Properties

Label 1680.2.bl.c
Level $1680$
Weight $2$
Character orbit 1680.bl
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(127,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + \beta_{5} q^{5} + \beta_1 q^{7} - \beta_{7} q^{9} + ( - 2 \beta_{6} - 2 \beta_1) q^{11} + (\beta_{5} + \beta_{4}) q^{13} - \beta_{2} q^{15} + ( - 2 \beta_{10} + 2 \beta_{8} + \cdots + \beta_{4}) q^{17}+ \cdots + (2 \beta_{6} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{17} - 12 q^{21} - 20 q^{25} + 24 q^{33} + 12 q^{37} + 16 q^{41} + 4 q^{45} + 28 q^{53} - 16 q^{57} - 16 q^{61} - 20 q^{65} + 60 q^{73} + 24 q^{77} - 12 q^{81} - 84 q^{85} + 16 q^{93}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{11} + \nu^{10} + 4\nu^{9} - 2\nu^{8} - 3\nu^{7} + 5\nu^{6} + 24\nu^{5} + 2\nu^{4} - 8\nu^{3} - 24\nu^{2} - 48\nu ) / 160 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 4 \nu^{11} + 5 \nu^{10} + 8 \nu^{9} - 6 \nu^{8} + 4 \nu^{7} - 27 \nu^{6} + 4 \nu^{5} + 18 \nu^{4} + \cdots - 32 ) / 160 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3 \nu^{11} - \nu^{10} - 22 \nu^{9} - 2 \nu^{8} + 19 \nu^{7} + 67 \nu^{6} + 22 \nu^{5} - 110 \nu^{4} + \cdots + 352 ) / 160 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 5 \nu^{11} + 8 \nu^{10} + 8 \nu^{9} + 12 \nu^{8} - \nu^{7} - 44 \nu^{6} + 112 \nu^{4} + 76 \nu^{3} + \cdots - 64 ) / 160 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3 \nu^{11} - 8 \nu^{10} + 16 \nu^{9} + 20 \nu^{8} + 23 \nu^{7} - 12 \nu^{6} - 88 \nu^{5} - 8 \nu^{4} + \cdots - 512 ) / 160 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{11} + 9 \nu^{10} + 6 \nu^{9} + 2 \nu^{8} - 17 \nu^{7} - 35 \nu^{6} + 26 \nu^{5} + \cdots - 192 \nu ) / 160 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3\nu^{11} + \nu^{10} - 4\nu^{8} - 5\nu^{7} + \nu^{6} + 12\nu^{5} + 8\nu^{4} + 12\nu^{3} - 36\nu^{2} - 16\nu - 64 ) / 80 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3 \nu^{11} + 2 \nu^{10} + 6 \nu^{9} - 17 \nu^{7} - 2 \nu^{6} - 18 \nu^{5} + 12 \nu^{4} + 44 \nu^{3} + \cdots - 192 ) / 80 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 4 \nu^{11} - 7 \nu^{10} - 24 \nu^{9} + 6 \nu^{8} + 28 \nu^{7} + 49 \nu^{6} + 4 \nu^{5} - 130 \nu^{4} + \cdots + 384 ) / 160 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 5 \nu^{11} - 2 \nu^{10} - 2 \nu^{9} + 12 \nu^{8} - \nu^{7} - 14 \nu^{6} - 10 \nu^{5} - 8 \nu^{4} + \cdots + 96 ) / 80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 7 \nu^{11} + 15 \nu^{10} + 6 \nu^{9} - 22 \nu^{8} - 57 \nu^{7} + 11 \nu^{6} + 98 \nu^{5} + 126 \nu^{4} + \cdots - 64 ) / 160 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{11} + \beta_{10} - \beta_{9} - \beta_{8} + \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - \beta_{11} + \beta_{10} - \beta_{9} + \beta_{8} + 2 \beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots + 2 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{11} + \beta_{10} + 3 \beta_{9} + \beta_{8} + 4 \beta_{7} - 2 \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3 \beta_{11} + \beta_{10} - 3 \beta_{9} - 3 \beta_{8} - 6 \beta_{6} + \beta_{5} + 3 \beta_{4} + \beta_{3} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{11} + 5 \beta_{10} - \beta_{9} - 5 \beta_{8} + 8 \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} + \cdots - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5 \beta_{11} - \beta_{10} + 5 \beta_{9} + 7 \beta_{8} - 10 \beta_{7} - 14 \beta_{6} + \beta_{5} + \cdots + 14 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - \beta_{11} - 9 \beta_{10} + 5 \beta_{9} - 9 \beta_{8} + 4 \beta_{7} + 2 \beta_{6} + 7 \beta_{5} + \cdots + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 5 \beta_{11} + 15 \beta_{10} - 5 \beta_{9} - 5 \beta_{8} + 14 \beta_{6} + 15 \beta_{5} + 5 \beta_{4} + \cdots - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - \beta_{11} - 5 \beta_{10} - 7 \beta_{9} + 5 \beta_{8} - 32 \beta_{7} + 7 \beta_{5} - 7 \beta_{4} + \cdots + 32 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 11 \beta_{11} - 15 \beta_{10} + 11 \beta_{9} + 17 \beta_{8} - 22 \beta_{7} + 38 \beta_{6} + \cdots - 38 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 23 \beta_{11} + \beta_{10} - 21 \beta_{9} + \beta_{8} + 100 \beta_{7} + 14 \beta_{6} + 9 \beta_{5} + \cdots + 100 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-\beta_{7}\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
−1.35818 0.394157i
−0.760198 + 1.19252i
1.41127 0.0912546i
−0.394157 1.35818i
1.19252 0.760198i
−0.0912546 + 1.41127i
−1.35818 + 0.394157i
−0.760198 1.19252i
1.41127 + 0.0912546i
−0.394157 + 1.35818i
1.19252 + 0.760198i
−0.0912546 1.41127i
0 −0.707107 0.707107i 0 −1.75233 1.38900i 0 0.707107 0.707107i 0 1.00000i 0
127.2 0 −0.707107 0.707107i 0 0.432320 + 2.19388i 0 0.707107 0.707107i 0 1.00000i 0
127.3 0 −0.707107 0.707107i 0 1.32001 1.80487i 0 0.707107 0.707107i 0 1.00000i 0
127.4 0 0.707107 + 0.707107i 0 −1.75233 1.38900i 0 −0.707107 + 0.707107i 0 1.00000i 0
127.5 0 0.707107 + 0.707107i 0 0.432320 + 2.19388i 0 −0.707107 + 0.707107i 0 1.00000i 0
127.6 0 0.707107 + 0.707107i 0 1.32001 1.80487i 0 −0.707107 + 0.707107i 0 1.00000i 0
463.1 0 −0.707107 + 0.707107i 0 −1.75233 + 1.38900i 0 0.707107 + 0.707107i 0 1.00000i 0
463.2 0 −0.707107 + 0.707107i 0 0.432320 2.19388i 0 0.707107 + 0.707107i 0 1.00000i 0
463.3 0 −0.707107 + 0.707107i 0 1.32001 + 1.80487i 0 0.707107 + 0.707107i 0 1.00000i 0
463.4 0 0.707107 0.707107i 0 −1.75233 + 1.38900i 0 −0.707107 0.707107i 0 1.00000i 0
463.5 0 0.707107 0.707107i 0 0.432320 2.19388i 0 −0.707107 0.707107i 0 1.00000i 0
463.6 0 0.707107 0.707107i 0 1.32001 + 1.80487i 0 −0.707107 0.707107i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.bl.c 12
4.b odd 2 1 inner 1680.2.bl.c 12
5.c odd 4 1 inner 1680.2.bl.c 12
20.e even 4 1 inner 1680.2.bl.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1680.2.bl.c 12 1.a even 1 1 trivial
1680.2.bl.c 12 4.b odd 2 1 inner
1680.2.bl.c 12 5.c odd 4 1 inner
1680.2.bl.c 12 20.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\):

\( T_{11}^{2} + 8 \) Copy content Toggle raw display
\( T_{13}^{6} - 2T_{13}^{5} + 2T_{13}^{4} + 32T_{13}^{3} + 144T_{13}^{2} + 96T_{13} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{6} + 5 T^{4} + \cdots + 125)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T^{2} + 8)^{6} \) Copy content Toggle raw display
$13$ \( (T^{6} - 2 T^{5} + 2 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 2 T^{5} + \cdots + 3200)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 36 T^{4} + \cdots - 32)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 1600000000 \) Copy content Toggle raw display
$29$ \( (T^{6} + 72 T^{4} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 132 T^{4} + \cdots + 3872)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 2)^{6} \) Copy content Toggle raw display
$41$ \( (T^{3} - 4 T^{2} + \cdots + 400)^{4} \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 655360000 \) Copy content Toggle raw display
$47$ \( T^{12} + 3200 T^{8} + \cdots + 16777216 \) Copy content Toggle raw display
$53$ \( (T^{6} - 14 T^{5} + \cdots + 32)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} - 144 T^{4} + \cdots - 8192)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 4 T^{2} + \cdots - 640)^{4} \) Copy content Toggle raw display
$67$ \( T^{12} + 3200 T^{8} + \cdots + 16777216 \) Copy content Toggle raw display
$71$ \( (T^{6} + 336 T^{4} + \cdots + 881792)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} - 30 T^{5} + \cdots + 468512)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 144 T^{4} + \cdots - 8192)^{2} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 68719476736 \) Copy content Toggle raw display
$89$ \( (T^{6} + 228 T^{4} + \cdots + 6400)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} - 14 T^{5} + \cdots + 32)^{2} \) Copy content Toggle raw display
show more
show less