)
\(374\) 0 0
\(375\) 10.5199 3.78585i 0.543243 0.195500i
\(376\) 0 0
\(377\) 1.55602 + 1.55602i 0.0801389 + 0.0801389i
\(378\) 0 0
\(379\) −30.1378 −1.54808 −0.774038 0.633139i \(-0.781766\pi\)
−0.774038 + 0.633139i \(0.781766\pi\)
\(380\) 0 0
\(381\) −15.1120 −0.774213
\(382\) 0 0
\(383\) 15.8967 + 15.8967i 0.812282 + 0.812282i 0.984976 0.172693i \(-0.0552469\pi\)
−0.172693 + 0.984976i \(0.555247\pi\)
\(384\) 0 0
\(385\) −0.726656 6.28267i −0.0370338 0.320195i
\(386\) 0 0
\(387\) 2.12792 2.12792i 0.108168 0.108168i
\(388\) 0 0
\(389\) 3.55602i 0.180297i 0.995928 + 0.0901486i \(0.0287342\pi\)
−0.995928 + 0.0901486i \(0.971266\pi\)
\(390\) 0 0
\(391\) 34.0864i 1.72382i
\(392\) 0 0
\(393\) 8.28267 8.28267i 0.417806 0.417806i
\(394\) 0 0
\(395\) 10.6132 + 8.41266i 0.534008 + 0.423287i
\(396\) 0 0
\(397\) 13.1086 + 13.1086i 0.657904 + 0.657904i 0.954884 0.296980i \(-0.0959794\pi\)
−0.296980 + 0.954884i \(0.595979\pi\)
\(398\) 0 0
\(399\) 0.900390 0.0450759
\(400\) 0 0
\(401\) 2.99067 0.149347 0.0746735 0.997208i \(-0.476209\pi\)
0.0746735 + 0.997208i \(0.476209\pi\)
\(402\) 0 0
\(403\) 3.92870 + 3.92870i 0.195702 + 0.195702i
\(404\) 0 0
\(405\) 1.75233 + 1.38900i 0.0870741 + 0.0690202i
\(406\) 0 0
\(407\) 2.82843 2.82843i 0.140200 0.140200i
\(408\) 0 0
\(409\) 33.9346i 1.67796i 0.544163 + 0.838979i \(0.316847\pi\)
−0.544163 + 0.838979i \(0.683153\pi\)
\(410\) 0 0
\(411\) 4.11538i 0.202997i
\(412\) 0 0
\(413\) −4.28267 + 4.28267i −0.210737 + 0.210737i
\(414\) 0 0
\(415\) −2.45505 21.2264i −0.120514 1.04196i
\(416\) 0 0
\(417\) −0.919344 0.919344i −0.0450205 0.0450205i
\(418\) 0 0
\(419\) −38.1970 −1.86604 −0.933022 0.359820i \(-0.882838\pi\)
−0.933022 + 0.359820i \(0.882838\pi\)
\(420\) 0 0
\(421\) −30.8667 −1.50435 −0.752175 0.658964i \(-0.770995\pi\)
−0.752175 + 0.658964i \(0.770995\pi\)
\(422\) 0 0
\(423\) 4.95634 + 4.95634i 0.240986 + 0.240986i
\(424\) 0 0
\(425\) −14.4147 + 23.2440i −0.699215 + 1.12750i
\(426\) 0 0
\(427\) −7.98465 + 7.98465i −0.386404 + 0.386404i
\(428\) 0 0
\(429\) 1.45331i 0.0701666i
\(430\) 0 0
\(431\) 14.6409i 0.705227i 0.935769 + 0.352614i \(0.114707\pi\)
−0.935769 + 0.352614i \(0.885293\pi\)
\(432\) 0 0
\(433\) −8.66466 + 8.66466i −0.416397 + 0.416397i −0.883960 0.467563i \(-0.845132\pi\)
0.467563 + 0.883960i \(0.345132\pi\)
\(434\) 0 0
\(435\) −9.51293 + 1.10027i −0.456110 + 0.0527539i
\(436\) 0 0
\(437\) −3.96731 3.96731i −0.189782 0.189782i
\(438\) 0 0
\(439\) −8.61254 −0.411054 −0.205527 0.978651i \(-0.565891\pi\)
−0.205527 + 0.978651i \(0.565891\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −6.13437 6.13437i −0.291453 0.291453i 0.546201 0.837654i \(-0.316073\pi\)
−0.837654 + 0.546201i \(0.816073\pi\)
\(444\) 0 0
\(445\) 20.1600 25.4333i 0.955675 1.20566i
\(446\) 0 0
\(447\) −8.09872 + 8.09872i −0.383056 + 0.383056i
\(448\) 0 0
\(449\) 24.5467i 1.15843i 0.815175 + 0.579215i \(0.196641\pi\)
−0.815175 + 0.579215i \(0.803359\pi\)
\(450\) 0 0
\(451\) 25.6275i 1.20675i
\(452\) 0 0
\(453\) 4.17997 4.17997i 0.196392 0.196392i
\(454\) 0 0
\(455\) −0.713703 + 0.900390i −0.0334589 + 0.0422109i
\(456\) 0 0
\(457\) −18.0280 18.0280i −0.843314 0.843314i 0.145975 0.989288i \(-0.453368\pi\)
−0.989288 + 0.145975i \(0.953368\pi\)
\(458\) 0 0
\(459\) −5.47017 −0.255326
\(460\) 0 0
\(461\) −2.21266 −0.103054 −0.0515270 0.998672i \(-0.516409\pi\)
−0.0515270 + 0.998672i \(0.516409\pi\)
\(462\) 0 0
\(463\) 22.3993 + 22.3993i 1.04098 + 1.04098i 0.999124 + 0.0418597i \(0.0133282\pi\)
0.0418597 + 0.999124i \(0.486672\pi\)
\(464\) 0 0
\(465\) −24.0187 + 2.77801i −1.11384 + 0.128827i
\(466\) 0 0
\(467\) −4.65559 + 4.65559i −0.215435 + 0.215435i −0.806572 0.591136i \(-0.798679\pi\)
0.591136 + 0.806572i \(0.298679\pi\)
\(468\) 0 0
\(469\) 7.00933i 0.323661i
\(470\) 0 0
\(471\) 2.94249i 0.135583i
\(472\) 0 0
\(473\) −6.01866 + 6.01866i −0.276738 + 0.276738i
\(474\) 0 0
\(475\) −1.02765 4.38309i −0.0471517 0.201110i
\(476\) 0 0
\(477\) 8.64600 + 8.64600i 0.395873 + 0.395873i
\(478\) 0 0
\(479\) 25.7367 1.17594 0.587971 0.808882i \(-0.299927\pi\)
0.587971 + 0.808882i \(0.299927\pi\)
\(480\) 0 0
\(481\) −0.726656 −0.0331327
\(482\) 0 0
\(483\) −4.40621 4.40621i −0.200489 0.200489i
\(484\) 0 0
\(485\) −3.14134 27.1600i −0.142641 1.23327i
\(486\) 0 0
\(487\) −19.8980 + 19.8980i −0.901664 + 0.901664i −0.995580 0.0939158i \(-0.970062\pi\)
0.0939158 + 0.995580i \(0.470062\pi\)
\(488\) 0 0
\(489\) 6.90663i 0.312328i
\(490\) 0 0
\(491\) 15.0972i 0.681325i −0.940186 0.340663i \(-0.889349\pi\)
0.940186 0.340663i \(-0.110651\pi\)
\(492\) 0 0
\(493\) 16.5653 16.5653i 0.746066 0.746066i
\(494\) 0 0
\(495\) −4.95634 3.92870i −0.222771 0.176582i
\(496\) 0 0
\(497\) −5.78734 5.78734i −0.259598 0.259598i
\(498\) 0 0
\(499\) 24.4810 1.09592 0.547959 0.836505i \(-0.315405\pi\)
0.547959 + 0.836505i \(0.315405\pi\)
\(500\) 0 0
\(501\) −15.4720 −0.691237
\(502\) 0 0
\(503\) 5.72948 + 5.72948i 0.255465 + 0.255465i 0.823207 0.567742i \(-0.192183\pi\)
−0.567742 + 0.823207i \(0.692183\pi\)
\(504\) 0 0
\(505\) 18.8867 + 14.9707i 0.840445 + 0.666187i
\(506\) 0 0
\(507\) −9.00570 + 9.00570i −0.399957 + 0.399957i
\(508\) 0 0
\(509\) 4.07001i 0.180400i −0.995924 0.0902000i \(-0.971249\pi\)
0.995924 0.0902000i \(-0.0287506\pi\)
\(510\) 0 0
\(511\) 14.0281i 0.620565i
\(512\) 0 0
\(513\) 0.636672 0.636672i 0.0281097 0.0281097i
\(514\) 0 0
\(515\) 4.30207 + 37.1957i 0.189572 + 1.63904i
\(516\) 0 0
\(517\) −14.0187 14.0187i −0.616540 0.616540i
\(518\) 0 0
\(519\) 5.84354 0.256503
\(520\) 0 0
\(521\) 13.3247 0.583765 0.291883 0.956454i \(-0.405718\pi\)
0.291883 + 0.956454i \(0.405718\pi\)
\(522\) 0 0
\(523\) −11.5862 11.5862i −0.506630 0.506630i 0.406861 0.913490i \(-0.366623\pi\)
−0.913490 + 0.406861i \(0.866623\pi\)
\(524\) 0 0
\(525\) −1.14134 4.86799i −0.0498120 0.212457i
\(526\) 0 0
\(527\) 41.8249 41.8249i 1.82192 1.82192i
\(528\) 0 0
\(529\) 15.8294i 0.688233i
\(530\) 0 0
\(531\) 6.05661i 0.262835i
\(532\) 0 0
\(533\) −3.29200 + 3.29200i −0.142592 + 0.142592i
\(534\) 0 0
\(535\) −3.92870 + 0.454395i −0.169852 + 0.0196452i
\(536\) 0 0
\(537\) −8.23132 8.23132i −0.355208 0.355208i
\(538\) 0 0
\(539\) −2.82843 −0.121829
\(540\) 0 0
\(541\) −37.3947 −1.60772 −0.803862 0.594816i \(-0.797225\pi\)
−0.803862 + 0.594816i \(0.797225\pi\)
\(542\) 0 0
\(543\) −12.4272 12.4272i −0.533301 0.533301i
\(544\) 0 0
\(545\) −6.70800 + 8.46264i −0.287339 + 0.362500i
\(546\) 0 0
\(547\) −21.9269 + 21.9269i −0.937527 + 0.937527i −0.998160 0.0606333i \(-0.980688\pi\)
0.0606333 + 0.998160i \(0.480688\pi\)
\(548\) 0 0
\(549\) 11.2920i 0.481931i
\(550\) 0 0
\(551\) 3.85607i 0.164274i
\(552\) 0 0
\(553\) 4.28267 4.28267i 0.182118 0.182118i
\(554\) 0 0
\(555\) 1.96435 2.47817i 0.0833819 0.105193i
\(556\) 0 0
\(557\) 22.0993 + 22.0993i 0.936378 + 0.936378i 0.998094 0.0617158i \(-0.0196572\pi\)
−0.0617158 + 0.998094i \(0.519657\pi\)
\(558\) 0 0
\(559\) 1.54626 0.0654000
\(560\) 0 0
\(561\) 15.4720 0.653227
\(562\) 0 0
\(563\) 7.63953 + 7.63953i 0.321968 + 0.321968i 0.849522 0.527554i \(-0.176891\pi\)
−0.527554 + 0.849522i \(0.676891\pi\)
\(564\) 0 0
\(565\) −11.4240 + 1.32131i −0.480612 + 0.0555877i
\(566\) 0 0
\(567\) 0.707107 0.707107i 0.0296957 0.0296957i
\(568\) 0 0
\(569\) 0.0840454i 0.00352337i −0.999998 0.00176168i \(-0.999439\pi\)
0.999998 0.00176168i \(-0.000560761\pi\)
\(570\) 0 0
\(571\) 15.5695i 0.651565i 0.945445 + 0.325783i \(0.105628\pi\)
−0.945445 + 0.325783i \(0.894372\pi\)
\(572\) 0 0
\(573\) 3.55602 3.55602i 0.148555 0.148555i
\(574\) 0 0
\(575\) −16.4204 + 26.4784i −0.684779 + 1.10422i
\(576\) 0 0
\(577\) 9.19269 + 9.19269i 0.382697 + 0.382697i 0.872073 0.489376i \(-0.162775\pi\)
−0.489376 + 0.872073i \(0.662775\pi\)
\(578\) 0 0
\(579\) 2.04210 0.0848669
\(580\) 0 0
\(581\) −9.55602 −0.396450
\(582\) 0 0
\(583\) −24.4546 24.4546i −1.01281 1.01281i
\(584\) 0 0
\(585\) 0.132007 + 1.14134i 0.00545783 + 0.0471884i
\(586\) 0 0
\(587\) 21.1538 21.1538i 0.873110 0.873110i −0.119700 0.992810i \(-0.538193\pi\)
0.992810 + 0.119700i \(0.0381934\pi\)
\(588\) 0 0
\(589\) 9.73599i 0.401164i
\(590\) 0 0
\(591\) 3.97014i 0.163310i
\(592\) 0 0
\(593\) 5.58532 5.58532i 0.229362 0.229362i −0.583064 0.812426i \(-0.698146\pi\)
0.812426 + 0.583064i \(0.198146\pi\)
\(594\) 0 0
\(595\) 9.58555 + 7.59808i 0.392969 + 0.311491i
\(596\) 0 0
\(597\) 8.81664 + 8.81664i 0.360841 + 0.360841i
\(598\) 0 0
\(599\) −29.7117 −1.21399 −0.606993 0.794707i \(-0.707624\pi\)
−0.606993 + 0.794707i \(0.707624\pi\)
\(600\) 0 0
\(601\) 23.6519 0.964783 0.482391 0.875956i \(-0.339768\pi\)
0.482391 + 0.875956i \(0.339768\pi\)
\(602\) 0 0
\(603\) −4.95634 4.95634i −0.201838 0.201838i
\(604\) 0 0
\(605\) −5.25700 4.16701i −0.213727 0.169413i
\(606\) 0 0
\(607\) −7.21152 + 7.21152i −0.292706 + 0.292706i −0.838149 0.545442i \(-0.816362\pi\)
0.545442 + 0.838149i \(0.316362\pi\)
\(608\) 0 0
\(609\) 4.28267i 0.173543i
\(610\) 0 0
\(611\) 3.60156i 0.145703i
\(612\) 0 0
\(613\) −0.614625 + 0.614625i −0.0248245 + 0.0248245i −0.719410 0.694586i \(-0.755588\pi\)
0.694586 + 0.719410i \(0.255588\pi\)
\(614\) 0 0
\(615\) −2.32780 20.1261i −0.0938658 0.811564i
\(616\) 0 0
\(617\) 0.381986 + 0.381986i 0.0153782 + 0.0153782i 0.714754 0.699376i \(-0.246539\pi\)
−0.699376 + 0.714754i \(0.746539\pi\)
\(618\) 0 0
\(619\) 40.1514 1.61382 0.806910 0.590674i \(-0.201138\pi\)
0.806910 + 0.590674i \(0.201138\pi\)
\(620\) 0 0
\(621\) −6.23132 −0.250054
\(622\) 0 0
\(623\) −10.2629 10.2629i −0.411176 0.411176i
\(624\) 0 0
\(625\) −22.3947 + 11.1120i −0.895788 + 0.444481i
\(626\) 0 0
\(627\) −1.80078 + 1.80078i −0.0719162 + 0.0719162i
\(628\) 0 0
\(629\) 7.73599i 0.308454i
\(630\) 0 0
\(631\) 20.3704i 0.810932i 0.914110 + 0.405466i \(0.132891\pi\)
−0.914110 + 0.405466i \(0.867109\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) 33.5678 3.88246i 1.33210 0.154071i
\(636\) 0 0
\(637\) 0.363328 + 0.363328i 0.0143956 + 0.0143956i
\(638\) 0 0
\(639\) −8.18453 −0.323775
\(640\) 0 0
\(641\) −16.2827 −0.643127 −0.321563 0.946888i \(-0.604208\pi\)
−0.321563 + 0.946888i \(0.604208\pi\)
\(642\) 0 0
\(643\) −16.5708 16.5708i −0.653489 0.653489i 0.300343 0.953831i \(-0.402899\pi\)
−0.953831 + 0.300343i \(0.902899\pi\)
\(644\) 0 0
\(645\) −4.17997 + 5.27334i −0.164586 + 0.207638i
\(646\) 0 0
\(647\) 14.7964 14.7964i 0.581707 0.581707i −0.353665 0.935372i \(-0.615065\pi\)
0.935372 + 0.353665i \(0.115065\pi\)
\(648\) 0 0
\(649\) 17.1307i 0.672438i
\(650\) 0 0
\(651\) 10.8131i 0.423798i
\(652\) 0 0
\(653\) 29.7767 29.7767i 1.16525 1.16525i 0.181943 0.983309i \(-0.441761\pi\)
0.983309 0.181943i \(-0.0582386\pi\)
\(654\) 0 0
\(655\) −16.2701 + 20.5259i −0.635724 + 0.802013i
\(656\) 0 0
\(657\) 9.91934 + 9.91934i 0.386990 + 0.386990i
\(658\) 0 0
\(659\) −38.6693 −1.50634 −0.753172 0.657824i \(-0.771477\pi\)
−0.753172 + 0.657824i \(0.771477\pi\)
\(660\) 0 0
\(661\) 19.8573 0.772361 0.386181 0.922423i \(-0.373794\pi\)
0.386181 + 0.922423i \(0.373794\pi\)
\(662\) 0 0
\(663\) −1.98747 1.98747i −0.0771868 0.0771868i
\(664\) 0 0
\(665\) −2.00000 + 0.231321i −0.0775567 + 0.00897024i
\(666\) 0 0
\(667\) 18.8703 18.8703i 0.730663 0.730663i
\(668\) 0 0
\(669\) 28.7453i 1.11136i
\(670\) 0 0
\(671\) 31.9386i 1.23298i
\(672\) 0 0
\(673\) 2.98134 2.98134i 0.114922 0.114922i −0.647307 0.762229i \(-0.724105\pi\)
0.762229 + 0.647307i \(0.224105\pi\)
\(674\) 0 0
\(675\) −4.24924 2.63514i −0.163553 0.101427i
\(676\) 0 0
\(677\) −20.4333 20.4333i −0.785317 0.785317i 0.195406 0.980723i \(-0.437398\pi\)
−0.980723 + 0.195406i \(0.937398\pi\)
\(678\) 0 0
\(679\) −12.2273 −0.469240
\(680\) 0 0
\(681\) 25.1307 0.963010
\(682\) 0 0
\(683\) 14.1370 + 14.1370i 0.540937 + 0.540937i 0.923804 0.382866i \(-0.125063\pi\)
−0.382866 + 0.923804i \(0.625063\pi\)
\(684\) 0 0
\(685\) −1.05729 9.14134i −0.0403970 0.349272i
\(686\) 0 0
\(687\) 1.22753 1.22753i 0.0468331 0.0468331i
\(688\) 0 0
\(689\) 6.28267i 0.239351i
\(690\) 0 0
\(691\) 8.01104i 0.304754i −0.988322 0.152377i \(-0.951307\pi\)
0.988322 0.152377i \(-0.0486928\pi\)
\(692\) 0 0
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) 2.27829 + 1.80591i 0.0864206 + 0.0685021i
\(696\) 0 0
\(697\) 35.0466 + 35.0466i 1.32749 + 1.32749i
\(698\) 0 0
\(699\) −14.2826 −0.540217
\(700\) 0 0
\(701\) 37.4134 1.41308 0.706542 0.707672i \(-0.250254\pi\)
0.706542 + 0.707672i \(0.250254\pi\)
\(702\) 0 0
\(703\) −0.900390 0.900390i −0.0339588 0.0339588i
\(704\) 0 0
\(705\) −12.2827 9.73599i −0.462592 0.366678i
\(706\) 0 0
\(707\) 7.62120 7.62120i 0.286625 0.286625i
\(708\) 0 0
\(709\) 20.9253i 0.785866i −0.919567 0.392933i \(-0.871461\pi\)
0.919567 0.392933i \(-0.128539\pi\)
\(710\) 0 0
\(711\) 6.05661i 0.227141i
\(712\) 0 0
\(713\) 47.6447 47.6447i 1.78431 1.78431i
\(714\) 0 0
\(715\) −0.373373 3.22819i −0.0139634 0.120727i
\(716\) 0 0
\(717\) 11.5560 + 11.5560i 0.431567 + 0.431567i
\(718\) 0 0
\(719\) −27.1378 −1.01207 −0.506034 0.862514i \(-0.668889\pi\)
−0.506034 + 0.862514i \(0.668889\pi\)
\(720\) 0 0
\(721\) 16.7453 0.623628
\(722\) 0 0
\(723\) −5.45697 5.45697i −0.202947 0.202947i
\(724\) 0 0
\(725\) 20.8480 4.88797i 0.774276 0.181535i
\(726\) 0 0
\(727\) −17.3967 + 17.3967i −0.645208 + 0.645208i −0.951831 0.306623i \(-0.900801\pi\)
0.306623 + 0.951831i \(0.400801\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 16.4615i 0.608852i
\(732\) 0 0
\(733\) 26.5874 26.5874i 0.982028 0.982028i −0.0178136 0.999841i \(-0.505671\pi\)
0.999841 + 0.0178136i \(0.00567055\pi\)
\(734\) 0 0
\(735\) −2.22126 + 0.256912i −0.0819324 + 0.00947634i
\(736\) 0 0
\(737\) 14.0187 + 14.0187i 0.516384 + 0.516384i
\(738\) 0 0
\(739\) 46.0544 1.69414 0.847068 0.531484i \(-0.178365\pi\)
0.847068 + 0.531484i \(0.178365\pi\)
\(740\) 0 0
\(741\) 0.462642 0.0169956
\(742\) 0 0
\(743\) 25.9597 + 25.9597i 0.952371 + 0.952371i 0.998916 0.0465456i \(-0.0148213\pi\)
−0.0465456 + 0.998916i \(0.514821\pi\)
\(744\) 0 0
\(745\) 15.9087 20.0700i 0.582850 0.735308i
\(746\) 0 0
\(747\) −6.75712 + 6.75712i −0.247230 + 0.247230i
\(748\) 0 0
\(749\) 1.76868i 0.0646261i
\(750\) 0 0
\(751\) 32.5401i 1.18741i 0.804685 + 0.593703i \(0.202334\pi\)
−0.804685 + 0.593703i \(0.797666\pi\)
\(752\) 0 0
\(753\) −9.83869 + 9.83869i −0.358542 + 0.358542i
\(754\) 0 0
\(755\) −8.21092 + 10.3587i −0.298826 + 0.376991i
\(756\) 0 0
\(757\) −6.73599 6.73599i −0.244824 0.244824i 0.574019 0.818842i \(-0.305384\pi\)
−0.818842 + 0.574019i \(0.805384\pi\)
\(758\) 0 0
\(759\) 17.6248 0.639741
\(760\) 0 0
\(761\) 40.6940 1.47515 0.737577 0.675262i \(-0.235970\pi\)
0.737577 + 0.675262i \(0.235970\pi\)
\(762\) 0 0
\(763\) 3.41487 + 3.41487i 0.123627 + 0.123627i
\(764\) 0 0
\(765\) 12.1507 1.40535i 0.439308 0.0508106i
\(766\) 0 0
\(767\) −2.20054 + 2.20054i −0.0794568 + 0.0794568i
\(768\) 0 0
\(769\) 15.2920i 0.551444i −0.961237 0.275722i \(-0.911083\pi\)
0.961237 0.275722i \(-0.0889169\pi\)
\(770\) 0 0
\(771\) 1.54147i 0.0555147i
\(772\) 0 0
\(773\) −30.6460 + 30.6460i −1.10226 + 1.10226i −0.108122 + 0.994138i \(0.534484\pi\)
−0.994138 + 0.108122i \(0.965516\pi\)
\(774\) 0 0
\(775\) 52.6380 12.3414i 1.89081 0.443315i
\(776\) 0 0
\(777\) −1.00000 1.00000i −0.0358748 0.0358748i
\(778\) 0 0
\(779\) −8.15814 −0.292296
\(780\) 0 0
\(781\) 23.1493 0.828349
\(782\) 0 0
\(783\) 3.02831 + 3.02831i 0.108223 + 0.108223i
\(784\) 0 0
\(785\) −0.755961 6.53604i −0.0269814 0.233281i
\(786\) 0 0
\(787\) 29.3563 29.3563i 1.04644 1.04644i 0.0475709 0.998868i \(-0.484852\pi\)
0.998868 0.0475709i \(-0.0151480\pi\)
\(788\) 0 0
\(789\) 5.76868i 0.205370i
\(790\) 0 0
\(791\) 5.14303i 0.182865i
\(792\) 0 0
\(793\) −4.10270 + 4.10270i −0.145691 + 0.145691i
\(794\) 0 0
\(795\) −21.4263 16.9838i −0.759912 0.602352i
\(796\) 0 0
\(797\) 9.32131 + 9.32131i 0.330178 + 0.330178i 0.852654 0.522476i \(-0.174992\pi\)
−0.522476 + 0.852654i \(0.674992\pi\)
\(798\) 0 0
\(799\) 38.3422 1.35645
\(800\) 0 0
\(801\) −14.5140 −0.512827
\(802\) 0 0
\(803\) −28.0561 28.0561i −0.990080 0.990080i
\(804\) 0 0
\(805\) 10.9193 + 8.65533i 0.384856 + 0.305060i
\(806\) 0 0
\(807\) 11.8044 11.8044i 0.415535 0.415535i
\(808\) 0 0
\(809\) 7.85735i 0.276250i −0.990415 0.138125i \(-0.955893\pi\)
0.990415 0.138125i \(-0.0441075\pi\)
\(810\) 0 0
\(811\) 28.2927i 0.993490i 0.867897 + 0.496745i \(0.165472\pi\)
−0.867897 + 0.496745i \(0.834528\pi\)
\(812\) 0 0
\(813\) −15.8260 + 15.8260i −0.555041 + 0.555041i
\(814\) 0 0
\(815\) −1.77439 15.3414i −0.0621543 0.537386i
\(816\) 0 0
\(817\) 1.91595 + 1.91595i 0.0670308 + 0.0670308i
\(818\) 0 0
\(819\) 0.513824 0.0179545
\(820\) 0 0
\(821\) −1.59597 −0.0556997 −0.0278498 0.999612i \(-0.508866\pi\)
−0.0278498 + 0.999612i \(0.508866\pi\)
\(822\) 0 0
\(823\) −10.5406 10.5406i −0.367421 0.367421i 0.499115 0.866536i \(-0.333659\pi\)
−0.866536 + 0.499115i \(0.833659\pi\)
\(824\) 0 0
\(825\) 12.0187 + 7.45331i 0.418436 + 0.259491i
\(826\) 0 0
\(827\) −37.4451 + 37.4451i −1.30209 + 1.30209i −0.375115 + 0.926978i \(0.622397\pi\)
−0.926978 + 0.375115i \(0.877603\pi\)
\(828\) 0 0
\(829\) 19.7614i 0.686343i −0.939273 0.343171i \(-0.888499\pi\)
0.939273 0.343171i \(-0.111501\pi\)
\(830\) 0 0
\(831\) 3.84288i 0.133308i
\(832\) 0 0
\(833\) 3.86799 3.86799i 0.134018 0.134018i
\(834\) 0 0
\(835\) 34.3673 3.97493i 1.18933 0.137558i
\(836\) 0 0
\(837\) 7.64600 + 7.64600i 0.264284 + 0.264284i
\(838\) 0 0
\(839\) −22.6274 −0.781185 −0.390593 0.920564i \(-0.627730\pi\)
−0.390593 + 0.920564i \(0.627730\pi\)
\(840\) 0 0
\(841\) 10.6587 0.367542
\(842\) 0 0
\(843\) −5.85673 5.85673i −0.201717 0.201717i
\(844\) 0 0
\(845\) 17.6903 22.3177i 0.608566 0.767751i
\(846\) 0 0
\(847\) −2.12132 + 2.12132i −0.0728894 + 0.0728894i
\(848\) 0 0
\(849\) 6.93206i 0.237908i
\(850\) 0 0
\(851\) 8.81242i 0.302086i
\(852\) 0 0
\(853\) −26.3047 + 26.3047i −0.900656 + 0.900656i −0.995493 0.0948364i \(-0.969767\pi\)
0.0948364 + 0.995493i \(0.469767\pi\)
\(854\) 0 0
\(855\) −1.25065 + 1.57778i −0.0427712 + 0.0539590i
\(856\) 0 0
\(857\) −0.891358 0.891358i −0.0304482 0.0304482i 0.691719 0.722167i \(-0.256854\pi\)
−0.722167 + 0.691719i \(0.756854\pi\)
\(858\) 0 0
\(859\) −29.9842 −1.02305 −0.511523 0.859269i \(-0.670919\pi\)
−0.511523 + 0.859269i \(0.670919\pi\)
\(860\) 0 0
\(861\) −9.06068 −0.308787
\(862\) 0 0
\(863\) −16.5194 16.5194i −0.562328 0.562328i 0.367640 0.929968i \(-0.380166\pi\)
−0.929968 + 0.367640i \(0.880166\pi\)
\(864\) 0 0
\(865\) −12.9800 + 1.50127i −0.441334 + 0.0510449i
\(866\) 0 0
\(867\) −9.13775 + 9.13775i −0.310334 + 0.310334i
\(868\) 0 0
\(869\) 17.1307i 0.581119i
\(870\) 0 0
\(871\) 3.60156i 0.122034i
\(872\) 0 0
\(873\) −8.64600 + 8.64600i −0.292623 + 0.292623i
\(874\) 0 0
\(875\) 3.78585 + 10.5199i 0.127985 + 0.355636i
\(876\) 0 0
\(877\) 36.8387 + 36.8387i 1.24395 + 1.24395i 0.958347 + 0.285607i \(0.0921953\pi\)
0.285607 + 0.958347i \(0.407805\pi\)
\(878\) 0 0
\(879\) 23.7955 0.802603
\(880\) 0 0
\(881\) 3.04202 0.102488 0.0512442 0.998686i \(-0.483681\pi\)
0.0512442 + 0.998686i \(0.483681\pi\)
\(882\) 0 0
\(883\) 8.85865 + 8.85865i 0.298117 + 0.298117i 0.840276 0.542159i \(-0.182393\pi\)
−0.542159 + 0.840276i \(0.682393\pi\)
\(884\) 0 0
\(885\) −1.55602 13.4533i −0.0523049 0.452228i
\(886\) 0 0
\(887\) 36.2407 36.2407i 1.21684 1.21684i 0.248111 0.968732i \(-0.420190\pi\)
0.968732 0.248111i \(-0.0798098\pi\)
\(888\) 0 0
\(889\) 15.1120i 0.506841i
\(890\) 0 0
\(891\) 2.82843i 0.0947559i
\(892\) 0 0
\(893\) −4.46264 + 4.46264i −0.149337 + 0.149337i
\(894\) 0 0
\(895\) 20.3986 + 16.1692i 0.681851 + 0.540476i
\(896\) 0 0
\(897\) −2.26401 2.26401i −0.0755933 0.0755933i
\(898\) 0 0
\(899\) −46.3089 −1.54449
\(900\) 0 0
\(901\) 66.8853 2.22827
\(902\) 0 0
\(903\) 2.12792 + 2.12792i 0.0708126 + 0.0708126i
\(904\) 0 0
\(905\) 30.7967 + 24.4113i 1.02372 + 0.811459i
\(906\) 0 0
\(907\) 16.3691 16.3691i 0.543526 0.543526i −0.381035 0.924561i \(-0.624432\pi\)
0.924561 + 0.381035i \(0.124432\pi\)
\(908\) 0 0
\(909\) 10.7780i 0.357484i
\(910\) 0 0
\(911\) 54.3944i 1.80217i −0.433646 0.901083i \(-0.642773\pi\)
0.433646 0.901083i \(-0.357227\pi\)
\(912\) 0 0
\(913\) 19.1120 19.1120i 0.632516 0.632516i
\(914\) 0 0
\(915\) −2.90105 25.0825i −0.0959057 0.829201i
\(916\) 0 0
\(917\) 8.28267 + 8.28267i 0.273518 + 0.273518i
\(918\) 0 0
\(919\) 2.05529 0.0677979 0.0338990 0.999425i \(-0.489208\pi\)
0.0338990 + 0.999425i \(0.489208\pi\)
\(920\) 0 0
\(921\) 5.45331 0.179693
\(922\) 0 0
\(923\) −2.97367 2.97367i −0.0978796 0.0978796i
\(924\) 0 0
\(925\) −3.72666 + 6.00933i −0.122532 + 0.197586i
\(926\) 0 0
\(927\) 11.8407 11.8407i 0.388900 0.388900i
\(928\) 0 0
\(929\) 19.8060i 0.649814i 0.945746 + 0.324907i \(0.105333\pi\)
−0.945746 + 0.324907i \(0.894667\pi\)
\(930\) 0 0
\(931\) 0.900390i 0.0295091i
\(932\) 0 0
\(933\) 23.3947 23.3947i 0.765908 0.765908i
\(934\) 0 0
\(935\) −34.3673 + 3.97493i −1.12393 + 0.129994i
\(936\) 0 0
\(937\) −30.7674 30.7674i −1.00513 1.00513i −0.999987 0.00513907i \(-0.998364\pi\)
−0.00513907 0.999987i \(-0.501636\pi\)
\(938\) 0 0
\(939\) 22.1136 0.721650
\(940\) 0 0
\(941\) −18.2500 −0.594932 −0.297466 0.954732i \(-0.596142\pi\)
−0.297466 + 0.954732i \(0.596142\pi\)
\(942\) 0 0
\(943\) 39.9233 + 39.9233i 1.30008 + 1.30008i
\(944\) 0 0
\(945\) −1.38900 + 1.75233i −0.0451843 + 0.0570034i
\(946\) 0 0
\(947\) 0.923508 0.923508i 0.0300100 0.0300100i −0.691943 0.721953i \(-0.743245\pi\)
0.721953 + 0.691943i \(0.243245\pi\)
\(948\) 0 0
\(949\) 7.20796i 0.233980i
\(950\) 0 0
\(951\) 14.6560i 0.475252i
\(952\) 0 0
\(953\) 29.7580 29.7580i 0.963957 0.963957i −0.0354155 0.999373i \(-0.511275\pi\)
0.999373 + 0.0354155i \(0.0112755\pi\)
\(954\) 0 0
\(955\) −6.98525 + 8.81242i −0.226037 + 0.285163i
\(956\) 0 0
\(957\) −8.56534 8.56534i −0.276878 0.276878i
\(958\) 0 0
\(959\) −4.11538 −0.132893
\(960\) 0 0
\(961\) −85.9226 −2.77170
\(962\) 0 0
\(963\) 1.25065 + 1.25065i 0.0403015 + 0.0403015i
\(964\) 0 0
\(965\) −4.53604 + 0.524640i −0.146020 + 0.0168888i
\(966\) 0 0
\(967\) −20.3806 + 20.3806i −0.655397 + 0.655397i −0.954287 0.298890i \(-0.903384\pi\)
0.298890 + 0.954287i \(0.403384\pi\)
\(968\) 0 0
\(969\) 4.92528i 0.158223i
\(970\) 0 0
\(971\) 18.5168i 0.594233i 0.954841 + 0.297117i \(0.0960250\pi\)
−0.954841 + 0.297117i \(0.903975\pi\)
\(972\) 0 0
\(973\) 0.919344 0.919344i 0.0294728 0.0294728i
\(974\) 0 0
\(975\) −0.586446 2.50129i −0.0187813 0.0801054i
\(976\) 0 0
\(977\) −30.4006 30.4006i −0.972603 0.972603i 0.0270318 0.999635i \(-0.491394\pi\)
−0.999635 + 0.0270318i \(0.991394\pi\)
\(978\) 0 0
\(979\) 41.0518 1.31202
\(980\) 0 0
\(981\) 4.82936 0.154190
\(982\) 0 0
\(983\) −14.9680 14.9680i −0.477406 0.477406i 0.426895 0.904301i \(-0.359607\pi\)
−0.904301 + 0.426895i \(0.859607\pi\)
\(984\) 0 0
\(985\) −1.01998 8.81871i −0.0324991 0.280988i
\(986\) 0 0
\(987\) −4.95634 + 4.95634i −0.157762 + 0.157762i
\(988\) 0 0
\(989\) 18.7521i 0.596282i
\(990\) 0 0
\(991\) 7.85739i 0.249598i 0.992182 + 0.124799i \(0.0398287\pi\)
−0.992182 + 0.124799i \(0.960171\pi\)
\(992\) 0 0
\(993\) 23.5747 23.5747i 0.748120 0.748120i
\(994\) 0 0
\(995\) −21.8492 17.3190i −0.692665 0.549048i
\(996\) 0 0
\(997\) 35.3913 + 35.3913i 1.12085 + 1.12085i 0.991613 + 0.129241i \(0.0412541\pi\)
0.129241 + 0.991613i \(0.458746\pi\)
\(998\) 0 0
\(999\) −1.41421 −0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.c.127.4 yes 12
4.3 odd 2 inner 1680.2.bl.c.127.1 12
5.3 odd 4 inner 1680.2.bl.c.463.1 yes 12
20.3 even 4 inner 1680.2.bl.c.463.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.c.127.1 12 4.3 odd 2 inner
1680.2.bl.c.127.4 yes 12 1.1 even 1 trivial
1680.2.bl.c.463.1 yes 12 5.3 odd 4 inner
1680.2.bl.c.463.4 yes 12 20.3 even 4 inner