Properties

Label 168.2.k.a.41.3
Level $168$
Weight $2$
Character 168.41
Analytic conductor $1.341$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,2,Mod(41,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.342102016.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 4x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 41.3
Root \(-1.17915 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 168.41
Dual form 168.2.k.a.41.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.848071 - 1.51022i) q^{3} -3.02045 q^{5} +(-2.56155 - 0.662153i) q^{7} +(-1.56155 + 2.56155i) q^{9} -3.12311i q^{11} +1.69614i q^{13} +(2.56155 + 4.56155i) q^{15} -1.32431 q^{17} -6.41273i q^{19} +(1.17238 + 4.43007i) q^{21} -2.00000i q^{23} +4.12311 q^{25} +(5.19283 + 0.185917i) q^{27} -9.12311i q^{29} +7.36520i q^{31} +(-4.71659 + 2.64861i) q^{33} +(7.73704 + 2.00000i) q^{35} -2.00000 q^{37} +(2.56155 - 1.43845i) q^{39} +10.7575 q^{41} -4.00000 q^{43} +(4.71659 - 7.73704i) q^{45} -8.68951 q^{47} +(6.12311 + 3.39228i) q^{49} +(1.12311 + 2.00000i) q^{51} +9.12311i q^{53} +9.43318i q^{55} +(-9.68466 + 5.43845i) q^{57} -5.08842 q^{59} -5.08842i q^{61} +(5.69614 - 5.52757i) q^{63} -5.12311i q^{65} -6.24621 q^{67} +(-3.02045 + 1.69614i) q^{69} -4.87689i q^{71} -12.0818i q^{73} +(-3.49668 - 6.22681i) q^{75} +(-2.06798 + 8.00000i) q^{77} +2.87689 q^{79} +(-4.12311 - 8.00000i) q^{81} -1.69614 q^{83} +4.00000 q^{85} +(-13.7779 + 7.73704i) q^{87} -11.5012 q^{89} +(1.12311 - 4.34475i) q^{91} +(11.1231 - 6.24621i) q^{93} +19.3693i q^{95} -8.68951i q^{97} +(8.00000 + 4.87689i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} + 4 q^{9} + 4 q^{15} - 8 q^{21} - 16 q^{37} + 4 q^{39} - 32 q^{43} + 16 q^{49} - 24 q^{51} - 28 q^{57} + 32 q^{63} + 16 q^{67} + 56 q^{79} + 32 q^{85} - 24 q^{91} + 56 q^{93} + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.848071 1.51022i −0.489634 0.871928i
\(4\) 0 0
\(5\) −3.02045 −1.35079 −0.675393 0.737458i \(-0.736026\pi\)
−0.675393 + 0.737458i \(0.736026\pi\)
\(6\) 0 0
\(7\) −2.56155 0.662153i −0.968176 0.250270i
\(8\) 0 0
\(9\) −1.56155 + 2.56155i −0.520518 + 0.853851i
\(10\) 0 0
\(11\) 3.12311i 0.941652i −0.882226 0.470826i \(-0.843956\pi\)
0.882226 0.470826i \(-0.156044\pi\)
\(12\) 0 0
\(13\) 1.69614i 0.470425i 0.971944 + 0.235212i \(0.0755786\pi\)
−0.971944 + 0.235212i \(0.924421\pi\)
\(14\) 0 0
\(15\) 2.56155 + 4.56155i 0.661390 + 1.17779i
\(16\) 0 0
\(17\) −1.32431 −0.321192 −0.160596 0.987020i \(-0.551342\pi\)
−0.160596 + 0.987020i \(0.551342\pi\)
\(18\) 0 0
\(19\) 6.41273i 1.47118i −0.677426 0.735591i \(-0.736905\pi\)
0.677426 0.735591i \(-0.263095\pi\)
\(20\) 0 0
\(21\) 1.17238 + 4.43007i 0.255834 + 0.966721i
\(22\) 0 0
\(23\) 2.00000i 0.417029i −0.978019 0.208514i \(-0.933137\pi\)
0.978019 0.208514i \(-0.0668628\pi\)
\(24\) 0 0
\(25\) 4.12311 0.824621
\(26\) 0 0
\(27\) 5.19283 + 0.185917i 0.999360 + 0.0357798i
\(28\) 0 0
\(29\) 9.12311i 1.69412i −0.531499 0.847059i \(-0.678371\pi\)
0.531499 0.847059i \(-0.321629\pi\)
\(30\) 0 0
\(31\) 7.36520i 1.32283i 0.750020 + 0.661415i \(0.230044\pi\)
−0.750020 + 0.661415i \(0.769956\pi\)
\(32\) 0 0
\(33\) −4.71659 + 2.64861i −0.821053 + 0.461064i
\(34\) 0 0
\(35\) 7.73704 + 2.00000i 1.30780 + 0.338062i
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 2.56155 1.43845i 0.410177 0.230336i
\(40\) 0 0
\(41\) 10.7575 1.68004 0.840018 0.542558i \(-0.182544\pi\)
0.840018 + 0.542558i \(0.182544\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 4.71659 7.73704i 0.703108 1.15337i
\(46\) 0 0
\(47\) −8.68951 −1.26750 −0.633748 0.773540i \(-0.718484\pi\)
−0.633748 + 0.773540i \(0.718484\pi\)
\(48\) 0 0
\(49\) 6.12311 + 3.39228i 0.874729 + 0.484612i
\(50\) 0 0
\(51\) 1.12311 + 2.00000i 0.157266 + 0.280056i
\(52\) 0 0
\(53\) 9.12311i 1.25315i 0.779359 + 0.626577i \(0.215545\pi\)
−0.779359 + 0.626577i \(0.784455\pi\)
\(54\) 0 0
\(55\) 9.43318i 1.27197i
\(56\) 0 0
\(57\) −9.68466 + 5.43845i −1.28276 + 0.720340i
\(58\) 0 0
\(59\) −5.08842 −0.662456 −0.331228 0.943551i \(-0.607463\pi\)
−0.331228 + 0.943551i \(0.607463\pi\)
\(60\) 0 0
\(61\) 5.08842i 0.651506i −0.945455 0.325753i \(-0.894382\pi\)
0.945455 0.325753i \(-0.105618\pi\)
\(62\) 0 0
\(63\) 5.69614 5.52757i 0.717646 0.696408i
\(64\) 0 0
\(65\) 5.12311i 0.635443i
\(66\) 0 0
\(67\) −6.24621 −0.763096 −0.381548 0.924349i \(-0.624609\pi\)
−0.381548 + 0.924349i \(0.624609\pi\)
\(68\) 0 0
\(69\) −3.02045 + 1.69614i −0.363619 + 0.204191i
\(70\) 0 0
\(71\) 4.87689i 0.578781i −0.957211 0.289390i \(-0.906547\pi\)
0.957211 0.289390i \(-0.0934526\pi\)
\(72\) 0 0
\(73\) 12.0818i 1.41407i −0.707180 0.707033i \(-0.750033\pi\)
0.707180 0.707033i \(-0.249967\pi\)
\(74\) 0 0
\(75\) −3.49668 6.22681i −0.403762 0.719010i
\(76\) 0 0
\(77\) −2.06798 + 8.00000i −0.235668 + 0.911685i
\(78\) 0 0
\(79\) 2.87689 0.323676 0.161838 0.986817i \(-0.448258\pi\)
0.161838 + 0.986817i \(0.448258\pi\)
\(80\) 0 0
\(81\) −4.12311 8.00000i −0.458123 0.888889i
\(82\) 0 0
\(83\) −1.69614 −0.186176 −0.0930878 0.995658i \(-0.529674\pi\)
−0.0930878 + 0.995658i \(0.529674\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) −13.7779 + 7.73704i −1.47715 + 0.829497i
\(88\) 0 0
\(89\) −11.5012 −1.21912 −0.609560 0.792740i \(-0.708654\pi\)
−0.609560 + 0.792740i \(0.708654\pi\)
\(90\) 0 0
\(91\) 1.12311 4.34475i 0.117733 0.455454i
\(92\) 0 0
\(93\) 11.1231 6.24621i 1.15341 0.647702i
\(94\) 0 0
\(95\) 19.3693i 1.98725i
\(96\) 0 0
\(97\) 8.68951i 0.882286i −0.897437 0.441143i \(-0.854573\pi\)
0.897437 0.441143i \(-0.145427\pi\)
\(98\) 0 0
\(99\) 8.00000 + 4.87689i 0.804030 + 0.490146i
\(100\) 0 0
\(101\) 3.76412 0.374544 0.187272 0.982308i \(-0.440035\pi\)
0.187272 + 0.982308i \(0.440035\pi\)
\(102\) 0 0
\(103\) 4.71659i 0.464739i −0.972628 0.232370i \(-0.925352\pi\)
0.972628 0.232370i \(-0.0746479\pi\)
\(104\) 0 0
\(105\) −3.54110 13.3808i −0.345576 1.30583i
\(106\) 0 0
\(107\) 7.12311i 0.688617i 0.938857 + 0.344308i \(0.111887\pi\)
−0.938857 + 0.344308i \(0.888113\pi\)
\(108\) 0 0
\(109\) −12.2462 −1.17297 −0.586487 0.809959i \(-0.699490\pi\)
−0.586487 + 0.809959i \(0.699490\pi\)
\(110\) 0 0
\(111\) 1.69614 + 3.02045i 0.160991 + 0.286688i
\(112\) 0 0
\(113\) 7.36932i 0.693247i 0.938004 + 0.346624i \(0.112672\pi\)
−0.938004 + 0.346624i \(0.887328\pi\)
\(114\) 0 0
\(115\) 6.04090i 0.563316i
\(116\) 0 0
\(117\) −4.34475 2.64861i −0.401673 0.244864i
\(118\) 0 0
\(119\) 3.39228 + 0.876894i 0.310970 + 0.0803848i
\(120\) 0 0
\(121\) 1.24621 0.113292
\(122\) 0 0
\(123\) −9.12311 16.2462i −0.822603 1.46487i
\(124\) 0 0
\(125\) 2.64861 0.236899
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 3.39228 + 6.04090i 0.298674 + 0.531871i
\(130\) 0 0
\(131\) 13.7779 1.20378 0.601892 0.798578i \(-0.294414\pi\)
0.601892 + 0.798578i \(0.294414\pi\)
\(132\) 0 0
\(133\) −4.24621 + 16.4265i −0.368193 + 1.42436i
\(134\) 0 0
\(135\) −15.6847 0.561553i −1.34992 0.0483308i
\(136\) 0 0
\(137\) 2.24621i 0.191907i −0.995386 0.0959534i \(-0.969410\pi\)
0.995386 0.0959534i \(-0.0305900\pi\)
\(138\) 0 0
\(139\) 6.41273i 0.543921i −0.962308 0.271960i \(-0.912328\pi\)
0.962308 0.271960i \(-0.0876720\pi\)
\(140\) 0 0
\(141\) 7.36932 + 13.1231i 0.620608 + 1.10516i
\(142\) 0 0
\(143\) 5.29723 0.442976
\(144\) 0 0
\(145\) 27.5559i 2.28839i
\(146\) 0 0
\(147\) −0.0697197 12.1242i −0.00575038 0.999983i
\(148\) 0 0
\(149\) 3.36932i 0.276025i 0.990430 + 0.138013i \(0.0440714\pi\)
−0.990430 + 0.138013i \(0.955929\pi\)
\(150\) 0 0
\(151\) 12.4924 1.01662 0.508309 0.861174i \(-0.330271\pi\)
0.508309 + 0.861174i \(0.330271\pi\)
\(152\) 0 0
\(153\) 2.06798 3.39228i 0.167186 0.274250i
\(154\) 0 0
\(155\) 22.2462i 1.78686i
\(156\) 0 0
\(157\) 13.7779i 1.09960i −0.835297 0.549799i \(-0.814704\pi\)
0.835297 0.549799i \(-0.185296\pi\)
\(158\) 0 0
\(159\) 13.7779 7.73704i 1.09266 0.613587i
\(160\) 0 0
\(161\) −1.32431 + 5.12311i −0.104370 + 0.403757i
\(162\) 0 0
\(163\) 14.2462 1.11585 0.557925 0.829892i \(-0.311598\pi\)
0.557925 + 0.829892i \(0.311598\pi\)
\(164\) 0 0
\(165\) 14.2462 8.00000i 1.10907 0.622799i
\(166\) 0 0
\(167\) −3.39228 −0.262503 −0.131251 0.991349i \(-0.541899\pi\)
−0.131251 + 0.991349i \(0.541899\pi\)
\(168\) 0 0
\(169\) 10.1231 0.778700
\(170\) 0 0
\(171\) 16.4265 + 10.0138i 1.25617 + 0.765776i
\(172\) 0 0
\(173\) 15.8459 1.20474 0.602371 0.798216i \(-0.294223\pi\)
0.602371 + 0.798216i \(0.294223\pi\)
\(174\) 0 0
\(175\) −10.5616 2.73013i −0.798378 0.206378i
\(176\) 0 0
\(177\) 4.31534 + 7.68466i 0.324361 + 0.577614i
\(178\) 0 0
\(179\) 4.87689i 0.364516i 0.983251 + 0.182258i \(0.0583406\pi\)
−0.983251 + 0.182258i \(0.941659\pi\)
\(180\) 0 0
\(181\) 15.6829i 1.16570i 0.812580 + 0.582850i \(0.198062\pi\)
−0.812580 + 0.582850i \(0.801938\pi\)
\(182\) 0 0
\(183\) −7.68466 + 4.31534i −0.568066 + 0.318999i
\(184\) 0 0
\(185\) 6.04090 0.444135
\(186\) 0 0
\(187\) 4.13595i 0.302451i
\(188\) 0 0
\(189\) −13.1786 3.91468i −0.958601 0.284751i
\(190\) 0 0
\(191\) 17.3693i 1.25680i −0.777891 0.628400i \(-0.783710\pi\)
0.777891 0.628400i \(-0.216290\pi\)
\(192\) 0 0
\(193\) 7.12311 0.512732 0.256366 0.966580i \(-0.417475\pi\)
0.256366 + 0.966580i \(0.417475\pi\)
\(194\) 0 0
\(195\) −7.73704 + 4.34475i −0.554061 + 0.311134i
\(196\) 0 0
\(197\) 17.1231i 1.21997i −0.792413 0.609985i \(-0.791175\pi\)
0.792413 0.609985i \(-0.208825\pi\)
\(198\) 0 0
\(199\) 10.0138i 0.709861i −0.934893 0.354930i \(-0.884505\pi\)
0.934893 0.354930i \(-0.115495\pi\)
\(200\) 0 0
\(201\) 5.29723 + 9.43318i 0.373638 + 0.665365i
\(202\) 0 0
\(203\) −6.04090 + 23.3693i −0.423988 + 1.64020i
\(204\) 0 0
\(205\) −32.4924 −2.26937
\(206\) 0 0
\(207\) 5.12311 + 3.12311i 0.356080 + 0.217071i
\(208\) 0 0
\(209\) −20.0276 −1.38534
\(210\) 0 0
\(211\) −22.2462 −1.53149 −0.765746 0.643143i \(-0.777630\pi\)
−0.765746 + 0.643143i \(0.777630\pi\)
\(212\) 0 0
\(213\) −7.36520 + 4.13595i −0.504655 + 0.283391i
\(214\) 0 0
\(215\) 12.0818 0.823971
\(216\) 0 0
\(217\) 4.87689 18.8664i 0.331065 1.28073i
\(218\) 0 0
\(219\) −18.2462 + 10.2462i −1.23296 + 0.692375i
\(220\) 0 0
\(221\) 2.24621i 0.151097i
\(222\) 0 0
\(223\) 20.1907i 1.35207i −0.736871 0.676033i \(-0.763697\pi\)
0.736871 0.676033i \(-0.236303\pi\)
\(224\) 0 0
\(225\) −6.43845 + 10.5616i −0.429230 + 0.704104i
\(226\) 0 0
\(227\) −19.0752 −1.26606 −0.633031 0.774126i \(-0.718190\pi\)
−0.633031 + 0.774126i \(0.718190\pi\)
\(228\) 0 0
\(229\) 3.60109i 0.237966i −0.992896 0.118983i \(-0.962037\pi\)
0.992896 0.118983i \(-0.0379635\pi\)
\(230\) 0 0
\(231\) 13.8356 3.66146i 0.910314 0.240906i
\(232\) 0 0
\(233\) 8.00000i 0.524097i 0.965055 + 0.262049i \(0.0843981\pi\)
−0.965055 + 0.262049i \(0.915602\pi\)
\(234\) 0 0
\(235\) 26.2462 1.71211
\(236\) 0 0
\(237\) −2.43981 4.34475i −0.158483 0.282222i
\(238\) 0 0
\(239\) 4.24621i 0.274665i −0.990525 0.137332i \(-0.956147\pi\)
0.990525 0.137332i \(-0.0438528\pi\)
\(240\) 0 0
\(241\) 15.4741i 0.996773i 0.866955 + 0.498386i \(0.166074\pi\)
−0.866955 + 0.498386i \(0.833926\pi\)
\(242\) 0 0
\(243\) −8.58511 + 13.0114i −0.550735 + 0.834680i
\(244\) 0 0
\(245\) −18.4945 10.2462i −1.18157 0.654606i
\(246\) 0 0
\(247\) 10.8769 0.692080
\(248\) 0 0
\(249\) 1.43845 + 2.56155i 0.0911579 + 0.162332i
\(250\) 0 0
\(251\) −6.99337 −0.441418 −0.220709 0.975340i \(-0.570837\pi\)
−0.220709 + 0.975340i \(0.570837\pi\)
\(252\) 0 0
\(253\) −6.24621 −0.392696
\(254\) 0 0
\(255\) −3.39228 6.04090i −0.212433 0.378296i
\(256\) 0 0
\(257\) 0.580639 0.0362192 0.0181096 0.999836i \(-0.494235\pi\)
0.0181096 + 0.999836i \(0.494235\pi\)
\(258\) 0 0
\(259\) 5.12311 + 1.32431i 0.318334 + 0.0822884i
\(260\) 0 0
\(261\) 23.3693 + 14.2462i 1.44652 + 0.881818i
\(262\) 0 0
\(263\) 9.36932i 0.577737i −0.957369 0.288868i \(-0.906721\pi\)
0.957369 0.288868i \(-0.0932790\pi\)
\(264\) 0 0
\(265\) 27.5559i 1.69274i
\(266\) 0 0
\(267\) 9.75379 + 17.3693i 0.596922 + 1.06298i
\(268\) 0 0
\(269\) 9.06134 0.552480 0.276240 0.961089i \(-0.410912\pi\)
0.276240 + 0.961089i \(0.410912\pi\)
\(270\) 0 0
\(271\) 5.46026i 0.331687i 0.986152 + 0.165844i \(0.0530347\pi\)
−0.986152 + 0.165844i \(0.946965\pi\)
\(272\) 0 0
\(273\) −7.51403 + 1.98852i −0.454770 + 0.120351i
\(274\) 0 0
\(275\) 12.8769i 0.776506i
\(276\) 0 0
\(277\) −12.2462 −0.735804 −0.367902 0.929865i \(-0.619924\pi\)
−0.367902 + 0.929865i \(0.619924\pi\)
\(278\) 0 0
\(279\) −18.8664 11.5012i −1.12950 0.688556i
\(280\) 0 0
\(281\) 28.4924i 1.69972i −0.527012 0.849858i \(-0.676688\pi\)
0.527012 0.849858i \(-0.323312\pi\)
\(282\) 0 0
\(283\) 12.4536i 0.740291i 0.928974 + 0.370146i \(0.120692\pi\)
−0.928974 + 0.370146i \(0.879308\pi\)
\(284\) 0 0
\(285\) 29.2520 16.4265i 1.73274 0.973025i
\(286\) 0 0
\(287\) −27.5559 7.12311i −1.62657 0.420464i
\(288\) 0 0
\(289\) −15.2462 −0.896836
\(290\) 0 0
\(291\) −13.1231 + 7.36932i −0.769290 + 0.431997i
\(292\) 0 0
\(293\) −25.2791 −1.47682 −0.738410 0.674352i \(-0.764423\pi\)
−0.738410 + 0.674352i \(0.764423\pi\)
\(294\) 0 0
\(295\) 15.3693 0.894836
\(296\) 0 0
\(297\) 0.580639 16.2177i 0.0336921 0.941049i
\(298\) 0 0
\(299\) 3.39228 0.196181
\(300\) 0 0
\(301\) 10.2462 + 2.64861i 0.590582 + 0.152664i
\(302\) 0 0
\(303\) −3.19224 5.68466i −0.183389 0.326575i
\(304\) 0 0
\(305\) 15.3693i 0.880045i
\(306\) 0 0
\(307\) 24.5354i 1.40031i 0.713991 + 0.700155i \(0.246886\pi\)
−0.713991 + 0.700155i \(0.753114\pi\)
\(308\) 0 0
\(309\) −7.12311 + 4.00000i −0.405219 + 0.227552i
\(310\) 0 0
\(311\) 18.8664 1.06981 0.534906 0.844911i \(-0.320347\pi\)
0.534906 + 0.844911i \(0.320347\pi\)
\(312\) 0 0
\(313\) 3.39228i 0.191743i 0.995394 + 0.0958716i \(0.0305638\pi\)
−0.995394 + 0.0958716i \(0.969436\pi\)
\(314\) 0 0
\(315\) −17.2049 + 16.6957i −0.969386 + 0.940697i
\(316\) 0 0
\(317\) 13.6155i 0.764724i −0.924013 0.382362i \(-0.875111\pi\)
0.924013 0.382362i \(-0.124889\pi\)
\(318\) 0 0
\(319\) −28.4924 −1.59527
\(320\) 0 0
\(321\) 10.7575 6.04090i 0.600424 0.337170i
\(322\) 0 0
\(323\) 8.49242i 0.472531i
\(324\) 0 0
\(325\) 6.99337i 0.387922i
\(326\) 0 0
\(327\) 10.3857 + 18.4945i 0.574328 + 1.02275i
\(328\) 0 0
\(329\) 22.2586 + 5.75379i 1.22716 + 0.317217i
\(330\) 0 0
\(331\) 22.2462 1.22276 0.611381 0.791336i \(-0.290614\pi\)
0.611381 + 0.791336i \(0.290614\pi\)
\(332\) 0 0
\(333\) 3.12311 5.12311i 0.171145 0.280744i
\(334\) 0 0
\(335\) 18.8664 1.03078
\(336\) 0 0
\(337\) 25.3693 1.38195 0.690977 0.722876i \(-0.257180\pi\)
0.690977 + 0.722876i \(0.257180\pi\)
\(338\) 0 0
\(339\) 11.1293 6.24970i 0.604462 0.339437i
\(340\) 0 0
\(341\) 23.0023 1.24564
\(342\) 0 0
\(343\) −13.4384 12.7439i −0.725608 0.688108i
\(344\) 0 0
\(345\) 9.12311 5.12311i 0.491171 0.275819i
\(346\) 0 0
\(347\) 8.87689i 0.476537i −0.971199 0.238268i \(-0.923420\pi\)
0.971199 0.238268i \(-0.0765798\pi\)
\(348\) 0 0
\(349\) 3.60109i 0.192762i 0.995345 + 0.0963809i \(0.0307267\pi\)
−0.995345 + 0.0963809i \(0.969273\pi\)
\(350\) 0 0
\(351\) −0.315342 + 8.80776i −0.0168317 + 0.470124i
\(352\) 0 0
\(353\) 0.580639 0.0309043 0.0154521 0.999881i \(-0.495081\pi\)
0.0154521 + 0.999881i \(0.495081\pi\)
\(354\) 0 0
\(355\) 14.7304i 0.781809i
\(356\) 0 0
\(357\) −1.55259 5.86677i −0.0821716 0.310503i
\(358\) 0 0
\(359\) 24.2462i 1.27967i 0.768514 + 0.639833i \(0.220997\pi\)
−0.768514 + 0.639833i \(0.779003\pi\)
\(360\) 0 0
\(361\) −22.1231 −1.16437
\(362\) 0 0
\(363\) −1.05688 1.88206i −0.0554716 0.0987824i
\(364\) 0 0
\(365\) 36.4924i 1.91010i
\(366\) 0 0
\(367\) 3.97292i 0.207385i 0.994609 + 0.103692i \(0.0330657\pi\)
−0.994609 + 0.103692i \(0.966934\pi\)
\(368\) 0 0
\(369\) −16.7984 + 27.5559i −0.874489 + 1.43450i
\(370\) 0 0
\(371\) 6.04090 23.3693i 0.313628 1.21327i
\(372\) 0 0
\(373\) 10.4924 0.543277 0.271639 0.962399i \(-0.412434\pi\)
0.271639 + 0.962399i \(0.412434\pi\)
\(374\) 0 0
\(375\) −2.24621 4.00000i −0.115994 0.206559i
\(376\) 0 0
\(377\) 15.4741 0.796955
\(378\) 0 0
\(379\) 0.492423 0.0252940 0.0126470 0.999920i \(-0.495974\pi\)
0.0126470 + 0.999920i \(0.495974\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.90495 0.0973382 0.0486691 0.998815i \(-0.484502\pi\)
0.0486691 + 0.998815i \(0.484502\pi\)
\(384\) 0 0
\(385\) 6.24621 24.1636i 0.318336 1.23149i
\(386\) 0 0
\(387\) 6.24621 10.2462i 0.317513 0.520844i
\(388\) 0 0
\(389\) 3.36932i 0.170831i 0.996345 + 0.0854156i \(0.0272218\pi\)
−0.996345 + 0.0854156i \(0.972778\pi\)
\(390\) 0 0
\(391\) 2.64861i 0.133946i
\(392\) 0 0
\(393\) −11.6847 20.8078i −0.589413 1.04961i
\(394\) 0 0
\(395\) −8.68951 −0.437217
\(396\) 0 0
\(397\) 37.9415i 1.90423i −0.305740 0.952115i \(-0.598904\pi\)
0.305740 0.952115i \(-0.401096\pi\)
\(398\) 0 0
\(399\) 28.4089 7.51814i 1.42222 0.376378i
\(400\) 0 0
\(401\) 29.1231i 1.45434i −0.686458 0.727169i \(-0.740836\pi\)
0.686458 0.727169i \(-0.259164\pi\)
\(402\) 0 0
\(403\) −12.4924 −0.622292
\(404\) 0 0
\(405\) 12.4536 + 24.1636i 0.618826 + 1.20070i
\(406\) 0 0
\(407\) 6.24621i 0.309613i
\(408\) 0 0
\(409\) 34.3404i 1.69802i 0.528373 + 0.849012i \(0.322802\pi\)
−0.528373 + 0.849012i \(0.677198\pi\)
\(410\) 0 0
\(411\) −3.39228 + 1.90495i −0.167329 + 0.0939640i
\(412\) 0 0
\(413\) 13.0343 + 3.36932i 0.641374 + 0.165793i
\(414\) 0 0
\(415\) 5.12311 0.251483
\(416\) 0 0
\(417\) −9.68466 + 5.43845i −0.474260 + 0.266322i
\(418\) 0 0
\(419\) −8.48071 −0.414310 −0.207155 0.978308i \(-0.566420\pi\)
−0.207155 + 0.978308i \(0.566420\pi\)
\(420\) 0 0
\(421\) −16.7386 −0.815791 −0.407896 0.913029i \(-0.633737\pi\)
−0.407896 + 0.913029i \(0.633737\pi\)
\(422\) 0 0
\(423\) 13.5691 22.2586i 0.659754 1.08225i
\(424\) 0 0
\(425\) −5.46026 −0.264861
\(426\) 0 0
\(427\) −3.36932 + 13.0343i −0.163053 + 0.630772i
\(428\) 0 0
\(429\) −4.49242 8.00000i −0.216896 0.386244i
\(430\) 0 0
\(431\) 6.00000i 0.289010i 0.989504 + 0.144505i \(0.0461589\pi\)
−0.989504 + 0.144505i \(0.953841\pi\)
\(432\) 0 0
\(433\) 15.4741i 0.743637i 0.928306 + 0.371818i \(0.121266\pi\)
−0.928306 + 0.371818i \(0.878734\pi\)
\(434\) 0 0
\(435\) 41.6155 23.3693i 1.99531 1.12047i
\(436\) 0 0
\(437\) −12.8255 −0.613525
\(438\) 0 0
\(439\) 8.10887i 0.387015i −0.981099 0.193508i \(-0.938014\pi\)
0.981099 0.193508i \(-0.0619864\pi\)
\(440\) 0 0
\(441\) −18.2511 + 10.3874i −0.869098 + 0.494640i
\(442\) 0 0
\(443\) 23.1231i 1.09861i 0.835621 + 0.549306i \(0.185108\pi\)
−0.835621 + 0.549306i \(0.814892\pi\)
\(444\) 0 0
\(445\) 34.7386 1.64677
\(446\) 0 0
\(447\) 5.08842 2.85742i 0.240674 0.135151i
\(448\) 0 0
\(449\) 10.2462i 0.483549i −0.970333 0.241774i \(-0.922271\pi\)
0.970333 0.241774i \(-0.0777294\pi\)
\(450\) 0 0
\(451\) 33.5968i 1.58201i
\(452\) 0 0
\(453\) −10.5945 18.8664i −0.497771 0.886419i
\(454\) 0 0
\(455\) −3.39228 + 13.1231i −0.159033 + 0.615221i
\(456\) 0 0
\(457\) 11.6155 0.543351 0.271676 0.962389i \(-0.412422\pi\)
0.271676 + 0.962389i \(0.412422\pi\)
\(458\) 0 0
\(459\) −6.87689 0.246211i −0.320986 0.0114922i
\(460\) 0 0
\(461\) −13.1973 −0.614659 −0.307330 0.951603i \(-0.599435\pi\)
−0.307330 + 0.951603i \(0.599435\pi\)
\(462\) 0 0
\(463\) −17.6155 −0.818663 −0.409332 0.912386i \(-0.634238\pi\)
−0.409332 + 0.912386i \(0.634238\pi\)
\(464\) 0 0
\(465\) −33.5968 + 18.8664i −1.55801 + 0.874906i
\(466\) 0 0
\(467\) −8.48071 −0.392440 −0.196220 0.980560i \(-0.562867\pi\)
−0.196220 + 0.980560i \(0.562867\pi\)
\(468\) 0 0
\(469\) 16.0000 + 4.13595i 0.738811 + 0.190980i
\(470\) 0 0
\(471\) −20.8078 + 11.6847i −0.958771 + 0.538401i
\(472\) 0 0
\(473\) 12.4924i 0.574402i
\(474\) 0 0
\(475\) 26.4404i 1.21317i
\(476\) 0 0
\(477\) −23.3693 14.2462i −1.07001 0.652289i
\(478\) 0 0
\(479\) 15.4741 0.707028 0.353514 0.935429i \(-0.384987\pi\)
0.353514 + 0.935429i \(0.384987\pi\)
\(480\) 0 0
\(481\) 3.39228i 0.154675i
\(482\) 0 0
\(483\) 8.86014 2.34475i 0.403150 0.106690i
\(484\) 0 0
\(485\) 26.2462i 1.19178i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) −12.0818 21.5150i −0.546358 0.972941i
\(490\) 0 0
\(491\) 28.8769i 1.30320i 0.758564 + 0.651598i \(0.225901\pi\)
−0.758564 + 0.651598i \(0.774099\pi\)
\(492\) 0 0
\(493\) 12.0818i 0.544137i
\(494\) 0 0
\(495\) −24.1636 14.7304i −1.08607 0.662082i
\(496\) 0 0
\(497\) −3.22925 + 12.4924i −0.144852 + 0.560362i
\(498\) 0 0
\(499\) −36.9848 −1.65567 −0.827835 0.560972i \(-0.810427\pi\)
−0.827835 + 0.560972i \(0.810427\pi\)
\(500\) 0 0
\(501\) 2.87689 + 5.12311i 0.128530 + 0.228883i
\(502\) 0 0
\(503\) 5.29723 0.236192 0.118096 0.993002i \(-0.462321\pi\)
0.118096 + 0.993002i \(0.462321\pi\)
\(504\) 0 0
\(505\) −11.3693 −0.505928
\(506\) 0 0
\(507\) −8.58511 15.2882i −0.381278 0.678971i
\(508\) 0 0
\(509\) −25.6967 −1.13899 −0.569493 0.821996i \(-0.692860\pi\)
−0.569493 + 0.821996i \(0.692860\pi\)
\(510\) 0 0
\(511\) −8.00000 + 30.9481i −0.353899 + 1.36907i
\(512\) 0 0
\(513\) 1.19224 33.3002i 0.0526385 1.47024i
\(514\) 0 0
\(515\) 14.2462i 0.627763i
\(516\) 0 0
\(517\) 27.1383i 1.19354i
\(518\) 0 0
\(519\) −13.4384 23.9309i −0.589882 1.05045i
\(520\) 0 0
\(521\) −26.9752 −1.18181 −0.590903 0.806743i \(-0.701228\pi\)
−0.590903 + 0.806743i \(0.701228\pi\)
\(522\) 0 0
\(523\) 2.27678i 0.0995566i 0.998760 + 0.0497783i \(0.0158515\pi\)
−0.998760 + 0.0497783i \(0.984149\pi\)
\(524\) 0 0
\(525\) 4.83384 + 18.2657i 0.210966 + 0.797178i
\(526\) 0 0
\(527\) 9.75379i 0.424882i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) 7.94584 13.0343i 0.344820 0.565639i
\(532\) 0 0
\(533\) 18.2462i 0.790331i
\(534\) 0 0
\(535\) 21.5150i 0.930173i
\(536\) 0 0
\(537\) 7.36520 4.13595i 0.317832 0.178479i
\(538\) 0 0
\(539\) 10.5945 19.1231i 0.456335 0.823690i
\(540\) 0 0
\(541\) −4.24621 −0.182559 −0.0912794 0.995825i \(-0.529096\pi\)
−0.0912794 + 0.995825i \(0.529096\pi\)
\(542\) 0 0
\(543\) 23.6847 13.3002i 1.01641 0.570766i
\(544\) 0 0
\(545\) 36.9890 1.58444
\(546\) 0 0
\(547\) −38.2462 −1.63529 −0.817645 0.575723i \(-0.804721\pi\)
−0.817645 + 0.575723i \(0.804721\pi\)
\(548\) 0 0
\(549\) 13.0343 + 7.94584i 0.556289 + 0.339120i
\(550\) 0 0
\(551\) −58.5040 −2.49235
\(552\) 0 0
\(553\) −7.36932 1.90495i −0.313375 0.0810065i
\(554\) 0 0
\(555\) −5.12311 9.12311i −0.217464 0.387254i
\(556\) 0 0
\(557\) 29.6155i 1.25485i −0.778677 0.627425i \(-0.784109\pi\)
0.778677 0.627425i \(-0.215891\pi\)
\(558\) 0 0
\(559\) 6.78456i 0.286956i
\(560\) 0 0
\(561\) 6.24621 3.50758i 0.263715 0.148090i
\(562\) 0 0
\(563\) 20.5625 0.866606 0.433303 0.901248i \(-0.357348\pi\)
0.433303 + 0.901248i \(0.357348\pi\)
\(564\) 0 0
\(565\) 22.2586i 0.936428i
\(566\) 0 0
\(567\) 5.26433 + 23.2226i 0.221081 + 0.975255i
\(568\) 0 0
\(569\) 46.1080i 1.93295i 0.256769 + 0.966473i \(0.417342\pi\)
−0.256769 + 0.966473i \(0.582658\pi\)
\(570\) 0 0
\(571\) 26.7386 1.11898 0.559488 0.828838i \(-0.310998\pi\)
0.559488 + 0.828838i \(0.310998\pi\)
\(572\) 0 0
\(573\) −26.2316 + 14.7304i −1.09584 + 0.615372i
\(574\) 0 0
\(575\) 8.24621i 0.343891i
\(576\) 0 0
\(577\) 13.5691i 0.564890i −0.959283 0.282445i \(-0.908854\pi\)
0.959283 0.282445i \(-0.0911455\pi\)
\(578\) 0 0
\(579\) −6.04090 10.7575i −0.251051 0.447066i
\(580\) 0 0
\(581\) 4.34475 + 1.12311i 0.180251 + 0.0465943i
\(582\) 0 0
\(583\) 28.4924 1.18004
\(584\) 0 0
\(585\) 13.1231 + 8.00000i 0.542574 + 0.330759i
\(586\) 0 0
\(587\) 48.1184 1.98606 0.993029 0.117873i \(-0.0376076\pi\)
0.993029 + 0.117873i \(0.0376076\pi\)
\(588\) 0 0
\(589\) 47.2311 1.94612
\(590\) 0 0
\(591\) −25.8597 + 14.5216i −1.06373 + 0.597339i
\(592\) 0 0
\(593\) −16.7984 −0.689827 −0.344913 0.938635i \(-0.612092\pi\)
−0.344913 + 0.938635i \(0.612092\pi\)
\(594\) 0 0
\(595\) −10.2462 2.64861i −0.420054 0.108583i
\(596\) 0 0
\(597\) −15.1231 + 8.49242i −0.618948 + 0.347572i
\(598\) 0 0
\(599\) 41.3693i 1.69030i −0.534526 0.845152i \(-0.679510\pi\)
0.534526 0.845152i \(-0.320490\pi\)
\(600\) 0 0
\(601\) 5.29723i 0.216078i −0.994147 0.108039i \(-0.965543\pi\)
0.994147 0.108039i \(-0.0344572\pi\)
\(602\) 0 0
\(603\) 9.75379 16.0000i 0.397205 0.651570i
\(604\) 0 0
\(605\) −3.76412 −0.153033
\(606\) 0 0
\(607\) 14.5674i 0.591272i 0.955301 + 0.295636i \(0.0955315\pi\)
−0.955301 + 0.295636i \(0.904469\pi\)
\(608\) 0 0
\(609\) 40.4160 10.6957i 1.63774 0.433413i
\(610\) 0 0
\(611\) 14.7386i 0.596261i
\(612\) 0 0
\(613\) −5.50758 −0.222449 −0.111224 0.993795i \(-0.535477\pi\)
−0.111224 + 0.993795i \(0.535477\pi\)
\(614\) 0 0
\(615\) 27.5559 + 49.0708i 1.11116 + 1.97873i
\(616\) 0 0
\(617\) 16.6307i 0.669526i 0.942302 + 0.334763i \(0.108656\pi\)
−0.942302 + 0.334763i \(0.891344\pi\)
\(618\) 0 0
\(619\) 15.1022i 0.607010i −0.952830 0.303505i \(-0.901843\pi\)
0.952830 0.303505i \(-0.0981570\pi\)
\(620\) 0 0
\(621\) 0.371834 10.3857i 0.0149212 0.416762i
\(622\) 0 0
\(623\) 29.4608 + 7.61553i 1.18032 + 0.305110i
\(624\) 0 0
\(625\) −28.6155 −1.14462
\(626\) 0 0
\(627\) 16.9848 + 30.2462i 0.678309 + 1.20792i
\(628\) 0 0
\(629\) 2.64861 0.105607
\(630\) 0 0
\(631\) 37.1231 1.47785 0.738924 0.673789i \(-0.235334\pi\)
0.738924 + 0.673789i \(0.235334\pi\)
\(632\) 0 0
\(633\) 18.8664 + 33.5968i 0.749870 + 1.33535i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.75379 + 10.3857i −0.227973 + 0.411494i
\(638\) 0 0
\(639\) 12.4924 + 7.61553i 0.494193 + 0.301266i
\(640\) 0 0
\(641\) 27.8617i 1.10047i −0.835009 0.550236i \(-0.814538\pi\)
0.835009 0.550236i \(-0.185462\pi\)
\(642\) 0 0
\(643\) 17.7509i 0.700025i 0.936745 + 0.350013i \(0.113823\pi\)
−0.936745 + 0.350013i \(0.886177\pi\)
\(644\) 0 0
\(645\) −10.2462 18.2462i −0.403444 0.718444i
\(646\) 0 0
\(647\) −7.20217 −0.283147 −0.141573 0.989928i \(-0.545216\pi\)
−0.141573 + 0.989928i \(0.545216\pi\)
\(648\) 0 0
\(649\) 15.8917i 0.623803i
\(650\) 0 0
\(651\) −32.6284 + 8.63480i −1.27881 + 0.338424i
\(652\) 0 0
\(653\) 35.3693i 1.38411i −0.721846 0.692054i \(-0.756706\pi\)
0.721846 0.692054i \(-0.243294\pi\)
\(654\) 0 0
\(655\) −41.6155 −1.62605
\(656\) 0 0
\(657\) 30.9481 + 18.8664i 1.20740 + 0.736047i
\(658\) 0 0
\(659\) 15.1231i 0.589113i 0.955634 + 0.294556i \(0.0951718\pi\)
−0.955634 + 0.294556i \(0.904828\pi\)
\(660\) 0 0
\(661\) 19.0752i 0.741938i −0.928645 0.370969i \(-0.879026\pi\)
0.928645 0.370969i \(-0.120974\pi\)
\(662\) 0 0
\(663\) −3.39228 + 1.90495i −0.131745 + 0.0739820i
\(664\) 0 0
\(665\) 12.8255 49.6155i 0.497350 1.92401i
\(666\) 0 0
\(667\) −18.2462 −0.706496
\(668\) 0 0
\(669\) −30.4924 + 17.1231i −1.17891 + 0.662018i
\(670\) 0 0
\(671\) −15.8917 −0.613492
\(672\) 0 0
\(673\) 14.4924 0.558642 0.279321 0.960198i \(-0.409891\pi\)
0.279321 + 0.960198i \(0.409891\pi\)
\(674\) 0 0
\(675\) 21.4106 + 0.766556i 0.824093 + 0.0295047i
\(676\) 0 0
\(677\) 43.4018 1.66807 0.834033 0.551715i \(-0.186026\pi\)
0.834033 + 0.551715i \(0.186026\pi\)
\(678\) 0 0
\(679\) −5.75379 + 22.2586i −0.220810 + 0.854208i
\(680\) 0 0
\(681\) 16.1771 + 28.8078i 0.619907 + 1.10392i
\(682\) 0 0
\(683\) 1.36932i 0.0523955i 0.999657 + 0.0261977i \(0.00833995\pi\)
−0.999657 + 0.0261977i \(0.991660\pi\)
\(684\) 0 0
\(685\) 6.78456i 0.259225i
\(686\) 0 0
\(687\) −5.43845 + 3.05398i −0.207490 + 0.116516i
\(688\) 0 0
\(689\) −15.4741 −0.589515
\(690\) 0 0
\(691\) 1.11550i 0.0424357i −0.999775 0.0212179i \(-0.993246\pi\)
0.999775 0.0212179i \(-0.00675436\pi\)
\(692\) 0 0
\(693\) −17.2632 17.7897i −0.655774 0.675773i
\(694\) 0 0
\(695\) 19.3693i 0.734720i
\(696\) 0 0
\(697\) −14.2462 −0.539614
\(698\) 0 0
\(699\) 12.0818 6.78456i 0.456975 0.256616i
\(700\) 0 0
\(701\) 1.12311i 0.0424191i 0.999775 + 0.0212096i \(0.00675172\pi\)
−0.999775 + 0.0212096i \(0.993248\pi\)
\(702\) 0 0
\(703\) 12.8255i 0.483721i
\(704\) 0 0
\(705\) −22.2586 39.6377i −0.838309 1.49284i
\(706\) 0 0
\(707\) −9.64198 2.49242i −0.362624 0.0937372i
\(708\) 0 0
\(709\) 0.246211 0.00924666 0.00462333 0.999989i \(-0.498528\pi\)
0.00462333 + 0.999989i \(0.498528\pi\)
\(710\) 0 0
\(711\) −4.49242 + 7.36932i −0.168479 + 0.276371i
\(712\) 0 0
\(713\) 14.7304 0.551658
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) −6.41273 + 3.60109i −0.239488 + 0.134485i
\(718\) 0 0
\(719\) 4.87962 0.181979 0.0909895 0.995852i \(-0.470997\pi\)
0.0909895 + 0.995852i \(0.470997\pi\)
\(720\) 0 0
\(721\) −3.12311 + 12.0818i −0.116311 + 0.449949i
\(722\) 0 0
\(723\) 23.3693 13.1231i 0.869114 0.488054i
\(724\) 0 0
\(725\) 37.6155i 1.39701i
\(726\) 0 0
\(727\) 46.5853i 1.72775i 0.503705 + 0.863876i \(0.331970\pi\)
−0.503705 + 0.863876i \(0.668030\pi\)
\(728\) 0 0
\(729\) 26.9309 + 1.93087i 0.997440 + 0.0715137i
\(730\) 0 0
\(731\) 5.29723 0.195925
\(732\) 0 0
\(733\) 31.1570i 1.15081i −0.817869 0.575404i \(-0.804845\pi\)
0.817869 0.575404i \(-0.195155\pi\)
\(734\) 0 0
\(735\) 0.210585 + 36.6204i 0.00776753 + 1.35076i
\(736\) 0 0
\(737\) 19.5076i 0.718571i
\(738\) 0 0
\(739\) 40.4924 1.48954 0.744769 0.667322i \(-0.232560\pi\)
0.744769 + 0.667322i \(0.232560\pi\)
\(740\) 0 0
\(741\) −9.22437 16.4265i −0.338866 0.603444i
\(742\) 0 0
\(743\) 30.0000i 1.10059i 0.834969 + 0.550297i \(0.185485\pi\)
−0.834969 + 0.550297i \(0.814515\pi\)
\(744\) 0 0
\(745\) 10.1768i 0.372851i
\(746\) 0 0
\(747\) 2.64861 4.34475i 0.0969077 0.158966i
\(748\) 0 0
\(749\) 4.71659 18.2462i 0.172340 0.666702i
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) 5.93087 + 10.5616i 0.216133 + 0.384884i
\(754\) 0 0
\(755\) −37.7327 −1.37323
\(756\) 0 0
\(757\) 10.4924 0.381354 0.190677 0.981653i \(-0.438932\pi\)
0.190677 + 0.981653i \(0.438932\pi\)
\(758\) 0 0
\(759\) 5.29723 + 9.43318i 0.192277 + 0.342403i
\(760\) 0 0
\(761\) −37.5697 −1.36190 −0.680950 0.732330i \(-0.738433\pi\)
−0.680950 + 0.732330i \(0.738433\pi\)
\(762\) 0 0
\(763\) 31.3693 + 8.10887i 1.13565 + 0.293561i
\(764\) 0 0
\(765\) −6.24621 + 10.2462i −0.225832 + 0.370453i
\(766\) 0 0
\(767\) 8.63068i 0.311636i
\(768\) 0 0
\(769\) 35.8278i 1.29198i −0.763345 0.645991i \(-0.776444\pi\)
0.763345 0.645991i \(-0.223556\pi\)
\(770\) 0 0
\(771\) −0.492423 0.876894i −0.0177342 0.0315806i
\(772\) 0 0
\(773\) 3.76412 0.135386 0.0676929 0.997706i \(-0.478436\pi\)
0.0676929 + 0.997706i \(0.478436\pi\)
\(774\) 0 0
\(775\) 30.3675i 1.09083i
\(776\) 0 0
\(777\) −2.34475 8.86014i −0.0841176 0.317856i
\(778\) 0 0
\(779\) 68.9848i 2.47164i
\(780\) 0 0
\(781\) −15.2311 −0.545010
\(782\) 0 0
\(783\) 1.69614 47.3747i 0.0606151 1.69303i
\(784\) 0 0
\(785\) 41.6155i 1.48532i
\(786\) 0 0
\(787\) 23.3741i 0.833198i −0.909090 0.416599i \(-0.863222\pi\)
0.909090 0.416599i \(-0.136778\pi\)
\(788\) 0 0
\(789\) −14.1498 + 7.94584i −0.503745 + 0.282879i
\(790\) 0 0
\(791\) 4.87962 18.8769i 0.173499 0.671185i
\(792\) 0 0
\(793\) 8.63068 0.306485
\(794\) 0 0
\(795\) −41.6155 + 23.3693i −1.47595 + 0.828824i
\(796\) 0 0
\(797\) 48.6990 1.72501 0.862504 0.506051i \(-0.168895\pi\)
0.862504 + 0.506051i \(0.168895\pi\)
\(798\) 0 0
\(799\) 11.5076 0.407109
\(800\) 0 0
\(801\) 17.9597 29.4608i 0.634573 1.04095i
\(802\) 0 0
\(803\) −37.7327 −1.33156
\(804\) 0 0
\(805\) 4.00000 15.4741i 0.140981 0.545389i
\(806\) 0 0
\(807\) −7.68466 13.6847i −0.270513 0.481723i
\(808\) 0 0
\(809\) 10.8769i 0.382411i −0.981550 0.191206i \(-0.938760\pi\)
0.981550 0.191206i \(-0.0612397\pi\)
\(810\) 0 0
\(811\) 41.1708i 1.44570i −0.691004 0.722851i \(-0.742831\pi\)
0.691004 0.722851i \(-0.257169\pi\)
\(812\) 0 0
\(813\) 8.24621 4.63068i 0.289207 0.162405i
\(814\) 0 0
\(815\) −43.0299 −1.50727
\(816\) 0 0
\(817\) 25.6509i 0.897412i
\(818\) 0 0
\(819\) 9.37553 + 9.66146i 0.327608 + 0.337599i
\(820\) 0 0
\(821\) 14.8769i 0.519207i 0.965715 + 0.259604i \(0.0835919\pi\)
−0.965715 + 0.259604i \(0.916408\pi\)
\(822\) 0 0
\(823\) −21.1231 −0.736305 −0.368153 0.929765i \(-0.620010\pi\)
−0.368153 + 0.929765i \(0.620010\pi\)
\(824\) 0 0
\(825\) −19.4470 + 10.9205i −0.677057 + 0.380204i
\(826\) 0 0
\(827\) 33.8617i 1.17749i −0.808320 0.588744i \(-0.799623\pi\)
0.808320 0.588744i \(-0.200377\pi\)
\(828\) 0 0
\(829\) 22.0498i 0.765822i 0.923785 + 0.382911i \(0.125078\pi\)
−0.923785 + 0.382911i \(0.874922\pi\)
\(830\) 0 0
\(831\) 10.3857 + 18.4945i 0.360274 + 0.641568i
\(832\) 0 0
\(833\) −8.10887 4.49242i −0.280956 0.155653i
\(834\) 0 0
\(835\) 10.2462 0.354585
\(836\) 0 0
\(837\) −1.36932 + 38.2462i −0.0473305 + 1.32198i
\(838\) 0 0
\(839\) −47.9096 −1.65402 −0.827011 0.562186i \(-0.809960\pi\)
−0.827011 + 0.562186i \(0.809960\pi\)
\(840\) 0 0
\(841\) −54.2311 −1.87004
\(842\) 0 0
\(843\) −43.0299 + 24.1636i −1.48203 + 0.832238i
\(844\) 0 0
\(845\) −30.5763 −1.05186
\(846\) 0 0
\(847\) −3.19224 0.825183i −0.109687 0.0283536i
\(848\) 0 0
\(849\) 18.8078 10.5616i 0.645481 0.362472i
\(850\) 0 0
\(851\) 4.00000i 0.137118i
\(852\) 0 0
\(853\) 6.57576i 0.225150i −0.993643 0.112575i \(-0.964090\pi\)
0.993643 0.112575i \(-0.0359098\pi\)
\(854\) 0 0
\(855\) −49.6155 30.2462i −1.69682 1.03440i
\(856\) 0 0
\(857\) −6.62153 −0.226187 −0.113094 0.993584i \(-0.536076\pi\)
−0.113094 + 0.993584i \(0.536076\pi\)
\(858\) 0 0
\(859\) 44.5631i 1.52047i −0.649647 0.760236i \(-0.725083\pi\)
0.649647 0.760236i \(-0.274917\pi\)
\(860\) 0 0
\(861\) 12.6118 + 47.6564i 0.429810 + 1.62413i
\(862\) 0 0
\(863\) 35.1231i 1.19560i 0.801644 + 0.597802i \(0.203959\pi\)
−0.801644 + 0.597802i \(0.796041\pi\)
\(864\) 0 0
\(865\) −47.8617 −1.62735
\(866\) 0 0
\(867\) 12.9299 + 23.0252i 0.439121 + 0.781977i
\(868\) 0 0
\(869\) 8.98485i 0.304790i
\(870\) 0 0
\(871\) 10.5945i 0.358979i
\(872\) 0 0
\(873\) 22.2586 + 13.5691i 0.753341 + 0.459245i
\(874\) 0 0
\(875\) −6.78456 1.75379i −0.229360 0.0592889i
\(876\) 0 0
\(877\) 28.7386 0.970435 0.485217 0.874394i \(-0.338740\pi\)
0.485217 + 0.874394i \(0.338740\pi\)
\(878\) 0 0
\(879\) 21.4384 + 38.1771i 0.723101 + 1.28768i
\(880\) 0 0
\(881\) −34.1774 −1.15147 −0.575733 0.817638i \(-0.695283\pi\)
−0.575733 + 0.817638i \(0.695283\pi\)
\(882\) 0 0
\(883\) −22.2462 −0.748645 −0.374322 0.927299i \(-0.622125\pi\)
−0.374322 + 0.927299i \(0.622125\pi\)
\(884\) 0 0
\(885\) −13.0343 23.2111i −0.438142 0.780233i
\(886\) 0 0
\(887\) 34.3404 1.15304 0.576519 0.817083i \(-0.304411\pi\)
0.576519 + 0.817083i \(0.304411\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −24.9848 + 12.8769i −0.837024 + 0.431392i
\(892\) 0 0
\(893\) 55.7235i 1.86472i
\(894\) 0 0
\(895\) 14.7304i 0.492383i
\(896\) 0 0
\(897\) −2.87689 5.12311i −0.0960567 0.171056i
\(898\) 0 0
\(899\) 67.1935 2.24103
\(900\) 0 0
\(901\) 12.0818i 0.402503i
\(902\) 0 0
\(903\) −4.68951 17.7203i −0.156057 0.589694i
\(904\) 0 0
\(905\) 47.3693i 1.57461i
\(906\) 0 0
\(907\) 16.4924 0.547622 0.273811 0.961784i \(-0.411716\pi\)
0.273811 + 0.961784i \(0.411716\pi\)
\(908\) 0 0
\(909\) −5.87787 + 9.64198i −0.194957 + 0.319804i
\(910\) 0 0
\(911\) 6.00000i 0.198789i 0.995048 + 0.0993944i \(0.0316906\pi\)
−0.995048 + 0.0993944i \(0.968309\pi\)
\(912\) 0 0
\(913\) 5.29723i 0.175313i
\(914\) 0 0
\(915\) 23.2111 13.0343i 0.767336 0.430899i
\(916\) 0 0
\(917\) −35.2929 9.12311i −1.16547 0.301271i
\(918\) 0 0
\(919\) −6.38447 −0.210604 −0.105302 0.994440i \(-0.533581\pi\)
−0.105302 + 0.994440i \(0.533581\pi\)
\(920\) 0 0
\(921\) 37.0540 20.8078i 1.22097 0.685639i
\(922\) 0 0
\(923\) 8.27190 0.272273
\(924\) 0 0
\(925\) −8.24621 −0.271134
\(926\) 0 0
\(927\) 12.0818 + 7.36520i 0.396818 + 0.241905i
\(928\) 0 0
\(929\) 50.8128 1.66711 0.833556 0.552435i \(-0.186301\pi\)
0.833556 + 0.552435i \(0.186301\pi\)
\(930\) 0 0
\(931\) 21.7538 39.2658i 0.712952 1.28689i
\(932\) 0 0
\(933\) −16.0000 28.4924i −0.523816 0.932800i
\(934\) 0 0
\(935\) 12.4924i 0.408546i
\(936\) 0 0
\(937\) 18.8664i 0.616337i 0.951332 + 0.308168i \(0.0997161\pi\)
−0.951332 + 0.308168i \(0.900284\pi\)
\(938\) 0 0
\(939\) 5.12311 2.87689i 0.167186 0.0938839i
\(940\) 0 0
\(941\) −10.2226 −0.333248 −0.166624 0.986021i \(-0.553287\pi\)
−0.166624 + 0.986021i \(0.553287\pi\)
\(942\) 0 0
\(943\) 21.5150i 0.700624i
\(944\) 0 0
\(945\) 39.8052 + 11.8241i 1.29486 + 0.384638i
\(946\) 0 0
\(947\) 51.6155i 1.67728i 0.544687 + 0.838640i \(0.316649\pi\)
−0.544687 + 0.838640i \(0.683351\pi\)
\(948\) 0 0
\(949\) 20.4924 0.665212
\(950\) 0 0
\(951\) −20.5625 + 11.5469i −0.666785 + 0.374435i
\(952\) 0 0
\(953\) 22.7386i 0.736577i 0.929712 + 0.368288i \(0.120056\pi\)
−0.929712 + 0.368288i \(0.879944\pi\)
\(954\) 0 0
\(955\) 52.4631i 1.69767i
\(956\) 0 0
\(957\) 24.1636 + 43.0299i 0.781098 + 1.39096i
\(958\) 0 0
\(959\) −1.48734 + 5.75379i −0.0480286 + 0.185800i
\(960\) 0 0
\(961\) −23.2462 −0.749878
\(962\) 0 0
\(963\) −18.2462 11.1231i −0.587976 0.358437i
\(964\) 0 0
\(965\) −21.5150 −0.692591
\(966\) 0 0
\(967\) 28.4924 0.916255 0.458127 0.888887i \(-0.348520\pi\)
0.458127 + 0.888887i \(0.348520\pi\)
\(968\) 0 0
\(969\) 12.8255 7.20217i 0.412013 0.231367i
\(970\) 0 0
\(971\) 25.8597 0.829878 0.414939 0.909849i \(-0.363803\pi\)
0.414939 + 0.909849i \(0.363803\pi\)
\(972\) 0 0
\(973\) −4.24621 + 16.4265i −0.136127 + 0.526611i
\(974\) 0 0
\(975\) 10.5616 5.93087i 0.338240 0.189940i
\(976\) 0 0
\(977\) 37.7538i 1.20785i −0.797041 0.603925i \(-0.793602\pi\)
0.797041 0.603925i \(-0.206398\pi\)
\(978\) 0 0
\(979\) 35.9193i 1.14799i
\(980\) 0 0
\(981\) 19.1231 31.3693i 0.610554 1.00155i
\(982\) 0 0
\(983\) 7.20217 0.229714 0.114857 0.993382i \(-0.463359\pi\)
0.114857 + 0.993382i \(0.463359\pi\)
\(984\) 0 0
\(985\) 51.7194i 1.64792i
\(986\) 0 0
\(987\) −10.1874 38.4951i −0.324268 1.22531i
\(988\) 0 0
\(989\) 8.00000i 0.254385i
\(990\) 0 0
\(991\) 13.1231 0.416869 0.208435 0.978036i \(-0.433163\pi\)
0.208435 + 0.978036i \(0.433163\pi\)
\(992\) 0 0
\(993\) −18.8664 33.5968i −0.598706 1.06616i
\(994\) 0 0
\(995\) 30.2462i 0.958869i
\(996\) 0 0
\(997\) 8.48071i 0.268587i −0.990942 0.134293i \(-0.957124\pi\)
0.990942 0.134293i \(-0.0428764\pi\)
\(998\) 0 0
\(999\) −10.3857 0.371834i −0.328587 0.0117643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.2.k.a.41.3 8
3.2 odd 2 inner 168.2.k.a.41.5 yes 8
4.3 odd 2 336.2.k.c.209.6 8
7.2 even 3 1176.2.u.a.521.8 16
7.3 odd 6 1176.2.u.a.1097.6 16
7.4 even 3 1176.2.u.a.1097.3 16
7.5 odd 6 1176.2.u.a.521.1 16
7.6 odd 2 inner 168.2.k.a.41.6 yes 8
8.3 odd 2 1344.2.k.i.1217.3 8
8.5 even 2 1344.2.k.f.1217.6 8
12.11 even 2 336.2.k.c.209.4 8
21.2 odd 6 1176.2.u.a.521.6 16
21.5 even 6 1176.2.u.a.521.3 16
21.11 odd 6 1176.2.u.a.1097.1 16
21.17 even 6 1176.2.u.a.1097.8 16
21.20 even 2 inner 168.2.k.a.41.4 yes 8
24.5 odd 2 1344.2.k.f.1217.4 8
24.11 even 2 1344.2.k.i.1217.5 8
28.27 even 2 336.2.k.c.209.3 8
56.13 odd 2 1344.2.k.f.1217.3 8
56.27 even 2 1344.2.k.i.1217.6 8
84.83 odd 2 336.2.k.c.209.5 8
168.83 odd 2 1344.2.k.i.1217.4 8
168.125 even 2 1344.2.k.f.1217.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.k.a.41.3 8 1.1 even 1 trivial
168.2.k.a.41.4 yes 8 21.20 even 2 inner
168.2.k.a.41.5 yes 8 3.2 odd 2 inner
168.2.k.a.41.6 yes 8 7.6 odd 2 inner
336.2.k.c.209.3 8 28.27 even 2
336.2.k.c.209.4 8 12.11 even 2
336.2.k.c.209.5 8 84.83 odd 2
336.2.k.c.209.6 8 4.3 odd 2
1176.2.u.a.521.1 16 7.5 odd 6
1176.2.u.a.521.3 16 21.5 even 6
1176.2.u.a.521.6 16 21.2 odd 6
1176.2.u.a.521.8 16 7.2 even 3
1176.2.u.a.1097.1 16 21.11 odd 6
1176.2.u.a.1097.3 16 7.4 even 3
1176.2.u.a.1097.6 16 7.3 odd 6
1176.2.u.a.1097.8 16 21.17 even 6
1344.2.k.f.1217.3 8 56.13 odd 2
1344.2.k.f.1217.4 8 24.5 odd 2
1344.2.k.f.1217.5 8 168.125 even 2
1344.2.k.f.1217.6 8 8.5 even 2
1344.2.k.i.1217.3 8 8.3 odd 2
1344.2.k.i.1217.4 8 168.83 odd 2
1344.2.k.i.1217.5 8 24.11 even 2
1344.2.k.i.1217.6 8 56.27 even 2