Properties

Label 1680.2.bl.c.127.1
Level $1680$
Weight $2$
Character 1680.127
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.1
Root \(-1.35818 - 0.394157i\) of defining polynomial
Character \(\chi\) \(=\) 1680.127
Dual form 1680.2.bl.c.463.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-1.75233 - 1.38900i) q^{5} +(0.707107 - 0.707107i) q^{7} +1.00000i q^{9} +2.82843i q^{11} +(-0.363328 + 0.363328i) q^{13} +(0.256912 + 2.22126i) q^{15} +(3.86799 + 3.86799i) q^{17} +0.900390 q^{19} -1.00000 q^{21} +(-4.40621 - 4.40621i) q^{23} +(1.14134 + 4.86799i) q^{25} +(0.707107 - 0.707107i) q^{27} -4.28267i q^{29} +10.8131i q^{31} +(2.00000 - 2.00000i) q^{33} +(-2.22126 + 0.256912i) q^{35} +(1.00000 + 1.00000i) q^{37} +0.513824 q^{39} +9.06068 q^{41} +(2.12792 + 2.12792i) q^{43} +(1.38900 - 1.75233i) q^{45} +(-4.95634 + 4.95634i) q^{47} -1.00000i q^{49} -5.47017i q^{51} +(8.64600 - 8.64600i) q^{53} +(3.92870 - 4.95634i) q^{55} +(-0.636672 - 0.636672i) q^{57} -6.05661 q^{59} +11.2920 q^{61} +(0.707107 + 0.707107i) q^{63} +(1.14134 - 0.132007i) q^{65} +(4.95634 - 4.95634i) q^{67} +6.23132i q^{69} -8.18453i q^{71} +(9.91934 - 9.91934i) q^{73} +(2.63514 - 4.24924i) q^{75} +(2.00000 + 2.00000i) q^{77} +6.05661 q^{79} -1.00000 q^{81} +(-6.75712 - 6.75712i) q^{83} +(-1.40535 - 12.1507i) q^{85} +(-3.02831 + 3.02831i) q^{87} +14.5140i q^{89} +0.513824i q^{91} +(7.64600 - 7.64600i) q^{93} +(-1.57778 - 1.25065i) q^{95} +(8.64600 + 8.64600i) q^{97} -2.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{17} - 12 q^{21} - 20 q^{25} + 24 q^{33} + 12 q^{37} + 16 q^{41} + 4 q^{45} + 28 q^{53} - 16 q^{57} - 16 q^{61} - 20 q^{65} + 60 q^{73} + 24 q^{77} - 12 q^{81} - 84 q^{85} + 16 q^{93}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −1.75233 1.38900i −0.783667 0.621181i
\(6\) 0 0
\(7\) 0.707107 0.707107i 0.267261 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) −0.363328 + 0.363328i −0.100769 + 0.100769i −0.755694 0.654925i \(-0.772700\pi\)
0.654925 + 0.755694i \(0.272700\pi\)
\(14\) 0 0
\(15\) 0.256912 + 2.22126i 0.0663344 + 0.573527i
\(16\) 0 0
\(17\) 3.86799 + 3.86799i 0.938126 + 0.938126i 0.998194 0.0600683i \(-0.0191318\pi\)
−0.0600683 + 0.998194i \(0.519132\pi\)
\(18\) 0 0
\(19\) 0.900390 0.206564 0.103282 0.994652i \(-0.467066\pi\)
0.103282 + 0.994652i \(0.467066\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −4.40621 4.40621i −0.918758 0.918758i 0.0781810 0.996939i \(-0.475089\pi\)
−0.996939 + 0.0781810i \(0.975089\pi\)
\(24\) 0 0
\(25\) 1.14134 + 4.86799i 0.228267 + 0.973599i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 4.28267i 0.795272i −0.917543 0.397636i \(-0.869831\pi\)
0.917543 0.397636i \(-0.130169\pi\)
\(30\) 0 0
\(31\) 10.8131i 1.94209i 0.238905 + 0.971043i \(0.423212\pi\)
−0.238905 + 0.971043i \(0.576788\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) −2.22126 + 0.256912i −0.375461 + 0.0434260i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) 0.513824 0.0822776
\(40\) 0 0
\(41\) 9.06068 1.41504 0.707520 0.706693i \(-0.249814\pi\)
0.707520 + 0.706693i \(0.249814\pi\)
\(42\) 0 0
\(43\) 2.12792 + 2.12792i 0.324504 + 0.324504i 0.850492 0.525988i \(-0.176304\pi\)
−0.525988 + 0.850492i \(0.676304\pi\)
\(44\) 0 0
\(45\) 1.38900 1.75233i 0.207060 0.261222i
\(46\) 0 0
\(47\) −4.95634 + 4.95634i −0.722957 + 0.722957i −0.969206 0.246249i \(-0.920802\pi\)
0.246249 + 0.969206i \(0.420802\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 5.47017i 0.765977i
\(52\) 0 0
\(53\) 8.64600 8.64600i 1.18762 1.18762i 0.209896 0.977724i \(-0.432688\pi\)
0.977724 0.209896i \(-0.0673125\pi\)
\(54\) 0 0
\(55\) 3.92870 4.95634i 0.529745 0.668313i
\(56\) 0 0
\(57\) −0.636672 0.636672i −0.0843292 0.0843292i
\(58\) 0 0
\(59\) −6.05661 −0.788504 −0.394252 0.919002i \(-0.628996\pi\)
−0.394252 + 0.919002i \(0.628996\pi\)
\(60\) 0 0
\(61\) 11.2920 1.44579 0.722896 0.690957i \(-0.242810\pi\)
0.722896 + 0.690957i \(0.242810\pi\)
\(62\) 0 0
\(63\) 0.707107 + 0.707107i 0.0890871 + 0.0890871i
\(64\) 0 0
\(65\) 1.14134 0.132007i 0.141565 0.0163735i
\(66\) 0 0
\(67\) 4.95634 4.95634i 0.605514 0.605514i −0.336257 0.941770i \(-0.609161\pi\)
0.941770 + 0.336257i \(0.109161\pi\)
\(68\) 0 0
\(69\) 6.23132i 0.750163i
\(70\) 0 0
\(71\) 8.18453i 0.971325i −0.874146 0.485662i \(-0.838578\pi\)
0.874146 0.485662i \(-0.161422\pi\)
\(72\) 0 0
\(73\) 9.91934 9.91934i 1.16097 1.16097i 0.176708 0.984263i \(-0.443455\pi\)
0.984263 0.176708i \(-0.0565449\pi\)
\(74\) 0 0
\(75\) 2.63514 4.24924i 0.304280 0.490660i
\(76\) 0 0
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 6.05661 0.681422 0.340711 0.940168i \(-0.389332\pi\)
0.340711 + 0.940168i \(0.389332\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −6.75712 6.75712i −0.741691 0.741691i 0.231213 0.972903i \(-0.425731\pi\)
−0.972903 + 0.231213i \(0.925731\pi\)
\(84\) 0 0
\(85\) −1.40535 12.1507i −0.152432 1.31792i
\(86\) 0 0
\(87\) −3.02831 + 3.02831i −0.324669 + 0.324669i
\(88\) 0 0
\(89\) 14.5140i 1.53848i 0.638960 + 0.769240i \(0.279365\pi\)
−0.638960 + 0.769240i \(0.720635\pi\)
\(90\) 0 0
\(91\) 0.513824i 0.0538634i
\(92\) 0 0
\(93\) 7.64600 7.64600i 0.792853 0.792853i
\(94\) 0 0
\(95\) −1.57778 1.25065i −0.161877 0.128313i
\(96\) 0 0
\(97\) 8.64600 + 8.64600i 0.877868 + 0.877868i 0.993314 0.115445i \(-0.0368296\pi\)
−0.115445 + 0.993314i \(0.536830\pi\)
\(98\) 0 0
\(99\) −2.82843 −0.284268
\(100\) 0 0
\(101\) −10.7780 −1.07245 −0.536226 0.844074i \(-0.680150\pi\)
−0.536226 + 0.844074i \(0.680150\pi\)
\(102\) 0 0
\(103\) 11.8407 + 11.8407i 1.16670 + 1.16670i 0.982978 + 0.183723i \(0.0588150\pi\)
0.183723 + 0.982978i \(0.441185\pi\)
\(104\) 0 0
\(105\) 1.75233 + 1.38900i 0.171010 + 0.135553i
\(106\) 0 0
\(107\) −1.25065 + 1.25065i −0.120904 + 0.120904i −0.764970 0.644066i \(-0.777246\pi\)
0.644066 + 0.764970i \(0.277246\pi\)
\(108\) 0 0
\(109\) 4.82936i 0.462569i −0.972886 0.231284i \(-0.925707\pi\)
0.972886 0.231284i \(-0.0742928\pi\)
\(110\) 0 0
\(111\) 1.41421i 0.134231i
\(112\) 0 0
\(113\) 3.63667 3.63667i 0.342109 0.342109i −0.515051 0.857160i \(-0.672227\pi\)
0.857160 + 0.515051i \(0.172227\pi\)
\(114\) 0 0
\(115\) 1.60090 + 13.8414i 0.149285 + 1.29072i
\(116\) 0 0
\(117\) −0.363328 0.363328i −0.0335897 0.0335897i
\(118\) 0 0
\(119\) 5.47017 0.501449
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −6.40687 6.40687i −0.577688 0.577688i
\(124\) 0 0
\(125\) 4.76166 10.1157i 0.425896 0.904772i
\(126\) 0 0
\(127\) 10.6858 10.6858i 0.948213 0.948213i −0.0505103 0.998724i \(-0.516085\pi\)
0.998724 + 0.0505103i \(0.0160848\pi\)
\(128\) 0 0
\(129\) 3.00933i 0.264957i
\(130\) 0 0
\(131\) 11.7135i 1.02341i 0.859161 + 0.511705i \(0.170986\pi\)
−0.859161 + 0.511705i \(0.829014\pi\)
\(132\) 0 0
\(133\) 0.636672 0.636672i 0.0552064 0.0552064i
\(134\) 0 0
\(135\) −2.22126 + 0.256912i −0.191176 + 0.0221115i
\(136\) 0 0
\(137\) 2.91002 + 2.91002i 0.248619 + 0.248619i 0.820404 0.571784i \(-0.193749\pi\)
−0.571784 + 0.820404i \(0.693749\pi\)
\(138\) 0 0
\(139\) 1.30015 0.110277 0.0551386 0.998479i \(-0.482440\pi\)
0.0551386 + 0.998479i \(0.482440\pi\)
\(140\) 0 0
\(141\) 7.00933 0.590292
\(142\) 0 0
\(143\) −1.02765 1.02765i −0.0859362 0.0859362i
\(144\) 0 0
\(145\) −5.94865 + 7.50466i −0.494008 + 0.623228i
\(146\) 0 0
\(147\) −0.707107 + 0.707107i −0.0583212 + 0.0583212i
\(148\) 0 0
\(149\) 11.4533i 0.938292i 0.883121 + 0.469146i \(0.155438\pi\)
−0.883121 + 0.469146i \(0.844562\pi\)
\(150\) 0 0
\(151\) 5.91137i 0.481060i 0.970642 + 0.240530i \(0.0773213\pi\)
−0.970642 + 0.240530i \(0.922679\pi\)
\(152\) 0 0
\(153\) −3.86799 + 3.86799i −0.312709 + 0.312709i
\(154\) 0 0
\(155\) 15.0194 18.9481i 1.20639 1.52195i
\(156\) 0 0
\(157\) 2.08066 + 2.08066i 0.166054 + 0.166054i 0.785243 0.619188i \(-0.212538\pi\)
−0.619188 + 0.785243i \(0.712538\pi\)
\(158\) 0 0
\(159\) −12.2273 −0.969687
\(160\) 0 0
\(161\) −6.23132 −0.491097
\(162\) 0 0
\(163\) −4.88372 4.88372i −0.382523 0.382523i 0.489488 0.872010i \(-0.337184\pi\)
−0.872010 + 0.489488i \(0.837184\pi\)
\(164\) 0 0
\(165\) −6.28267 + 0.726656i −0.489105 + 0.0565701i
\(166\) 0 0
\(167\) 10.9403 10.9403i 0.846589 0.846589i −0.143117 0.989706i \(-0.545713\pi\)
0.989706 + 0.143117i \(0.0457126\pi\)
\(168\) 0 0
\(169\) 12.7360i 0.979691i
\(170\) 0 0
\(171\) 0.900390i 0.0688545i
\(172\) 0 0
\(173\) 4.13201 4.13201i 0.314151 0.314151i −0.532365 0.846515i \(-0.678696\pi\)
0.846515 + 0.532365i \(0.178696\pi\)
\(174\) 0 0
\(175\) 4.24924 + 2.63514i 0.321212 + 0.199198i
\(176\) 0 0
\(177\) 4.28267 + 4.28267i 0.321905 + 0.321905i
\(178\) 0 0
\(179\) 11.6408 0.870078 0.435039 0.900412i \(-0.356735\pi\)
0.435039 + 0.900412i \(0.356735\pi\)
\(180\) 0 0
\(181\) −17.5747 −1.30632 −0.653158 0.757222i \(-0.726556\pi\)
−0.653158 + 0.757222i \(0.726556\pi\)
\(182\) 0 0
\(183\) −7.98465 7.98465i −0.590242 0.590242i
\(184\) 0 0
\(185\) −0.363328 3.14134i −0.0267124 0.230956i
\(186\) 0 0
\(187\) −10.9403 + 10.9403i −0.800037 + 0.800037i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 5.02897i 0.363883i 0.983309 + 0.181942i \(0.0582382\pi\)
−0.983309 + 0.181942i \(0.941762\pi\)
\(192\) 0 0
\(193\) 1.44398 1.44398i 0.103940 0.103940i −0.653224 0.757165i \(-0.726584\pi\)
0.757165 + 0.653224i \(0.226584\pi\)
\(194\) 0 0
\(195\) −0.900390 0.713703i −0.0644783 0.0511093i
\(196\) 0 0
\(197\) 2.80731 + 2.80731i 0.200013 + 0.200013i 0.800005 0.599993i \(-0.204830\pi\)
−0.599993 + 0.800005i \(0.704830\pi\)
\(198\) 0 0
\(199\) −12.4686 −0.883877 −0.441938 0.897045i \(-0.645709\pi\)
−0.441938 + 0.897045i \(0.645709\pi\)
\(200\) 0 0
\(201\) −7.00933 −0.494400
\(202\) 0 0
\(203\) −3.02831 3.02831i −0.212545 0.212545i
\(204\) 0 0
\(205\) −15.8773 12.5853i −1.10892 0.878997i
\(206\) 0 0
\(207\) 4.40621 4.40621i 0.306253 0.306253i
\(208\) 0 0
\(209\) 2.54669i 0.176158i
\(210\) 0 0
\(211\) 5.65685i 0.389434i 0.980859 + 0.194717i \(0.0623788\pi\)
−0.980859 + 0.194717i \(0.937621\pi\)
\(212\) 0 0
\(213\) −5.78734 + 5.78734i −0.396542 + 0.396542i
\(214\) 0 0
\(215\) −0.773132 6.68450i −0.0527272 0.455879i
\(216\) 0 0
\(217\) 7.64600 + 7.64600i 0.519044 + 0.519044i
\(218\) 0 0
\(219\) −14.0281 −0.947929
\(220\) 0 0
\(221\) −2.81070 −0.189068
\(222\) 0 0
\(223\) 20.3260 + 20.3260i 1.36113 + 1.36113i 0.872480 + 0.488650i \(0.162511\pi\)
0.488650 + 0.872480i \(0.337489\pi\)
\(224\) 0 0
\(225\) −4.86799 + 1.14134i −0.324533 + 0.0760891i
\(226\) 0 0
\(227\) −17.7701 + 17.7701i −1.17944 + 1.17944i −0.199555 + 0.979887i \(0.563950\pi\)
−0.979887 + 0.199555i \(0.936050\pi\)
\(228\) 0 0
\(229\) 1.73599i 0.114717i −0.998354 0.0573586i \(-0.981732\pi\)
0.998354 0.0573586i \(-0.0182678\pi\)
\(230\) 0 0
\(231\) 2.82843i 0.186097i
\(232\) 0 0
\(233\) −10.0993 + 10.0993i −0.661628 + 0.661628i −0.955764 0.294136i \(-0.904968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(234\) 0 0
\(235\) 15.5695 1.80078i 1.01564 0.117470i
\(236\) 0 0
\(237\) −4.28267 4.28267i −0.278189 0.278189i
\(238\) 0 0
\(239\) −16.3427 −1.05712 −0.528560 0.848896i \(-0.677268\pi\)
−0.528560 + 0.848896i \(0.677268\pi\)
\(240\) 0 0
\(241\) −7.71733 −0.497117 −0.248558 0.968617i \(-0.579957\pi\)
−0.248558 + 0.968617i \(0.579957\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −1.38900 + 1.75233i −0.0887402 + 0.111952i
\(246\) 0 0
\(247\) −0.327137 + 0.327137i −0.0208152 + 0.0208152i
\(248\) 0 0
\(249\) 9.55602i 0.605588i
\(250\) 0 0
\(251\) 13.9140i 0.878244i −0.898427 0.439122i \(-0.855290\pi\)
0.898427 0.439122i \(-0.144710\pi\)
\(252\) 0 0
\(253\) 12.4626 12.4626i 0.783520 0.783520i
\(254\) 0 0
\(255\) −7.59808 + 9.58555i −0.475810 + 0.600270i
\(256\) 0 0
\(257\) −1.08998 1.08998i −0.0679914 0.0679914i 0.672293 0.740285i \(-0.265309\pi\)
−0.740285 + 0.672293i \(0.765309\pi\)
\(258\) 0 0
\(259\) 1.41421 0.0878750
\(260\) 0 0
\(261\) 4.28267 0.265091
\(262\) 0 0
\(263\) −4.07907 4.07907i −0.251526 0.251526i 0.570070 0.821596i \(-0.306916\pi\)
−0.821596 + 0.570070i \(0.806916\pi\)
\(264\) 0 0
\(265\) −27.1600 + 3.14134i −1.66843 + 0.192971i
\(266\) 0 0
\(267\) 10.2629 10.2629i 0.628082 0.628082i
\(268\) 0 0
\(269\) 16.6940i 1.01785i −0.860811 0.508924i \(-0.830043\pi\)
0.860811 0.508924i \(-0.169957\pi\)
\(270\) 0 0
\(271\) 22.3813i 1.35957i −0.733413 0.679784i \(-0.762074\pi\)
0.733413 0.679784i \(-0.237926\pi\)
\(272\) 0 0
\(273\) 0.363328 0.363328i 0.0219896 0.0219896i
\(274\) 0 0
\(275\) −13.7688 + 3.22819i −0.830288 + 0.194667i
\(276\) 0 0
\(277\) 2.71733 + 2.71733i 0.163268 + 0.163268i 0.784013 0.620745i \(-0.213170\pi\)
−0.620745 + 0.784013i \(0.713170\pi\)
\(278\) 0 0
\(279\) −10.8131 −0.647362
\(280\) 0 0
\(281\) −8.28267 −0.494103 −0.247051 0.969002i \(-0.579462\pi\)
−0.247051 + 0.969002i \(0.579462\pi\)
\(282\) 0 0
\(283\) 4.90171 + 4.90171i 0.291376 + 0.291376i 0.837624 0.546248i \(-0.183944\pi\)
−0.546248 + 0.837624i \(0.683944\pi\)
\(284\) 0 0
\(285\) 0.231321 + 2.00000i 0.0137023 + 0.118470i
\(286\) 0 0
\(287\) 6.40687 6.40687i 0.378185 0.378185i
\(288\) 0 0
\(289\) 12.9227i 0.760161i
\(290\) 0 0
\(291\) 12.2273i 0.716776i
\(292\) 0 0
\(293\) 16.8260 16.8260i 0.982984 0.982984i −0.0168740 0.999858i \(-0.505371\pi\)
0.999858 + 0.0168740i \(0.00537141\pi\)
\(294\) 0 0
\(295\) 10.6132 + 8.41266i 0.617924 + 0.489804i
\(296\) 0 0
\(297\) 2.00000 + 2.00000i 0.116052 + 0.116052i
\(298\) 0 0
\(299\) 3.20180 0.185165
\(300\) 0 0
\(301\) 3.00933 0.173455
\(302\) 0 0
\(303\) 7.62120 + 7.62120i 0.437827 + 0.437827i
\(304\) 0 0
\(305\) −19.7873 15.6846i −1.13302 0.898100i
\(306\) 0 0
\(307\) −3.85607 + 3.85607i −0.220078 + 0.220078i −0.808531 0.588453i \(-0.799737\pi\)
0.588453 + 0.808531i \(0.299737\pi\)
\(308\) 0 0
\(309\) 16.7453i 0.952608i
\(310\) 0 0
\(311\) 33.0851i 1.87608i 0.346521 + 0.938042i \(0.387363\pi\)
−0.346521 + 0.938042i \(0.612637\pi\)
\(312\) 0 0
\(313\) 15.6367 15.6367i 0.883837 0.883837i −0.110085 0.993922i \(-0.535112\pi\)
0.993922 + 0.110085i \(0.0351124\pi\)
\(314\) 0 0
\(315\) −0.256912 2.22126i −0.0144753 0.125154i
\(316\) 0 0
\(317\) 10.3633 + 10.3633i 0.582063 + 0.582063i 0.935470 0.353407i \(-0.114977\pi\)
−0.353407 + 0.935470i \(0.614977\pi\)
\(318\) 0 0
\(319\) 12.1132 0.678210
\(320\) 0 0
\(321\) 1.76868 0.0987180
\(322\) 0 0
\(323\) 3.48270 + 3.48270i 0.193783 + 0.193783i
\(324\) 0 0
\(325\) −2.18336 1.35400i −0.121111 0.0751064i
\(326\) 0 0
\(327\) −3.41487 + 3.41487i −0.188843 + 0.188843i
\(328\) 0 0
\(329\) 7.00933i 0.386437i
\(330\) 0 0
\(331\) 33.3396i 1.83251i 0.400594 + 0.916256i \(0.368804\pi\)
−0.400594 + 0.916256i \(0.631196\pi\)
\(332\) 0 0
\(333\) −1.00000 + 1.00000i −0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) −15.5695 + 1.80078i −0.850655 + 0.0983871i
\(336\) 0 0
\(337\) −14.1893 14.1893i −0.772940 0.772940i 0.205679 0.978619i \(-0.434060\pi\)
−0.978619 + 0.205679i \(0.934060\pi\)
\(338\) 0 0
\(339\) −5.14303 −0.279331
\(340\) 0 0
\(341\) −30.5840 −1.65622
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.0381802 0.0381802i
\(344\) 0 0
\(345\) 8.65533 10.9193i 0.465987 0.587878i
\(346\) 0 0
\(347\) 2.67805 2.67805i 0.143765 0.143765i −0.631561 0.775326i \(-0.717585\pi\)
0.775326 + 0.631561i \(0.217585\pi\)
\(348\) 0 0
\(349\) 15.8200i 0.846827i 0.905937 + 0.423413i \(0.139168\pi\)
−0.905937 + 0.423413i \(0.860832\pi\)
\(350\) 0 0
\(351\) 0.513824i 0.0274259i
\(352\) 0 0
\(353\) 3.53397 3.53397i 0.188094 0.188094i −0.606778 0.794872i \(-0.707538\pi\)
0.794872 + 0.606778i \(0.207538\pi\)
\(354\) 0 0
\(355\) −11.3683 + 14.3420i −0.603369 + 0.761195i
\(356\) 0 0
\(357\) −3.86799 3.86799i −0.204716 0.204716i
\(358\) 0 0
\(359\) 9.88630 0.521779 0.260890 0.965369i \(-0.415984\pi\)
0.260890 + 0.965369i \(0.415984\pi\)
\(360\) 0 0
\(361\) −18.1893 −0.957331
\(362\) 0 0
\(363\) −2.12132 2.12132i −0.111340 0.111340i
\(364\) 0 0
\(365\) −31.1600 + 3.60398i −1.63099 + 0.188641i
\(366\) 0 0
\(367\) −11.2128 + 11.2128i −0.585305 + 0.585305i −0.936356 0.351051i \(-0.885824\pi\)
0.351051 + 0.936356i \(0.385824\pi\)
\(368\) 0 0
\(369\) 9.06068i 0.471680i
\(370\) 0 0
\(371\) 12.2273i 0.634809i
\(372\) 0 0
\(373\) −14.3947 + 14.3947i −0.745330 + 0.745330i −0.973598 0.228269i \(-0.926694\pi\)
0.228269 + 0.973598i \(0.426694\pi\)
\(374\) 0 0
\(375\) −10.5199 + 3.78585i −0.543243 + 0.195500i
\(376\) 0 0
\(377\) 1.55602 + 1.55602i 0.0801389 + 0.0801389i
\(378\) 0 0
\(379\) 30.1378 1.54808 0.774038 0.633139i \(-0.218234\pi\)
0.774038 + 0.633139i \(0.218234\pi\)
\(380\) 0 0
\(381\) −15.1120 −0.774213
\(382\) 0 0
\(383\) −15.8967 15.8967i −0.812282 0.812282i 0.172693 0.984976i \(-0.444753\pi\)
−0.984976 + 0.172693i \(0.944753\pi\)
\(384\) 0 0
\(385\) −0.726656 6.28267i −0.0370338 0.320195i
\(386\) 0 0
\(387\) −2.12792 + 2.12792i −0.108168 + 0.108168i
\(388\) 0 0
\(389\) 3.55602i 0.180297i 0.995928 + 0.0901486i \(0.0287342\pi\)
−0.995928 + 0.0901486i \(0.971266\pi\)
\(390\) 0 0
\(391\) 34.0864i 1.72382i
\(392\) 0 0
\(393\) 8.28267 8.28267i 0.417806 0.417806i
\(394\) 0 0
\(395\) −10.6132 8.41266i −0.534008 0.423287i
\(396\) 0 0
\(397\) 13.1086 + 13.1086i 0.657904 + 0.657904i 0.954884 0.296980i \(-0.0959794\pi\)
−0.296980 + 0.954884i \(0.595979\pi\)
\(398\) 0 0
\(399\) −0.900390 −0.0450759
\(400\) 0 0
\(401\) 2.99067 0.149347 0.0746735 0.997208i \(-0.476209\pi\)
0.0746735 + 0.997208i \(0.476209\pi\)
\(402\) 0 0
\(403\) −3.92870 3.92870i −0.195702 0.195702i
\(404\) 0 0
\(405\) 1.75233 + 1.38900i 0.0870741 + 0.0690202i
\(406\) 0 0
\(407\) −2.82843 + 2.82843i −0.140200 + 0.140200i
\(408\) 0 0
\(409\) 33.9346i 1.67796i 0.544163 + 0.838979i \(0.316847\pi\)
−0.544163 + 0.838979i \(0.683153\pi\)
\(410\) 0 0
\(411\) 4.11538i 0.202997i
\(412\) 0 0
\(413\) −4.28267 + 4.28267i −0.210737 + 0.210737i
\(414\) 0 0
\(415\) 2.45505 + 21.2264i 0.120514 + 1.04196i
\(416\) 0 0
\(417\) −0.919344 0.919344i −0.0450205 0.0450205i
\(418\) 0 0
\(419\) 38.1970 1.86604 0.933022 0.359820i \(-0.117162\pi\)
0.933022 + 0.359820i \(0.117162\pi\)
\(420\) 0 0
\(421\) −30.8667 −1.50435 −0.752175 0.658964i \(-0.770995\pi\)
−0.752175 + 0.658964i \(0.770995\pi\)
\(422\) 0 0
\(423\) −4.95634 4.95634i −0.240986 0.240986i
\(424\) 0 0
\(425\) −14.4147 + 23.2440i −0.699215 + 1.12750i
\(426\) 0 0
\(427\) 7.98465 7.98465i 0.386404 0.386404i
\(428\) 0 0
\(429\) 1.45331i 0.0701666i
\(430\) 0 0
\(431\) 14.6409i 0.705227i −0.935769 0.352614i \(-0.885293\pi\)
0.935769 0.352614i \(-0.114707\pi\)
\(432\) 0 0
\(433\) −8.66466 + 8.66466i −0.416397 + 0.416397i −0.883960 0.467563i \(-0.845132\pi\)
0.467563 + 0.883960i \(0.345132\pi\)
\(434\) 0 0
\(435\) 9.51293 1.10027i 0.456110 0.0527539i
\(436\) 0 0
\(437\) −3.96731 3.96731i −0.189782 0.189782i
\(438\) 0 0
\(439\) 8.61254 0.411054 0.205527 0.978651i \(-0.434109\pi\)
0.205527 + 0.978651i \(0.434109\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 6.13437 + 6.13437i 0.291453 + 0.291453i 0.837654 0.546201i \(-0.183927\pi\)
−0.546201 + 0.837654i \(0.683927\pi\)
\(444\) 0 0
\(445\) 20.1600 25.4333i 0.955675 1.20566i
\(446\) 0 0
\(447\) 8.09872 8.09872i 0.383056 0.383056i
\(448\) 0 0
\(449\) 24.5467i 1.15843i 0.815175 + 0.579215i \(0.196641\pi\)
−0.815175 + 0.579215i \(0.803359\pi\)
\(450\) 0 0
\(451\) 25.6275i 1.20675i
\(452\) 0 0
\(453\) 4.17997 4.17997i 0.196392 0.196392i
\(454\) 0 0
\(455\) 0.713703 0.900390i 0.0334589 0.0422109i
\(456\) 0 0
\(457\) −18.0280 18.0280i −0.843314 0.843314i 0.145975 0.989288i \(-0.453368\pi\)
−0.989288 + 0.145975i \(0.953368\pi\)
\(458\) 0 0
\(459\) 5.47017 0.255326
\(460\) 0 0
\(461\) −2.21266 −0.103054 −0.0515270 0.998672i \(-0.516409\pi\)
−0.0515270 + 0.998672i \(0.516409\pi\)
\(462\) 0 0
\(463\) −22.3993 22.3993i −1.04098 1.04098i −0.999124 0.0418597i \(-0.986672\pi\)
−0.0418597 0.999124i \(-0.513328\pi\)
\(464\) 0 0
\(465\) −24.0187 + 2.77801i −1.11384 + 0.128827i
\(466\) 0 0
\(467\) 4.65559 4.65559i 0.215435 0.215435i −0.591136 0.806572i \(-0.701321\pi\)
0.806572 + 0.591136i \(0.201321\pi\)
\(468\) 0 0
\(469\) 7.00933i 0.323661i
\(470\) 0 0
\(471\) 2.94249i 0.135583i
\(472\) 0 0
\(473\) −6.01866 + 6.01866i −0.276738 + 0.276738i
\(474\) 0 0
\(475\) 1.02765 + 4.38309i 0.0471517 + 0.201110i
\(476\) 0 0
\(477\) 8.64600 + 8.64600i 0.395873 + 0.395873i
\(478\) 0 0
\(479\) −25.7367 −1.17594 −0.587971 0.808882i \(-0.700073\pi\)
−0.587971 + 0.808882i \(0.700073\pi\)
\(480\) 0 0
\(481\) −0.726656 −0.0331327
\(482\) 0 0
\(483\) 4.40621 + 4.40621i 0.200489 + 0.200489i
\(484\) 0 0
\(485\) −3.14134 27.1600i −0.142641 1.23327i
\(486\) 0 0
\(487\) 19.8980 19.8980i 0.901664 0.901664i −0.0939158 0.995580i \(-0.529938\pi\)
0.995580 + 0.0939158i \(0.0299385\pi\)
\(488\) 0 0
\(489\) 6.90663i 0.312328i
\(490\) 0 0
\(491\) 15.0972i 0.681325i 0.940186 + 0.340663i \(0.110651\pi\)
−0.940186 + 0.340663i \(0.889349\pi\)
\(492\) 0 0
\(493\) 16.5653 16.5653i 0.746066 0.746066i
\(494\) 0 0
\(495\) 4.95634 + 3.92870i 0.222771 + 0.176582i
\(496\) 0 0
\(497\) −5.78734 5.78734i −0.259598 0.259598i
\(498\) 0 0
\(499\) −24.4810 −1.09592 −0.547959 0.836505i \(-0.684595\pi\)
−0.547959 + 0.836505i \(0.684595\pi\)
\(500\) 0 0
\(501\) −15.4720 −0.691237
\(502\) 0 0
\(503\) −5.72948 5.72948i −0.255465 0.255465i 0.567742 0.823207i \(-0.307817\pi\)
−0.823207 + 0.567742i \(0.807817\pi\)
\(504\) 0 0
\(505\) 18.8867 + 14.9707i 0.840445 + 0.666187i
\(506\) 0 0
\(507\) 9.00570 9.00570i 0.399957 0.399957i
\(508\) 0 0
\(509\) 4.07001i 0.180400i −0.995924 0.0902000i \(-0.971249\pi\)
0.995924 0.0902000i \(-0.0287506\pi\)
\(510\) 0 0
\(511\) 14.0281i 0.620565i
\(512\) 0 0
\(513\) 0.636672 0.636672i 0.0281097 0.0281097i
\(514\) 0 0
\(515\) −4.30207 37.1957i −0.189572 1.63904i
\(516\) 0 0
\(517\) −14.0187 14.0187i −0.616540 0.616540i
\(518\) 0 0
\(519\) −5.84354 −0.256503
\(520\) 0 0
\(521\) 13.3247 0.583765 0.291883 0.956454i \(-0.405718\pi\)
0.291883 + 0.956454i \(0.405718\pi\)
\(522\) 0 0
\(523\) 11.5862 + 11.5862i 0.506630 + 0.506630i 0.913490 0.406861i \(-0.133377\pi\)
−0.406861 + 0.913490i \(0.633377\pi\)
\(524\) 0 0
\(525\) −1.14134 4.86799i −0.0498120 0.212457i
\(526\) 0 0
\(527\) −41.8249 + 41.8249i −1.82192 + 1.82192i
\(528\) 0 0
\(529\) 15.8294i 0.688233i
\(530\) 0 0
\(531\) 6.05661i 0.262835i
\(532\) 0 0
\(533\) −3.29200 + 3.29200i −0.142592 + 0.142592i
\(534\) 0 0
\(535\) 3.92870 0.454395i 0.169852 0.0196452i
\(536\) 0 0
\(537\) −8.23132 8.23132i −0.355208 0.355208i
\(538\) 0 0
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) −37.3947 −1.60772 −0.803862 0.594816i \(-0.797225\pi\)
−0.803862 + 0.594816i \(0.797225\pi\)
\(542\) 0 0
\(543\) 12.4272 + 12.4272i 0.533301 + 0.533301i
\(544\) 0 0
\(545\) −6.70800 + 8.46264i −0.287339 + 0.362500i
\(546\) 0 0
\(547\) 21.9269 21.9269i 0.937527 0.937527i −0.0606333 0.998160i \(-0.519312\pi\)
0.998160 + 0.0606333i \(0.0193120\pi\)
\(548\) 0 0
\(549\) 11.2920i 0.481931i
\(550\) 0 0
\(551\) 3.85607i 0.164274i
\(552\) 0 0
\(553\) 4.28267 4.28267i 0.182118 0.182118i
\(554\) 0 0
\(555\) −1.96435 + 2.47817i −0.0833819 + 0.105193i
\(556\) 0 0
\(557\) 22.0993 + 22.0993i 0.936378 + 0.936378i 0.998094 0.0617158i \(-0.0196572\pi\)
−0.0617158 + 0.998094i \(0.519657\pi\)
\(558\) 0 0
\(559\) −1.54626 −0.0654000
\(560\) 0 0
\(561\) 15.4720 0.653227
\(562\) 0 0
\(563\) −7.63953 7.63953i −0.321968 0.321968i 0.527554 0.849522i \(-0.323109\pi\)
−0.849522 + 0.527554i \(0.823109\pi\)
\(564\) 0 0
\(565\) −11.4240 + 1.32131i −0.480612 + 0.0555877i
\(566\) 0 0
\(567\) −0.707107 + 0.707107i −0.0296957 + 0.0296957i
\(568\) 0 0
\(569\) 0.0840454i 0.00352337i −0.999998 0.00176168i \(-0.999439\pi\)
0.999998 0.00176168i \(-0.000560761\pi\)
\(570\) 0 0
\(571\) 15.5695i 0.651565i −0.945445 0.325783i \(-0.894372\pi\)
0.945445 0.325783i \(-0.105628\pi\)
\(572\) 0 0
\(573\) 3.55602 3.55602i 0.148555 0.148555i
\(574\) 0 0
\(575\) 16.4204 26.4784i 0.684779 1.10422i
\(576\) 0 0
\(577\) 9.19269 + 9.19269i 0.382697 + 0.382697i 0.872073 0.489376i \(-0.162775\pi\)
−0.489376 + 0.872073i \(0.662775\pi\)
\(578\) 0 0
\(579\) −2.04210 −0.0848669
\(580\) 0 0
\(581\) −9.55602 −0.396450
\(582\) 0 0
\(583\) 24.4546 + 24.4546i 1.01281 + 1.01281i
\(584\) 0 0
\(585\) 0.132007 + 1.14134i 0.00545783 + 0.0471884i
\(586\) 0 0
\(587\) −21.1538 + 21.1538i −0.873110 + 0.873110i −0.992810 0.119700i \(-0.961807\pi\)
0.119700 + 0.992810i \(0.461807\pi\)
\(588\) 0 0
\(589\) 9.73599i 0.401164i
\(590\) 0 0
\(591\) 3.97014i 0.163310i
\(592\) 0 0
\(593\) 5.58532 5.58532i 0.229362 0.229362i −0.583064 0.812426i \(-0.698146\pi\)
0.812426 + 0.583064i \(0.198146\pi\)
\(594\) 0 0
\(595\) −9.58555 7.59808i −0.392969 0.311491i
\(596\) 0 0
\(597\) 8.81664 + 8.81664i 0.360841 + 0.360841i
\(598\) 0 0
\(599\) 29.7117 1.21399 0.606993 0.794707i \(-0.292376\pi\)
0.606993 + 0.794707i \(0.292376\pi\)
\(600\) 0 0
\(601\) 23.6519 0.964783 0.482391 0.875956i \(-0.339768\pi\)
0.482391 + 0.875956i \(0.339768\pi\)
\(602\) 0 0
\(603\) 4.95634 + 4.95634i 0.201838 + 0.201838i
\(604\) 0 0
\(605\) −5.25700 4.16701i −0.213727 0.169413i
\(606\) 0 0
\(607\) 7.21152 7.21152i 0.292706 0.292706i −0.545442 0.838149i \(-0.683638\pi\)
0.838149 + 0.545442i \(0.183638\pi\)
\(608\) 0 0
\(609\) 4.28267i 0.173543i
\(610\) 0 0
\(611\) 3.60156i 0.145703i
\(612\) 0 0
\(613\) −0.614625 + 0.614625i −0.0248245 + 0.0248245i −0.719410 0.694586i \(-0.755588\pi\)
0.694586 + 0.719410i \(0.255588\pi\)
\(614\) 0 0
\(615\) 2.32780 + 20.1261i 0.0938658 + 0.811564i
\(616\) 0 0
\(617\) 0.381986 + 0.381986i 0.0153782 + 0.0153782i 0.714754 0.699376i \(-0.246539\pi\)
−0.699376 + 0.714754i \(0.746539\pi\)
\(618\) 0 0
\(619\) −40.1514 −1.61382 −0.806910 0.590674i \(-0.798862\pi\)
−0.806910 + 0.590674i \(0.798862\pi\)
\(620\) 0 0
\(621\) −6.23132 −0.250054
\(622\) 0 0
\(623\) 10.2629 + 10.2629i 0.411176 + 0.411176i
\(624\) 0 0
\(625\) −22.3947 + 11.1120i −0.895788 + 0.444481i
\(626\) 0 0
\(627\) 1.80078 1.80078i 0.0719162 0.0719162i
\(628\) 0 0
\(629\) 7.73599i 0.308454i
\(630\) 0 0
\(631\) 20.3704i 0.810932i −0.914110 0.405466i \(-0.867109\pi\)
0.914110 0.405466i \(-0.132891\pi\)
\(632\) 0 0
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 0 0
\(635\) −33.5678 + 3.88246i −1.33210 + 0.154071i
\(636\) 0 0
\(637\) 0.363328 + 0.363328i 0.0143956 + 0.0143956i
\(638\) 0 0
\(639\) 8.18453 0.323775
\(640\) 0 0
\(641\) −16.2827 −0.643127 −0.321563 0.946888i \(-0.604208\pi\)
−0.321563 + 0.946888i \(0.604208\pi\)
\(642\) 0 0
\(643\) 16.5708 + 16.5708i 0.653489 + 0.653489i 0.953831 0.300343i \(-0.0971010\pi\)
−0.300343 + 0.953831i \(0.597101\pi\)
\(644\) 0 0
\(645\) −4.17997 + 5.27334i −0.164586 + 0.207638i
\(646\) 0 0
\(647\) −14.7964 + 14.7964i −0.581707 + 0.581707i −0.935372 0.353665i \(-0.884935\pi\)
0.353665 + 0.935372i \(0.384935\pi\)
\(648\) 0 0
\(649\) 17.1307i 0.672438i
\(650\) 0 0
\(651\) 10.8131i 0.423798i
\(652\) 0 0
\(653\) 29.7767 29.7767i 1.16525 1.16525i 0.181943 0.983309i \(-0.441761\pi\)
0.983309 0.181943i \(-0.0582386\pi\)
\(654\) 0 0
\(655\) 16.2701 20.5259i 0.635724 0.802013i
\(656\) 0 0
\(657\) 9.91934 + 9.91934i 0.386990 + 0.386990i
\(658\) 0 0
\(659\) 38.6693 1.50634 0.753172 0.657824i \(-0.228523\pi\)
0.753172 + 0.657824i \(0.228523\pi\)
\(660\) 0 0
\(661\) 19.8573 0.772361 0.386181 0.922423i \(-0.373794\pi\)
0.386181 + 0.922423i \(0.373794\pi\)
\(662\) 0 0
\(663\) 1.98747 + 1.98747i 0.0771868 + 0.0771868i
\(664\) 0 0
\(665\) −2.00000 + 0.231321i −0.0775567 + 0.00897024i
\(666\) 0 0
\(667\) −18.8703 + 18.8703i −0.730663 + 0.730663i
\(668\) 0 0
\(669\) 28.7453i 1.11136i
\(670\) 0 0
\(671\) 31.9386i 1.23298i
\(672\) 0 0
\(673\) 2.98134 2.98134i 0.114922 0.114922i −0.647307 0.762229i \(-0.724105\pi\)
0.762229 + 0.647307i \(0.224105\pi\)
\(674\) 0 0
\(675\) 4.24924 + 2.63514i 0.163553 + 0.101427i
\(676\) 0 0
\(677\) −20.4333 20.4333i −0.785317 0.785317i 0.195406 0.980723i \(-0.437398\pi\)
−0.980723 + 0.195406i \(0.937398\pi\)
\(678\) 0 0
\(679\) 12.2273 0.469240
\(680\) 0 0
\(681\) 25.1307 0.963010
\(682\) 0 0
\(683\) −14.1370 14.1370i −0.540937 0.540937i 0.382866 0.923804i \(-0.374937\pi\)
−0.923804 + 0.382866i \(0.874937\pi\)
\(684\) 0 0
\(685\) −1.05729 9.14134i −0.0403970 0.349272i
\(686\) 0 0
\(687\) −1.22753 + 1.22753i −0.0468331 + 0.0468331i
\(688\) 0 0
\(689\) 6.28267i 0.239351i
\(690\) 0 0
\(691\) 8.01104i 0.304754i 0.988322 + 0.152377i \(0.0486928\pi\)
−0.988322 + 0.152377i \(0.951307\pi\)
\(692\) 0 0
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 0 0
\(695\) −2.27829 1.80591i −0.0864206 0.0685021i
\(696\) 0 0
\(697\) 35.0466 + 35.0466i 1.32749 + 1.32749i
\(698\) 0 0
\(699\) 14.2826 0.540217
\(700\) 0 0
\(701\) 37.4134 1.41308 0.706542 0.707672i \(-0.250254\pi\)
0.706542 + 0.707672i \(0.250254\pi\)
\(702\) 0 0
\(703\) 0.900390 + 0.900390i 0.0339588 + 0.0339588i
\(704\) 0 0
\(705\) −12.2827 9.73599i −0.462592 0.366678i
\(706\) 0 0
\(707\) −7.62120 + 7.62120i −0.286625 + 0.286625i
\(708\) 0 0
\(709\) 20.9253i 0.785866i −0.919567 0.392933i \(-0.871461\pi\)
0.919567 0.392933i \(-0.128539\pi\)
\(710\) 0 0
\(711\) 6.05661i 0.227141i
\(712\) 0 0
\(713\) 47.6447 47.6447i 1.78431 1.78431i
\(714\) 0 0
\(715\) 0.373373 + 3.22819i 0.0139634 + 0.120727i
\(716\) 0 0
\(717\) 11.5560 + 11.5560i 0.431567 + 0.431567i
\(718\) 0 0
\(719\) 27.1378 1.01207 0.506034 0.862514i \(-0.331111\pi\)
0.506034 + 0.862514i \(0.331111\pi\)
\(720\) 0 0
\(721\) 16.7453 0.623628
\(722\) 0 0
\(723\) 5.45697 + 5.45697i 0.202947 + 0.202947i
\(724\) 0 0
\(725\) 20.8480 4.88797i 0.774276 0.181535i
\(726\) 0 0
\(727\) 17.3967 17.3967i 0.645208 0.645208i −0.306623 0.951831i \(-0.599199\pi\)
0.951831 + 0.306623i \(0.0991991\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 16.4615i 0.608852i
\(732\) 0 0
\(733\) 26.5874 26.5874i 0.982028 0.982028i −0.0178136 0.999841i \(-0.505671\pi\)
0.999841 + 0.0178136i \(0.00567055\pi\)
\(734\) 0 0
\(735\) 2.22126 0.256912i 0.0819324 0.00947634i
\(736\) 0 0
\(737\) 14.0187 + 14.0187i 0.516384 + 0.516384i
\(738\) 0 0
\(739\) −46.0544 −1.69414 −0.847068 0.531484i \(-0.821635\pi\)
−0.847068 + 0.531484i \(0.821635\pi\)
\(740\) 0 0
\(741\) 0.462642 0.0169956
\(742\) 0 0
\(743\) −25.9597 25.9597i −0.952371 0.952371i 0.0465456 0.998916i \(-0.485179\pi\)
−0.998916 + 0.0465456i \(0.985179\pi\)
\(744\) 0 0
\(745\) 15.9087 20.0700i 0.582850 0.735308i
\(746\) 0 0
\(747\) 6.75712 6.75712i 0.247230 0.247230i
\(748\) 0 0
\(749\) 1.76868i 0.0646261i
\(750\) 0 0
\(751\) 32.5401i 1.18741i −0.804685 0.593703i \(-0.797666\pi\)
0.804685 0.593703i \(-0.202334\pi\)
\(752\) 0 0
\(753\) −9.83869 + 9.83869i −0.358542 + 0.358542i
\(754\) 0 0
\(755\) 8.21092 10.3587i 0.298826 0.376991i
\(756\) 0 0
\(757\) −6.73599 6.73599i −0.244824 0.244824i 0.574019 0.818842i \(-0.305384\pi\)
−0.818842 + 0.574019i \(0.805384\pi\)
\(758\) 0 0
\(759\) −17.6248 −0.639741
\(760\) 0 0
\(761\) 40.6940 1.47515 0.737577 0.675262i \(-0.235970\pi\)
0.737577 + 0.675262i \(0.235970\pi\)
\(762\) 0 0
\(763\) −3.41487 3.41487i −0.123627 0.123627i
\(764\) 0 0
\(765\) 12.1507 1.40535i 0.439308 0.0508106i
\(766\) 0 0
\(767\) 2.20054 2.20054i 0.0794568 0.0794568i
\(768\) 0 0
\(769\) 15.2920i 0.551444i −0.961237 0.275722i \(-0.911083\pi\)
0.961237 0.275722i \(-0.0889169\pi\)
\(770\) 0 0
\(771\) 1.54147i 0.0555147i
\(772\) 0 0
\(773\) −30.6460 + 30.6460i −1.10226 + 1.10226i −0.108122 + 0.994138i \(0.534484\pi\)
−0.994138 + 0.108122i \(0.965516\pi\)
\(774\) 0 0
\(775\) −52.6380 + 12.3414i −1.89081 + 0.443315i
\(776\) 0 0
\(777\) −1.00000 1.00000i −0.0358748 0.0358748i
\(778\) 0 0
\(779\) 8.15814 0.292296
\(780\) 0 0
\(781\) 23.1493 0.828349
\(782\) 0 0
\(783\) −3.02831 3.02831i −0.108223 0.108223i
\(784\) 0 0
\(785\) −0.755961 6.53604i −0.0269814 0.233281i
\(786\) 0 0
\(787\) −29.3563 + 29.3563i −1.04644 + 1.04644i −0.0475709 + 0.998868i \(0.515148\pi\)
−0.998868 + 0.0475709i \(0.984852\pi\)
\(788\) 0 0
\(789\) 5.76868i 0.205370i
\(790\) 0 0
\(791\) 5.14303i 0.182865i
\(792\) 0 0
\(793\) −4.10270 + 4.10270i −0.145691 + 0.145691i
\(794\) 0 0
\(795\) 21.4263 + 16.9838i 0.759912 + 0.602352i
\(796\) 0 0
\(797\) 9.32131 + 9.32131i 0.330178 + 0.330178i 0.852654 0.522476i \(-0.174992\pi\)
−0.522476 + 0.852654i \(0.674992\pi\)
\(798\) 0 0
\(799\) −38.3422 −1.35645
\(800\) 0 0
\(801\) −14.5140 −0.512827
\(802\) 0 0
\(803\) 28.0561 + 28.0561i 0.990080 + 0.990080i
\(804\) 0 0
\(805\) 10.9193 + 8.65533i 0.384856 + 0.305060i
\(806\) 0 0
\(807\) −11.8044 + 11.8044i −0.415535 + 0.415535i
\(808\) 0 0
\(809\) 7.85735i 0.276250i −0.990415 0.138125i \(-0.955893\pi\)
0.990415 0.138125i \(-0.0441075\pi\)
\(810\) 0 0
\(811\) 28.2927i 0.993490i −0.867897 0.496745i \(-0.834528\pi\)
0.867897 0.496745i \(-0.165472\pi\)
\(812\) 0 0
\(813\) −15.8260 + 15.8260i −0.555041 + 0.555041i
\(814\) 0 0
\(815\) 1.77439 + 15.3414i 0.0621543 + 0.537386i
\(816\) 0 0
\(817\) 1.91595 + 1.91595i 0.0670308 + 0.0670308i
\(818\) 0 0
\(819\) −0.513824 −0.0179545
\(820\) 0 0
\(821\) −1.59597 −0.0556997 −0.0278498 0.999612i \(-0.508866\pi\)
−0.0278498 + 0.999612i \(0.508866\pi\)
\(822\) 0 0
\(823\) 10.5406 + 10.5406i 0.367421 + 0.367421i 0.866536 0.499115i \(-0.166341\pi\)
−0.499115 + 0.866536i \(0.666341\pi\)
\(824\) 0 0
\(825\) 12.0187 + 7.45331i 0.418436 + 0.259491i
\(826\) 0 0
\(827\) 37.4451 37.4451i 1.30209 1.30209i 0.375115 0.926978i \(-0.377603\pi\)
0.926978 0.375115i \(-0.122397\pi\)
\(828\) 0 0
\(829\) 19.7614i 0.686343i −0.939273 0.343171i \(-0.888499\pi\)
0.939273 0.343171i \(-0.111501\pi\)
\(830\) 0 0
\(831\) 3.84288i 0.133308i
\(832\) 0 0
\(833\) 3.86799 3.86799i 0.134018 0.134018i
\(834\) 0 0
\(835\) −34.3673 + 3.97493i −1.18933 + 0.137558i
\(836\) 0 0
\(837\) 7.64600 + 7.64600i 0.264284 + 0.264284i
\(838\) 0 0
\(839\) 22.6274 0.781185 0.390593 0.920564i \(-0.372270\pi\)
0.390593 + 0.920564i \(0.372270\pi\)
\(840\) 0 0
\(841\) 10.6587 0.367542
\(842\) 0 0
\(843\) 5.85673 + 5.85673i 0.201717 + 0.201717i
\(844\) 0 0
\(845\) 17.6903 22.3177i 0.608566 0.767751i
\(846\) 0 0
\(847\) 2.12132 2.12132i 0.0728894 0.0728894i
\(848\) 0 0
\(849\) 6.93206i 0.237908i
\(850\) 0 0
\(851\) 8.81242i 0.302086i
\(852\) 0 0
\(853\) −26.3047 + 26.3047i −0.900656 + 0.900656i −0.995493 0.0948364i \(-0.969767\pi\)
0.0948364 + 0.995493i \(0.469767\pi\)
\(854\) 0 0
\(855\) 1.25065 1.57778i 0.0427712 0.0539590i
\(856\) 0 0
\(857\) −0.891358 0.891358i −0.0304482 0.0304482i 0.691719 0.722167i \(-0.256854\pi\)
−0.722167 + 0.691719i \(0.756854\pi\)
\(858\) 0 0
\(859\) 29.9842 1.02305 0.511523 0.859269i \(-0.329081\pi\)
0.511523 + 0.859269i \(0.329081\pi\)
\(860\) 0 0
\(861\) −9.06068 −0.308787
\(862\) 0 0
\(863\) 16.5194 + 16.5194i 0.562328 + 0.562328i 0.929968 0.367640i \(-0.119834\pi\)
−0.367640 + 0.929968i \(0.619834\pi\)
\(864\) 0 0
\(865\) −12.9800 + 1.50127i −0.441334 + 0.0510449i
\(866\) 0 0
\(867\) 9.13775 9.13775i 0.310334 0.310334i
\(868\) 0 0
\(869\) 17.1307i 0.581119i
\(870\) 0 0
\(871\) 3.60156i 0.122034i
\(872\) 0 0
\(873\) −8.64600 + 8.64600i −0.292623 + 0.292623i
\(874\) 0 0
\(875\) −3.78585 10.5199i −0.127985 0.355636i
\(876\) 0 0
\(877\) 36.8387 + 36.8387i 1.24395 + 1.24395i 0.958347 + 0.285607i \(0.0921953\pi\)
0.285607 + 0.958347i \(0.407805\pi\)
\(878\) 0 0
\(879\) −23.7955 −0.802603
\(880\) 0 0
\(881\) 3.04202 0.102488 0.0512442 0.998686i \(-0.483681\pi\)
0.0512442 + 0.998686i \(0.483681\pi\)
\(882\) 0 0
\(883\) −8.85865 8.85865i −0.298117 0.298117i 0.542159 0.840276i \(-0.317607\pi\)
−0.840276 + 0.542159i \(0.817607\pi\)
\(884\) 0 0
\(885\) −1.55602 13.4533i −0.0523049 0.452228i
\(886\) 0 0
\(887\) −36.2407 + 36.2407i −1.21684 + 1.21684i −0.248111 + 0.968732i \(0.579810\pi\)
−0.968732 + 0.248111i \(0.920190\pi\)
\(888\) 0 0
\(889\) 15.1120i 0.506841i
\(890\) 0 0
\(891\) 2.82843i 0.0947559i
\(892\) 0 0
\(893\) −4.46264 + 4.46264i −0.149337 + 0.149337i
\(894\) 0 0
\(895\) −20.3986 16.1692i −0.681851 0.540476i
\(896\) 0 0
\(897\) −2.26401 2.26401i −0.0755933 0.0755933i
\(898\) 0 0
\(899\) 46.3089 1.54449
\(900\) 0 0
\(901\) 66.8853 2.22827
\(902\) 0 0
\(903\) −2.12792 2.12792i −0.0708126 0.0708126i
\(904\) 0 0
\(905\) 30.7967 + 24.4113i 1.02372 + 0.811459i
\(906\) 0 0
\(907\) −16.3691 + 16.3691i −0.543526 + 0.543526i −0.924561 0.381035i \(-0.875568\pi\)
0.381035 + 0.924561i \(0.375568\pi\)
\(908\) 0 0
\(909\) 10.7780i 0.357484i
\(910\) 0 0
\(911\) 54.3944i 1.80217i 0.433646 + 0.901083i \(0.357227\pi\)
−0.433646 + 0.901083i \(0.642773\pi\)
\(912\) 0 0
\(913\) 19.1120 19.1120i 0.632516 0.632516i
\(914\) 0 0
\(915\) 2.90105 + 25.0825i 0.0959057 + 0.829201i
\(916\) 0 0
\(917\) 8.28267 + 8.28267i 0.273518 + 0.273518i
\(918\) 0 0
\(919\) −2.05529 −0.0677979 −0.0338990 0.999425i \(-0.510792\pi\)
−0.0338990 + 0.999425i \(0.510792\pi\)
\(920\) 0 0
\(921\) 5.45331 0.179693
\(922\) 0 0
\(923\) 2.97367 + 2.97367i 0.0978796 + 0.0978796i
\(924\) 0 0
\(925\) −3.72666 + 6.00933i −0.122532 + 0.197586i
\(926\) 0 0
\(927\) −11.8407 + 11.8407i −0.388900 + 0.388900i
\(928\) 0 0
\(929\) 19.8060i 0.649814i 0.945746 + 0.324907i \(0.105333\pi\)
−0.945746 + 0.324907i \(0.894667\pi\)
\(930\) 0 0
\(931\) 0.900390i 0.0295091i
\(932\) 0 0
\(933\) 23.3947 23.3947i 0.765908 0.765908i
\(934\) 0 0
\(935\) 34.3673 3.97493i 1.12393 0.129994i
\(936\) 0 0
\(937\) −30.7674 30.7674i −1.00513 1.00513i −0.999987 0.00513907i \(-0.998364\pi\)
−0.00513907 0.999987i \(-0.501636\pi\)
\(938\) 0 0
\(939\) −22.1136 −0.721650
\(940\) 0 0
\(941\) −18.2500 −0.594932 −0.297466 0.954732i \(-0.596142\pi\)
−0.297466 + 0.954732i \(0.596142\pi\)
\(942\) 0 0
\(943\) −39.9233 39.9233i −1.30008 1.30008i
\(944\) 0 0
\(945\) −1.38900 + 1.75233i −0.0451843 + 0.0570034i
\(946\) 0 0
\(947\) −0.923508 + 0.923508i −0.0300100 + 0.0300100i −0.721953 0.691943i \(-0.756755\pi\)
0.691943 + 0.721953i \(0.256755\pi\)
\(948\) 0 0
\(949\) 7.20796i 0.233980i
\(950\) 0 0
\(951\) 14.6560i 0.475252i
\(952\) 0 0
\(953\) 29.7580 29.7580i 0.963957 0.963957i −0.0354155 0.999373i \(-0.511275\pi\)
0.999373 + 0.0354155i \(0.0112755\pi\)
\(954\) 0 0
\(955\) 6.98525 8.81242i 0.226037 0.285163i
\(956\) 0 0
\(957\) −8.56534 8.56534i −0.276878 0.276878i
\(958\) 0 0
\(959\) 4.11538 0.132893
\(960\) 0 0
\(961\) −85.9226 −2.77170
\(962\) 0 0
\(963\) −1.25065 1.25065i −0.0403015 0.0403015i
\(964\) 0 0
\(965\) −4.53604 + 0.524640i −0.146020 + 0.0168888i
\(966\) 0 0
\(967\) 20.3806 20.3806i 0.655397 0.655397i −0.298890 0.954287i \(-0.596616\pi\)
0.954287 + 0.298890i \(0.0966164\pi\)
\(968\) 0 0
\(969\) 4.92528i 0.158223i
\(970\) 0 0
\(971\) 18.5168i 0.594233i −0.954841 0.297117i \(-0.903975\pi\)
0.954841 0.297117i \(-0.0960250\pi\)
\(972\) 0 0
\(973\) 0.919344 0.919344i 0.0294728 0.0294728i
\(974\) 0 0
\(975\) 0.586446 + 2.50129i 0.0187813 + 0.0801054i
\(976\) 0 0
\(977\) −30.4006 30.4006i −0.972603 0.972603i 0.0270318 0.999635i \(-0.491394\pi\)
−0.999635 + 0.0270318i \(0.991394\pi\)
\(978\) 0 0
\(979\) −41.0518 −1.31202
\(980\) 0 0
\(981\) 4.82936 0.154190
\(982\) 0 0
\(983\) 14.9680 + 14.9680i 0.477406 + 0.477406i 0.904301 0.426895i \(-0.140393\pi\)
−0.426895 + 0.904301i \(0.640393\pi\)
\(984\) 0 0
\(985\) −1.01998 8.81871i −0.0324991 0.280988i
\(986\) 0 0
\(987\) 4.95634 4.95634i 0.157762 0.157762i
\(988\) 0 0
\(989\) 18.7521i 0.596282i
\(990\) 0 0
\(991\) 7.85739i 0.249598i −0.992182 0.124799i \(-0.960171\pi\)
0.992182 0.124799i \(-0.0398287\pi\)
\(992\) 0 0
\(993\) 23.5747 23.5747i 0.748120 0.748120i
\(994\) 0 0
\(995\) 21.8492 + 17.3190i 0.692665 + 0.549048i
\(996\) 0 0
\(997\) 35.3913 + 35.3913i 1.12085 + 1.12085i 0.991613 + 0.129241i \(0.0412541\pi\)
0.129241 + 0.991613i \(0.458746\pi\)
\(998\) 0 0
\(999\) 1.41421 0.0447437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.bl.c.127.1 12
4.3 odd 2 inner 1680.2.bl.c.127.4 yes 12
5.3 odd 4 inner 1680.2.bl.c.463.4 yes 12
20.3 even 4 inner 1680.2.bl.c.463.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.bl.c.127.1 12 1.1 even 1 trivial
1680.2.bl.c.127.4 yes 12 4.3 odd 2 inner
1680.2.bl.c.463.1 yes 12 20.3 even 4 inner
1680.2.bl.c.463.4 yes 12 5.3 odd 4 inner