Properties

Label 1680.2.bl
Level $1680$
Weight $2$
Character orbit 1680.bl
Rep. character $\chi_{1680}(127,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $5$
Sturm bound $768$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(768\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).

Total New Old
Modular forms 816 72 744
Cusp forms 720 72 648
Eisenstein series 96 0 96

Trace form

\( 72 q - 24 q^{13} - 24 q^{17} - 24 q^{25} + 24 q^{37} + 24 q^{45} + 24 q^{53} + 24 q^{65} + 24 q^{73} - 72 q^{81} - 24 q^{85} - 48 q^{93} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1680.2.bl.a 1680.bl 20.e $4$ $13.415$ \(\Q(\zeta_{8})\) None 1680.2.bl.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(-2+\zeta_{8}^{2})q^{5}+\zeta_{8}^{3}q^{7}+\cdots\)
1680.2.bl.b 1680.bl 20.e $8$ $13.415$ \(\Q(\zeta_{24})\) None 1680.2.bl.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(-\beta_{3}-\beta_{2}+1)q^{5}+\cdots\)
1680.2.bl.c 1680.bl 20.e $12$ $13.415$ 12.0.\(\cdots\).1 None 1680.2.bl.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{3}+\beta _{5}q^{5}+\beta _{1}q^{7}-\beta _{7}q^{9}+\cdots\)
1680.2.bl.d 1680.bl 20.e $24$ $13.415$ None 1680.2.bl.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1680.2.bl.e 1680.bl 20.e $24$ $13.415$ None 1680.2.bl.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)