Defining parameters
Level: | \( N \) | \(=\) | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1680.bl (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1680, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 72 | 744 |
Cusp forms | 720 | 72 | 648 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1680, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1680.2.bl.a | $4$ | $13.415$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\zeta_{8}q^{3}+(-2+\zeta_{8}^{2})q^{5}+\zeta_{8}^{3}q^{7}+\cdots\) |
1680.2.bl.b | $8$ | $13.415$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q-\beta_1 q^{3}+(-\beta_{3}-\beta_{2}+1)q^{5}+\cdots\) |
1680.2.bl.c | $12$ | $13.415$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{3}+\beta _{5}q^{5}+\beta _{1}q^{7}-\beta _{7}q^{9}+\cdots\) |
1680.2.bl.d | $24$ | $13.415$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
1680.2.bl.e | $24$ | $13.415$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1680, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1680, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)