Properties

Label 1176.2.u.a.521.3
Level $1176$
Weight $2$
Character 1176.521
Analytic conductor $9.390$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1176,2,Mod(521,1176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1176.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1176, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.767858691933644783616.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - 3x^{12} + 4x^{10} - 4x^{8} + 16x^{6} - 48x^{4} - 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.3
Root \(-0.0865986 + 1.41156i\) of defining polynomial
Character \(\chi\) \(=\) 1176.521
Dual form 1176.2.u.a.1097.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.883857 - 1.48956i) q^{3} +(1.51022 + 2.61578i) q^{5} +(-1.43759 + 2.63312i) q^{9} +(-2.70469 - 1.56155i) q^{11} -1.69614i q^{13} +(2.56155 - 4.56155i) q^{15} +(0.662153 - 1.14688i) q^{17} +(5.55359 - 3.20636i) q^{19} +(1.73205 - 1.00000i) q^{23} +(-2.06155 + 3.57071i) q^{25} +(5.19283 - 0.185917i) q^{27} +9.12311i q^{29} +(6.37845 + 3.68260i) q^{31} +(0.0645276 + 5.40899i) q^{33} +(1.00000 + 1.73205i) q^{37} +(-2.52651 + 1.49915i) q^{39} +10.7575 q^{41} -4.00000 q^{43} +(-9.05876 + 0.216167i) q^{45} +(4.34475 + 7.52534i) q^{47} +(-2.29360 + 0.0273620i) q^{51} +(7.90084 + 4.56155i) q^{53} -9.43318i q^{55} +(-9.68466 - 5.43845i) q^{57} +(2.54421 - 4.40670i) q^{59} +(4.40670 - 2.54421i) q^{61} +(4.43674 - 2.56155i) q^{65} +(3.12311 - 5.40938i) q^{67} +(-3.02045 - 1.69614i) q^{69} +4.87689i q^{71} +(-10.4631 - 6.04090i) q^{73} +(7.14092 - 0.0851890i) q^{75} +(-1.43845 - 2.49146i) q^{79} +(-4.86665 - 7.57071i) q^{81} -1.69614 q^{83} +4.00000 q^{85} +(13.5894 - 8.06352i) q^{87} +(5.75058 + 9.96029i) q^{89} +(-0.152175 - 12.7560i) q^{93} +(16.7743 + 9.68466i) q^{95} +8.68951i q^{97} +(8.00000 - 4.87689i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{9} + 8 q^{15} + 16 q^{37} - 4 q^{39} - 64 q^{43} + 24 q^{51} - 56 q^{57} - 16 q^{67} - 56 q^{79} + 64 q^{85} - 56 q^{93} + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).

\(n\) \(295\) \(589\) \(785\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.883857 1.48956i −0.510295 0.859999i
\(4\) 0 0
\(5\) 1.51022 + 2.61578i 0.675393 + 1.16981i 0.976354 + 0.216178i \(0.0693592\pi\)
−0.300961 + 0.953636i \(0.597307\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.43759 + 2.63312i −0.479198 + 0.877707i
\(10\) 0 0
\(11\) −2.70469 1.56155i −0.815494 0.470826i 0.0333659 0.999443i \(-0.489377\pi\)
−0.848860 + 0.528617i \(0.822711\pi\)
\(12\) 0 0
\(13\) 1.69614i 0.470425i −0.971944 0.235212i \(-0.924421\pi\)
0.971944 0.235212i \(-0.0755786\pi\)
\(14\) 0 0
\(15\) 2.56155 4.56155i 0.661390 1.17779i
\(16\) 0 0
\(17\) 0.662153 1.14688i 0.160596 0.278160i −0.774487 0.632590i \(-0.781992\pi\)
0.935083 + 0.354430i \(0.115325\pi\)
\(18\) 0 0
\(19\) 5.55359 3.20636i 1.27408 0.735591i 0.298327 0.954464i \(-0.403571\pi\)
0.975753 + 0.218873i \(0.0702381\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.73205 1.00000i 0.361158 0.208514i −0.308431 0.951247i \(-0.599804\pi\)
0.669588 + 0.742732i \(0.266471\pi\)
\(24\) 0 0
\(25\) −2.06155 + 3.57071i −0.412311 + 0.714143i
\(26\) 0 0
\(27\) 5.19283 0.185917i 0.999360 0.0357798i
\(28\) 0 0
\(29\) 9.12311i 1.69412i 0.531499 + 0.847059i \(0.321629\pi\)
−0.531499 + 0.847059i \(0.678371\pi\)
\(30\) 0 0
\(31\) 6.37845 + 3.68260i 1.14560 + 0.661415i 0.947812 0.318829i \(-0.103290\pi\)
0.197792 + 0.980244i \(0.436623\pi\)
\(32\) 0 0
\(33\) 0.0645276 + 5.40899i 0.0112328 + 0.941585i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) −2.52651 + 1.49915i −0.404565 + 0.240056i
\(40\) 0 0
\(41\) 10.7575 1.68004 0.840018 0.542558i \(-0.182544\pi\)
0.840018 + 0.542558i \(0.182544\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −9.05876 + 0.216167i −1.35040 + 0.0322243i
\(46\) 0 0
\(47\) 4.34475 + 7.52534i 0.633748 + 1.09768i 0.986779 + 0.162072i \(0.0518176\pi\)
−0.353031 + 0.935611i \(0.614849\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.29360 + 0.0273620i −0.321169 + 0.00383145i
\(52\) 0 0
\(53\) 7.90084 + 4.56155i 1.08526 + 0.626577i 0.932312 0.361656i \(-0.117789\pi\)
0.152952 + 0.988234i \(0.451122\pi\)
\(54\) 0 0
\(55\) 9.43318i 1.27197i
\(56\) 0 0
\(57\) −9.68466 5.43845i −1.28276 0.720340i
\(58\) 0 0
\(59\) 2.54421 4.40670i 0.331228 0.573704i −0.651525 0.758627i \(-0.725870\pi\)
0.982753 + 0.184923i \(0.0592037\pi\)
\(60\) 0 0
\(61\) 4.40670 2.54421i 0.564221 0.325753i −0.190617 0.981664i \(-0.561049\pi\)
0.754838 + 0.655912i \(0.227716\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.43674 2.56155i 0.550310 0.317722i
\(66\) 0 0
\(67\) 3.12311 5.40938i 0.381548 0.660861i −0.609736 0.792605i \(-0.708724\pi\)
0.991284 + 0.131744i \(0.0420577\pi\)
\(68\) 0 0
\(69\) −3.02045 1.69614i −0.363619 0.204191i
\(70\) 0 0
\(71\) 4.87689i 0.578781i 0.957211 + 0.289390i \(0.0934526\pi\)
−0.957211 + 0.289390i \(0.906547\pi\)
\(72\) 0 0
\(73\) −10.4631 6.04090i −1.22462 0.707033i −0.258719 0.965953i \(-0.583300\pi\)
−0.965899 + 0.258919i \(0.916634\pi\)
\(74\) 0 0
\(75\) 7.14092 0.0851890i 0.824562 0.00983678i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.43845 2.49146i −0.161838 0.280312i 0.773690 0.633564i \(-0.218409\pi\)
−0.935528 + 0.353253i \(0.885076\pi\)
\(80\) 0 0
\(81\) −4.86665 7.57071i −0.540739 0.841190i
\(82\) 0 0
\(83\) −1.69614 −0.186176 −0.0930878 0.995658i \(-0.529674\pi\)
−0.0930878 + 0.995658i \(0.529674\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) 13.5894 8.06352i 1.45694 0.864500i
\(88\) 0 0
\(89\) 5.75058 + 9.96029i 0.609560 + 1.05579i 0.991313 + 0.131524i \(0.0419872\pi\)
−0.381753 + 0.924264i \(0.624680\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.152175 12.7560i −0.0157798 1.32274i
\(94\) 0 0
\(95\) 16.7743 + 9.68466i 1.72101 + 0.993625i
\(96\) 0 0
\(97\) 8.68951i 0.882286i 0.897437 + 0.441143i \(0.145427\pi\)
−0.897437 + 0.441143i \(0.854573\pi\)
\(98\) 0 0
\(99\) 8.00000 4.87689i 0.804030 0.490146i
\(100\) 0 0
\(101\) −1.88206 + 3.25982i −0.187272 + 0.324364i −0.944340 0.328972i \(-0.893298\pi\)
0.757068 + 0.653336i \(0.226631\pi\)
\(102\) 0 0
\(103\) 4.08469 2.35829i 0.402476 0.232370i −0.285076 0.958505i \(-0.592019\pi\)
0.687552 + 0.726135i \(0.258685\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.16879 + 3.56155i −0.596359 + 0.344308i −0.767608 0.640920i \(-0.778553\pi\)
0.171249 + 0.985228i \(0.445220\pi\)
\(108\) 0 0
\(109\) 6.12311 10.6055i 0.586487 1.01583i −0.408201 0.912892i \(-0.633844\pi\)
0.994688 0.102934i \(-0.0328229\pi\)
\(110\) 0 0
\(111\) 1.69614 3.02045i 0.160991 0.286688i
\(112\) 0 0
\(113\) 7.36932i 0.693247i −0.938004 0.346624i \(-0.887328\pi\)
0.938004 0.346624i \(-0.112672\pi\)
\(114\) 0 0
\(115\) 5.23157 + 3.02045i 0.487846 + 0.281658i
\(116\) 0 0
\(117\) 4.46614 + 2.43836i 0.412895 + 0.225427i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.623106 1.07925i −0.0566460 0.0981137i
\(122\) 0 0
\(123\) −9.50808 16.0239i −0.857315 1.44483i
\(124\) 0 0
\(125\) 2.64861 0.236899
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 3.53543 + 5.95825i 0.311277 + 0.524595i
\(130\) 0 0
\(131\) −6.88897 11.9320i −0.601892 1.04251i −0.992534 0.121965i \(-0.961081\pi\)
0.390643 0.920542i \(-0.372253\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.32865 + 13.3025i 0.716816 + 1.14490i
\(136\) 0 0
\(137\) −1.94528 1.12311i −0.166196 0.0959534i 0.414595 0.910006i \(-0.363923\pi\)
−0.580791 + 0.814053i \(0.697257\pi\)
\(138\) 0 0
\(139\) 6.41273i 0.543921i 0.962308 + 0.271960i \(0.0876720\pi\)
−0.962308 + 0.271960i \(0.912328\pi\)
\(140\) 0 0
\(141\) 7.36932 13.1231i 0.620608 1.10516i
\(142\) 0 0
\(143\) −2.64861 + 4.58753i −0.221488 + 0.383629i
\(144\) 0 0
\(145\) −23.8641 + 13.7779i −1.98180 + 1.14420i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.91791 + 1.68466i −0.239045 + 0.138013i −0.614738 0.788732i \(-0.710738\pi\)
0.375693 + 0.926744i \(0.377405\pi\)
\(150\) 0 0
\(151\) −6.24621 + 10.8188i −0.508309 + 0.880418i 0.491644 + 0.870796i \(0.336396\pi\)
−0.999954 + 0.00962167i \(0.996937\pi\)
\(152\) 0 0
\(153\) 2.06798 + 3.39228i 0.167186 + 0.274250i
\(154\) 0 0
\(155\) 22.2462i 1.78686i
\(156\) 0 0
\(157\) −11.9320 6.88897i −0.952280 0.549799i −0.0584918 0.998288i \(-0.518629\pi\)
−0.893789 + 0.448489i \(0.851962\pi\)
\(158\) 0 0
\(159\) −0.188496 15.8006i −0.0149487 1.25307i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.12311 12.3376i −0.557925 0.966354i −0.997670 0.0682312i \(-0.978264\pi\)
0.439745 0.898123i \(-0.355069\pi\)
\(164\) 0 0
\(165\) −14.0513 + 8.33758i −1.09389 + 0.649080i
\(166\) 0 0
\(167\) −3.39228 −0.262503 −0.131251 0.991349i \(-0.541899\pi\)
−0.131251 + 0.991349i \(0.541899\pi\)
\(168\) 0 0
\(169\) 10.1231 0.778700
\(170\) 0 0
\(171\) 0.458946 + 19.2327i 0.0350965 + 1.47076i
\(172\) 0 0
\(173\) −7.92295 13.7230i −0.602371 1.04334i −0.992461 0.122561i \(-0.960889\pi\)
0.390090 0.920777i \(-0.372444\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.81278 + 0.105134i −0.662409 + 0.00790234i
\(178\) 0 0
\(179\) 4.22351 + 2.43845i 0.315680 + 0.182258i 0.649466 0.760391i \(-0.274993\pi\)
−0.333785 + 0.942649i \(0.608326\pi\)
\(180\) 0 0
\(181\) 15.6829i 1.16570i −0.812580 0.582850i \(-0.801938\pi\)
0.812580 0.582850i \(-0.198062\pi\)
\(182\) 0 0
\(183\) −7.68466 4.31534i −0.568066 0.318999i
\(184\) 0 0
\(185\) −3.02045 + 5.23157i −0.222068 + 0.384633i
\(186\) 0 0
\(187\) −3.58184 + 2.06798i −0.261930 + 0.151225i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.0423 8.68466i 1.08842 0.628400i 0.155265 0.987873i \(-0.450377\pi\)
0.933155 + 0.359473i \(0.117044\pi\)
\(192\) 0 0
\(193\) −3.56155 + 6.16879i −0.256366 + 0.444039i −0.965266 0.261270i \(-0.915859\pi\)
0.708900 + 0.705309i \(0.249192\pi\)
\(194\) 0 0
\(195\) −7.73704 4.34475i −0.554061 0.311134i
\(196\) 0 0
\(197\) 17.1231i 1.21997i 0.792413 + 0.609985i \(0.208825\pi\)
−0.792413 + 0.609985i \(0.791175\pi\)
\(198\) 0 0
\(199\) −8.67222 5.00691i −0.614757 0.354930i 0.160068 0.987106i \(-0.448829\pi\)
−0.774825 + 0.632176i \(0.782162\pi\)
\(200\) 0 0
\(201\) −10.8180 + 0.129055i −0.763042 + 0.00910286i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 16.2462 + 28.1393i 1.13468 + 1.96533i
\(206\) 0 0
\(207\) 0.143136 + 5.99829i 0.00994864 + 0.416910i
\(208\) 0 0
\(209\) −20.0276 −1.38534
\(210\) 0 0
\(211\) −22.2462 −1.53149 −0.765746 0.643143i \(-0.777630\pi\)
−0.765746 + 0.643143i \(0.777630\pi\)
\(212\) 0 0
\(213\) 7.26444 4.31048i 0.497751 0.295349i
\(214\) 0 0
\(215\) −6.04090 10.4631i −0.411986 0.713580i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.249626 + 20.9248i 0.0168682 + 1.41397i
\(220\) 0 0
\(221\) −1.94528 1.12311i −0.130853 0.0755483i
\(222\) 0 0
\(223\) 20.1907i 1.35207i 0.736871 + 0.676033i \(0.236303\pi\)
−0.736871 + 0.676033i \(0.763697\pi\)
\(224\) 0 0
\(225\) −6.43845 10.5616i −0.429230 0.704104i
\(226\) 0 0
\(227\) 9.53758 16.5196i 0.633031 1.09644i −0.353897 0.935284i \(-0.615144\pi\)
0.986929 0.161158i \(-0.0515230\pi\)
\(228\) 0 0
\(229\) 3.11863 1.80054i 0.206085 0.118983i −0.393406 0.919365i \(-0.628703\pi\)
0.599491 + 0.800382i \(0.295370\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.92820 + 4.00000i −0.453882 + 0.262049i −0.709468 0.704737i \(-0.751065\pi\)
0.255586 + 0.966786i \(0.417731\pi\)
\(234\) 0 0
\(235\) −13.1231 + 22.7299i −0.856057 + 1.48273i
\(236\) 0 0
\(237\) −2.43981 + 4.34475i −0.158483 + 0.282222i
\(238\) 0 0
\(239\) 4.24621i 0.274665i 0.990525 + 0.137332i \(0.0438528\pi\)
−0.990525 + 0.137332i \(0.956147\pi\)
\(240\) 0 0
\(241\) 13.4009 + 7.73704i 0.863230 + 0.498386i 0.865093 0.501612i \(-0.167259\pi\)
−0.00186227 + 0.999998i \(0.500593\pi\)
\(242\) 0 0
\(243\) −6.97563 + 13.9406i −0.447487 + 0.894291i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.43845 9.41967i −0.346040 0.599359i
\(248\) 0 0
\(249\) 1.49915 + 2.52651i 0.0950045 + 0.160111i
\(250\) 0 0
\(251\) −6.99337 −0.441418 −0.220709 0.975340i \(-0.570837\pi\)
−0.220709 + 0.975340i \(0.570837\pi\)
\(252\) 0 0
\(253\) −6.24621 −0.392696
\(254\) 0 0
\(255\) −3.53543 5.95825i −0.221397 0.373120i
\(256\) 0 0
\(257\) −0.290319 0.502848i −0.0181096 0.0313668i 0.856829 0.515601i \(-0.172431\pi\)
−0.874938 + 0.484235i \(0.839098\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −24.0222 13.1153i −1.48694 0.811818i
\(262\) 0 0
\(263\) −8.11407 4.68466i −0.500335 0.288868i 0.228517 0.973540i \(-0.426612\pi\)
−0.728852 + 0.684672i \(0.759946\pi\)
\(264\) 0 0
\(265\) 27.5559i 1.69274i
\(266\) 0 0
\(267\) 9.75379 17.3693i 0.596922 1.06298i
\(268\) 0 0
\(269\) −4.53067 + 7.84735i −0.276240 + 0.478462i −0.970447 0.241314i \(-0.922422\pi\)
0.694207 + 0.719775i \(0.255755\pi\)
\(270\) 0 0
\(271\) −4.72872 + 2.73013i −0.287249 + 0.165844i −0.636701 0.771111i \(-0.719701\pi\)
0.349451 + 0.936955i \(0.386368\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.1517 6.43845i 0.672474 0.388253i
\(276\) 0 0
\(277\) 6.12311 10.6055i 0.367902 0.637225i −0.621336 0.783545i \(-0.713410\pi\)
0.989237 + 0.146320i \(0.0467429\pi\)
\(278\) 0 0
\(279\) −18.8664 + 11.5012i −1.12950 + 0.688556i
\(280\) 0 0
\(281\) 28.4924i 1.69972i 0.527012 + 0.849858i \(0.323312\pi\)
−0.527012 + 0.849858i \(0.676688\pi\)
\(282\) 0 0
\(283\) 10.7852 + 6.22681i 0.641111 + 0.370146i 0.785042 0.619442i \(-0.212641\pi\)
−0.143931 + 0.989588i \(0.545974\pi\)
\(284\) 0 0
\(285\) −0.400197 33.5463i −0.0237056 1.98711i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.62311 + 13.2036i 0.448418 + 0.776683i
\(290\) 0 0
\(291\) 12.9436 7.68028i 0.758765 0.450226i
\(292\) 0 0
\(293\) −25.2791 −1.47682 −0.738410 0.674352i \(-0.764423\pi\)
−0.738410 + 0.674352i \(0.764423\pi\)
\(294\) 0 0
\(295\) 15.3693 0.894836
\(296\) 0 0
\(297\) −14.3353 7.60602i −0.831818 0.441346i
\(298\) 0 0
\(299\) −1.69614 2.93780i −0.0980904 0.169898i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.51918 0.0777718i 0.374517 0.00446787i
\(304\) 0 0
\(305\) 13.3102 + 7.68466i 0.762141 + 0.440022i
\(306\) 0 0
\(307\) 24.5354i 1.40031i −0.713991 0.700155i \(-0.753114\pi\)
0.713991 0.700155i \(-0.246886\pi\)
\(308\) 0 0
\(309\) −7.12311 4.00000i −0.405219 0.227552i
\(310\) 0 0
\(311\) −9.43318 + 16.3387i −0.534906 + 0.926485i 0.464261 + 0.885698i \(0.346320\pi\)
−0.999168 + 0.0407869i \(0.987014\pi\)
\(312\) 0 0
\(313\) −2.93780 + 1.69614i −0.166054 + 0.0958716i −0.580724 0.814100i \(-0.697230\pi\)
0.414670 + 0.909972i \(0.363897\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.7914 6.80776i 0.662271 0.382362i −0.130871 0.991399i \(-0.541777\pi\)
0.793142 + 0.609037i \(0.208444\pi\)
\(318\) 0 0
\(319\) 14.2462 24.6752i 0.797635 1.38154i
\(320\) 0 0
\(321\) 10.7575 + 6.04090i 0.600424 + 0.337170i
\(322\) 0 0
\(323\) 8.49242i 0.472531i
\(324\) 0 0
\(325\) 6.05643 + 3.49668i 0.335951 + 0.193961i
\(326\) 0 0
\(327\) −21.2096 + 0.253024i −1.17289 + 0.0139922i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.1231 19.2658i −0.611381 1.05894i −0.991008 0.133804i \(-0.957281\pi\)
0.379627 0.925140i \(-0.376052\pi\)
\(332\) 0 0
\(333\) −5.99829 + 0.143136i −0.328704 + 0.00784380i
\(334\) 0 0
\(335\) 18.8664 1.03078
\(336\) 0 0
\(337\) 25.3693 1.38195 0.690977 0.722876i \(-0.257180\pi\)
0.690977 + 0.722876i \(0.257180\pi\)
\(338\) 0 0
\(339\) −10.9771 + 6.51342i −0.596192 + 0.353761i
\(340\) 0 0
\(341\) −11.5012 19.9206i −0.622822 1.07876i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.124813 10.4624i −0.00671972 0.563276i
\(346\) 0 0
\(347\) −7.68762 4.43845i −0.412693 0.238268i 0.279253 0.960217i \(-0.409913\pi\)
−0.691946 + 0.721949i \(0.743246\pi\)
\(348\) 0 0
\(349\) 3.60109i 0.192762i −0.995345 0.0963809i \(-0.969273\pi\)
0.995345 0.0963809i \(-0.0307267\pi\)
\(350\) 0 0
\(351\) −0.315342 8.80776i −0.0168317 0.470124i
\(352\) 0 0
\(353\) −0.290319 + 0.502848i −0.0154521 + 0.0267639i −0.873648 0.486558i \(-0.838252\pi\)
0.858196 + 0.513322i \(0.171585\pi\)
\(354\) 0 0
\(355\) −12.7569 + 7.36520i −0.677066 + 0.390904i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.9978 + 12.1231i −1.10822 + 0.639833i −0.938369 0.345636i \(-0.887663\pi\)
−0.169855 + 0.985469i \(0.554330\pi\)
\(360\) 0 0
\(361\) 11.0616 19.1592i 0.582187 1.00838i
\(362\) 0 0
\(363\) −1.05688 + 1.88206i −0.0554716 + 0.0987824i
\(364\) 0 0
\(365\) 36.4924i 1.91010i
\(366\) 0 0
\(367\) 3.44065 + 1.98646i 0.179600 + 0.103692i 0.587105 0.809511i \(-0.300268\pi\)
−0.407504 + 0.913203i \(0.633601\pi\)
\(368\) 0 0
\(369\) −15.4649 + 28.3258i −0.805070 + 1.47458i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.24621 9.08670i −0.271639 0.470492i 0.697643 0.716446i \(-0.254232\pi\)
−0.969282 + 0.245954i \(0.920899\pi\)
\(374\) 0 0
\(375\) −2.34100 3.94528i −0.120889 0.203733i
\(376\) 0 0
\(377\) 15.4741 0.796955
\(378\) 0 0
\(379\) 0.492423 0.0252940 0.0126470 0.999920i \(-0.495974\pi\)
0.0126470 + 0.999920i \(0.495974\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.952473 1.64973i −0.0486691 0.0842973i 0.840665 0.541556i \(-0.182165\pi\)
−0.889334 + 0.457259i \(0.848831\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.75037 10.5325i 0.292308 0.535396i
\(388\) 0 0
\(389\) 2.91791 + 1.68466i 0.147944 + 0.0854156i 0.572145 0.820153i \(-0.306112\pi\)
−0.424201 + 0.905568i \(0.639445\pi\)
\(390\) 0 0
\(391\) 2.64861i 0.133946i
\(392\) 0 0
\(393\) −11.6847 + 20.8078i −0.589413 + 1.04961i
\(394\) 0 0
\(395\) 4.34475 7.52534i 0.218608 0.378641i
\(396\) 0 0
\(397\) 32.8583 18.9708i 1.64911 0.952115i 0.671686 0.740836i \(-0.265570\pi\)
0.977426 0.211279i \(-0.0677628\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.2213 14.5616i 1.25949 0.727169i 0.286518 0.958075i \(-0.407502\pi\)
0.972976 + 0.230906i \(0.0741689\pi\)
\(402\) 0 0
\(403\) 6.24621 10.8188i 0.311146 0.538921i
\(404\) 0 0
\(405\) 12.4536 24.1636i 0.618826 1.20070i
\(406\) 0 0
\(407\) 6.24621i 0.309613i
\(408\) 0 0
\(409\) 29.7397 + 17.1702i 1.47053 + 0.849012i 0.999453 0.0330780i \(-0.0105310\pi\)
0.471080 + 0.882091i \(0.343864\pi\)
\(410\) 0 0
\(411\) 0.0464098 + 3.89028i 0.00228923 + 0.191893i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.56155 4.43674i −0.125742 0.217791i
\(416\) 0 0
\(417\) 9.55216 5.66794i 0.467771 0.277560i
\(418\) 0 0
\(419\) −8.48071 −0.414310 −0.207155 0.978308i \(-0.566420\pi\)
−0.207155 + 0.978308i \(0.566420\pi\)
\(420\) 0 0
\(421\) −16.7386 −0.815791 −0.407896 0.913029i \(-0.633737\pi\)
−0.407896 + 0.913029i \(0.633737\pi\)
\(422\) 0 0
\(423\) −26.0611 + 0.621891i −1.26713 + 0.0302374i
\(424\) 0 0
\(425\) 2.73013 + 4.72872i 0.132431 + 0.229377i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 9.17441 0.109448i 0.442945 0.00528420i
\(430\) 0 0
\(431\) 5.19615 + 3.00000i 0.250290 + 0.144505i 0.619897 0.784683i \(-0.287174\pi\)
−0.369607 + 0.929188i \(0.620508\pi\)
\(432\) 0 0
\(433\) 15.4741i 0.743637i −0.928306 0.371818i \(-0.878734\pi\)
0.928306 0.371818i \(-0.121266\pi\)
\(434\) 0 0
\(435\) 41.6155 + 23.3693i 1.99531 + 1.12047i
\(436\) 0 0
\(437\) 6.41273 11.1072i 0.306762 0.531328i
\(438\) 0 0
\(439\) 7.02249 4.05444i 0.335165 0.193508i −0.322967 0.946410i \(-0.604680\pi\)
0.658132 + 0.752903i \(0.271347\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.0252 + 11.5616i −0.951426 + 0.549306i −0.893524 0.449016i \(-0.851775\pi\)
−0.0579023 + 0.998322i \(0.518441\pi\)
\(444\) 0 0
\(445\) −17.3693 + 30.0845i −0.823385 + 1.42614i
\(446\) 0 0
\(447\) 5.08842 + 2.85742i 0.240674 + 0.135151i
\(448\) 0 0
\(449\) 10.2462i 0.483549i 0.970333 + 0.241774i \(0.0777294\pi\)
−0.970333 + 0.241774i \(0.922271\pi\)
\(450\) 0 0
\(451\) −29.0956 16.7984i −1.37006 0.791005i
\(452\) 0 0
\(453\) 21.6360 0.258111i 1.01655 0.0121271i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.80776 10.0593i −0.271676 0.470556i 0.697615 0.716473i \(-0.254244\pi\)
−0.969291 + 0.245916i \(0.920911\pi\)
\(458\) 0 0
\(459\) 3.22522 6.07867i 0.150540 0.283728i
\(460\) 0 0
\(461\) −13.1973 −0.614659 −0.307330 0.951603i \(-0.599435\pi\)
−0.307330 + 0.951603i \(0.599435\pi\)
\(462\) 0 0
\(463\) −17.6155 −0.818663 −0.409332 0.912386i \(-0.634238\pi\)
−0.409332 + 0.912386i \(0.634238\pi\)
\(464\) 0 0
\(465\) 33.1371 19.6625i 1.53670 0.911825i
\(466\) 0 0
\(467\) 4.24035 + 7.34451i 0.196220 + 0.339863i 0.947300 0.320348i \(-0.103800\pi\)
−0.751080 + 0.660212i \(0.770467\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.284671 + 23.8624i 0.0131169 + 1.09952i
\(472\) 0 0
\(473\) 10.8188 + 6.24621i 0.497447 + 0.287201i
\(474\) 0 0
\(475\) 26.4404i 1.21317i
\(476\) 0 0
\(477\) −23.3693 + 14.2462i −1.07001 + 0.652289i
\(478\) 0 0
\(479\) −7.73704 + 13.4009i −0.353514 + 0.612305i −0.986863 0.161562i \(-0.948347\pi\)
0.633348 + 0.773867i \(0.281680\pi\)
\(480\) 0 0
\(481\) 2.93780 1.69614i 0.133952 0.0773374i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.7299 + 13.1231i −1.03211 + 0.595890i
\(486\) 0 0
\(487\) −4.00000 + 6.92820i −0.181257 + 0.313947i −0.942309 0.334744i \(-0.891350\pi\)
0.761052 + 0.648691i \(0.224683\pi\)
\(488\) 0 0
\(489\) −12.0818 + 21.5150i −0.546358 + 0.972941i
\(490\) 0 0
\(491\) 28.8769i 1.30320i −0.758564 0.651598i \(-0.774099\pi\)
0.758564 0.651598i \(-0.225901\pi\)
\(492\) 0 0
\(493\) 10.4631 + 6.04090i 0.471236 + 0.272068i
\(494\) 0 0
\(495\) 24.8387 + 13.5611i 1.11642 + 0.609525i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.4924 + 32.0298i 0.827835 + 1.43385i 0.899734 + 0.436440i \(0.143761\pi\)
−0.0718991 + 0.997412i \(0.522906\pi\)
\(500\) 0 0
\(501\) 2.99829 + 5.05302i 0.133954 + 0.225752i
\(502\) 0 0
\(503\) 5.29723 0.236192 0.118096 0.993002i \(-0.462321\pi\)
0.118096 + 0.993002i \(0.462321\pi\)
\(504\) 0 0
\(505\) −11.3693 −0.505928
\(506\) 0 0
\(507\) −8.94738 15.0790i −0.397367 0.669682i
\(508\) 0 0
\(509\) 12.8483 + 22.2540i 0.569493 + 0.986391i 0.996616 + 0.0821973i \(0.0261938\pi\)
−0.427123 + 0.904193i \(0.640473\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.2427 17.6826i 1.24695 0.780706i
\(514\) 0 0
\(515\) 12.3376 + 7.12311i 0.543659 + 0.313882i
\(516\) 0 0
\(517\) 27.1383i 1.19354i
\(518\) 0 0
\(519\) −13.4384 + 23.9309i −0.589882 + 1.05045i
\(520\) 0 0
\(521\) 13.4876 23.3612i 0.590903 1.02347i −0.403208 0.915108i \(-0.632105\pi\)
0.994111 0.108366i \(-0.0345618\pi\)
\(522\) 0 0
\(523\) −1.97175 + 1.13839i −0.0862186 + 0.0497783i −0.542489 0.840063i \(-0.682518\pi\)
0.456271 + 0.889841i \(0.349185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.44703 4.87689i 0.367958 0.212441i
\(528\) 0 0
\(529\) −9.50000 + 16.4545i −0.413043 + 0.715412i
\(530\) 0 0
\(531\) 7.94584 + 13.0343i 0.344820 + 0.565639i
\(532\) 0 0
\(533\) 18.2462i 0.790331i
\(534\) 0 0
\(535\) −18.6325 10.7575i −0.805554 0.465087i
\(536\) 0 0
\(537\) −0.100763 8.44643i −0.00434826 0.364490i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.12311 + 3.67733i 0.0912794 + 0.158101i 0.908050 0.418862i \(-0.137571\pi\)
−0.816770 + 0.576963i \(0.804238\pi\)
\(542\) 0 0
\(543\) −23.3606 + 13.8614i −1.00250 + 0.594851i
\(544\) 0 0
\(545\) 36.9890 1.58444
\(546\) 0 0
\(547\) −38.2462 −1.63529 −0.817645 0.575723i \(-0.804721\pi\)
−0.817645 + 0.575723i \(0.804721\pi\)
\(548\) 0 0
\(549\) 0.364168 + 15.2609i 0.0155423 + 0.651320i
\(550\) 0 0
\(551\) 29.2520 + 50.6660i 1.24618 + 2.15844i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 10.4624 0.124813i 0.444104 0.00529803i
\(556\) 0 0
\(557\) −25.6478 14.8078i −1.08673 0.627425i −0.154028 0.988067i \(-0.549224\pi\)
−0.932705 + 0.360641i \(0.882558\pi\)
\(558\) 0 0
\(559\) 6.78456i 0.286956i
\(560\) 0 0
\(561\) 6.24621 + 3.50758i 0.263715 + 0.148090i
\(562\) 0 0
\(563\) −10.2812 + 17.8076i −0.433303 + 0.750503i −0.997155 0.0753728i \(-0.975985\pi\)
0.563852 + 0.825876i \(0.309319\pi\)
\(564\) 0 0
\(565\) 19.2765 11.1293i 0.810970 0.468214i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.9307 + 23.0540i −1.67398 + 0.966473i −0.708606 + 0.705605i \(0.750676\pi\)
−0.965374 + 0.260868i \(0.915991\pi\)
\(570\) 0 0
\(571\) −13.3693 + 23.1563i −0.559488 + 0.969063i 0.438051 + 0.898950i \(0.355669\pi\)
−0.997539 + 0.0701122i \(0.977664\pi\)
\(572\) 0 0
\(573\) −26.2316 14.7304i −1.09584 0.615372i
\(574\) 0 0
\(575\) 8.24621i 0.343891i
\(576\) 0 0
\(577\) −11.7512 6.78456i −0.489209 0.282445i 0.235037 0.971986i \(-0.424479\pi\)
−0.724246 + 0.689541i \(0.757812\pi\)
\(578\) 0 0
\(579\) 12.3367 0.147173i 0.512696 0.00611631i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.2462 24.6752i −0.590018 1.02194i
\(584\) 0 0
\(585\) 0.366650 + 15.3649i 0.0151591 + 0.635262i
\(586\) 0 0
\(587\) 48.1184 1.98606 0.993029 0.117873i \(-0.0376076\pi\)
0.993029 + 0.117873i \(0.0376076\pi\)
\(588\) 0 0
\(589\) 47.2311 1.94612
\(590\) 0 0
\(591\) 25.5059 15.1344i 1.04917 0.622545i
\(592\) 0 0
\(593\) 8.39919 + 14.5478i 0.344913 + 0.597408i 0.985338 0.170613i \(-0.0545749\pi\)
−0.640425 + 0.768021i \(0.721242\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.206899 + 17.3432i 0.00846782 + 0.709810i
\(598\) 0 0
\(599\) −35.8269 20.6847i −1.46385 0.845152i −0.464660 0.885489i \(-0.653824\pi\)
−0.999186 + 0.0403367i \(0.987157\pi\)
\(600\) 0 0
\(601\) 5.29723i 0.216078i 0.994147 + 0.108039i \(0.0344572\pi\)
−0.994147 + 0.108039i \(0.965543\pi\)
\(602\) 0 0
\(603\) 9.75379 + 16.0000i 0.397205 + 0.651570i
\(604\) 0 0
\(605\) 1.88206 3.25982i 0.0765165 0.132531i
\(606\) 0 0
\(607\) −12.6157 + 7.28369i −0.512056 + 0.295636i −0.733678 0.679497i \(-0.762198\pi\)
0.221622 + 0.975133i \(0.428865\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.7640 7.36932i 0.516377 0.298131i
\(612\) 0 0
\(613\) 2.75379 4.76970i 0.111224 0.192646i −0.805040 0.593221i \(-0.797856\pi\)
0.916264 + 0.400574i \(0.131189\pi\)
\(614\) 0 0
\(615\) 27.5559 49.0708i 1.11116 1.97873i
\(616\) 0 0
\(617\) 16.6307i 0.669526i −0.942302 0.334763i \(-0.891344\pi\)
0.942302 0.334763i \(-0.108656\pi\)
\(618\) 0 0
\(619\) −13.0789 7.55112i −0.525686 0.303505i 0.213572 0.976927i \(-0.431490\pi\)
−0.739258 + 0.673422i \(0.764824\pi\)
\(620\) 0 0
\(621\) 8.80832 5.51484i 0.353466 0.221303i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.3078 + 24.7818i 0.572311 + 0.991271i
\(626\) 0 0
\(627\) 17.7016 + 29.8324i 0.706932 + 1.19139i
\(628\) 0 0
\(629\) 2.64861 0.105607
\(630\) 0 0
\(631\) 37.1231 1.47785 0.738924 0.673789i \(-0.235334\pi\)
0.738924 + 0.673789i \(0.235334\pi\)
\(632\) 0 0
\(633\) 19.6625 + 33.1371i 0.781513 + 1.31708i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.8415 7.01099i −0.508000 0.277351i
\(640\) 0 0
\(641\) −24.1290 13.9309i −0.953037 0.550236i −0.0590141 0.998257i \(-0.518796\pi\)
−0.894023 + 0.448021i \(0.852129\pi\)
\(642\) 0 0
\(643\) 17.7509i 0.700025i −0.936745 0.350013i \(-0.886177\pi\)
0.936745 0.350013i \(-0.113823\pi\)
\(644\) 0 0
\(645\) −10.2462 + 18.2462i −0.403444 + 0.718444i
\(646\) 0 0
\(647\) 3.60109 6.23726i 0.141573 0.245212i −0.786516 0.617570i \(-0.788117\pi\)
0.928089 + 0.372358i \(0.121451\pi\)
\(648\) 0 0
\(649\) −13.7626 + 7.94584i −0.540229 + 0.311902i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.6307 17.6847i 1.19867 0.692054i 0.238414 0.971164i \(-0.423373\pi\)
0.960259 + 0.279110i \(0.0900393\pi\)
\(654\) 0 0
\(655\) 20.8078 36.0401i 0.813027 1.40820i
\(656\) 0 0
\(657\) 30.9481 18.8664i 1.20740 0.736047i
\(658\) 0 0
\(659\) 15.1231i 0.589113i −0.955634 0.294556i \(-0.904828\pi\)
0.955634 0.294556i \(-0.0951718\pi\)
\(660\) 0 0
\(661\) −16.5196 9.53758i −0.642537 0.370969i 0.143054 0.989715i \(-0.454308\pi\)
−0.785591 + 0.618746i \(0.787641\pi\)
\(662\) 0 0
\(663\) 0.0464098 + 3.89028i 0.00180241 + 0.151086i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.12311 + 15.8017i 0.353248 + 0.611844i
\(668\) 0 0
\(669\) 30.0753 17.8457i 1.16278 0.689953i
\(670\) 0 0
\(671\) −15.8917 −0.613492
\(672\) 0 0
\(673\) 14.4924 0.558642 0.279321 0.960198i \(-0.409891\pi\)
0.279321 + 0.960198i \(0.409891\pi\)
\(674\) 0 0
\(675\) −10.0414 + 18.9254i −0.386495 + 0.728438i
\(676\) 0 0
\(677\) −21.7009 37.5870i −0.834033 1.44459i −0.894815 0.446436i \(-0.852693\pi\)
0.0607826 0.998151i \(-0.480640\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −33.0368 + 0.394119i −1.26597 + 0.0151027i
\(682\) 0 0
\(683\) 1.18586 + 0.684658i 0.0453758 + 0.0261977i 0.522516 0.852629i \(-0.324993\pi\)
−0.477140 + 0.878827i \(0.658327\pi\)
\(684\) 0 0
\(685\) 6.78456i 0.259225i
\(686\) 0 0
\(687\) −5.43845 3.05398i −0.207490 0.116516i
\(688\) 0 0
\(689\) 7.73704 13.4009i 0.294758 0.510535i
\(690\) 0 0
\(691\) 0.966053 0.557751i 0.0367504 0.0212179i −0.481512 0.876439i \(-0.659912\pi\)
0.518263 + 0.855222i \(0.326579\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.7743 + 9.68466i −0.636286 + 0.367360i
\(696\) 0 0
\(697\) 7.12311 12.3376i 0.269807 0.467319i
\(698\) 0 0
\(699\) 12.0818 + 6.78456i 0.456975 + 0.256616i
\(700\) 0 0
\(701\) 1.12311i 0.0424191i −0.999775 0.0212096i \(-0.993248\pi\)
0.999775 0.0212096i \(-0.00675172\pi\)
\(702\) 0 0
\(703\) 11.1072 + 6.41273i 0.418915 + 0.241861i
\(704\) 0 0
\(705\) 45.4565 0.542283i 1.71199 0.0204235i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.123106 0.213225i −0.00462333 0.00800784i 0.863704 0.503999i \(-0.168138\pi\)
−0.868328 + 0.495991i \(0.834805\pi\)
\(710\) 0 0
\(711\) 8.62823 0.205894i 0.323584 0.00772161i
\(712\) 0 0
\(713\) 14.7304 0.551658
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) 6.32500 3.75304i 0.236211 0.140160i
\(718\) 0 0
\(719\) −2.43981 4.22587i −0.0909895 0.157598i 0.816938 0.576725i \(-0.195670\pi\)
−0.907928 + 0.419127i \(0.862336\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −0.319716 26.8000i −0.0118904 0.996702i
\(724\) 0 0
\(725\) −32.5760 18.8078i −1.20984 0.698503i
\(726\) 0 0
\(727\) 46.5853i 1.72775i −0.503705 0.863876i \(-0.668030\pi\)
0.503705 0.863876i \(-0.331970\pi\)
\(728\) 0 0
\(729\) 26.9309 1.93087i 0.997440 0.0715137i
\(730\) 0 0
\(731\) −2.64861 + 4.58753i −0.0979625 + 0.169676i
\(732\) 0 0
\(733\) 26.9827 15.5785i 0.996629 0.575404i 0.0893800 0.995998i \(-0.471511\pi\)
0.907249 + 0.420593i \(0.138178\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.8941 + 9.75379i −0.622301 + 0.359285i
\(738\) 0 0
\(739\) −20.2462 + 35.0675i −0.744769 + 1.28998i 0.205534 + 0.978650i \(0.434107\pi\)
−0.950303 + 0.311328i \(0.899226\pi\)
\(740\) 0 0
\(741\) −9.22437 + 16.4265i −0.338866 + 0.603444i
\(742\) 0 0
\(743\) 30.0000i 1.10059i −0.834969 0.550297i \(-0.814515\pi\)
0.834969 0.550297i \(-0.185485\pi\)
\(744\) 0 0
\(745\) −8.81341 5.08842i −0.322898 0.186425i
\(746\) 0 0
\(747\) 2.43836 4.46614i 0.0892150 0.163408i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.00000 13.8564i −0.291924 0.505627i 0.682341 0.731034i \(-0.260962\pi\)
−0.974265 + 0.225407i \(0.927629\pi\)
\(752\) 0 0
\(753\) 6.18114 + 10.4171i 0.225253 + 0.379619i
\(754\) 0 0
\(755\) −37.7327 −1.37323
\(756\) 0 0
\(757\) 10.4924 0.381354 0.190677 0.981653i \(-0.438932\pi\)
0.190677 + 0.981653i \(0.438932\pi\)
\(758\) 0 0
\(759\) 5.52076 + 9.30412i 0.200391 + 0.337718i
\(760\) 0 0
\(761\) 18.7848 + 32.5363i 0.680950 + 1.17944i 0.974691 + 0.223555i \(0.0717662\pi\)
−0.293741 + 0.955885i \(0.594900\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.75037 + 10.5325i −0.207905 + 0.380803i
\(766\) 0 0
\(767\) −7.47439 4.31534i −0.269885 0.155818i
\(768\) 0 0
\(769\) 35.8278i 1.29198i 0.763345 + 0.645991i \(0.223556\pi\)
−0.763345 + 0.645991i \(0.776444\pi\)
\(770\) 0 0
\(771\) −0.492423 + 0.876894i −0.0177342 + 0.0315806i
\(772\) 0 0
\(773\) −1.88206 + 3.25982i −0.0676929 + 0.117248i −0.897885 0.440229i \(-0.854897\pi\)
0.830192 + 0.557477i \(0.188230\pi\)
\(774\) 0 0
\(775\) −26.2990 + 15.1838i −0.944689 + 0.545417i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 59.7426 34.4924i 2.14050 1.23582i
\(780\) 0 0
\(781\) 7.61553 13.1905i 0.272505 0.471993i
\(782\) 0 0
\(783\) 1.69614 + 47.3747i 0.0606151 + 1.69303i
\(784\) 0 0
\(785\) 41.6155i 1.48532i
\(786\) 0 0
\(787\) −20.2426 11.6871i −0.721571 0.416599i 0.0937598 0.995595i \(-0.470111\pi\)
−0.815331 + 0.578996i \(0.803445\pi\)
\(788\) 0 0
\(789\) 0.193583 + 16.2270i 0.00689174 + 0.577696i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −4.31534 7.47439i −0.153242 0.265423i
\(794\) 0 0
\(795\) 41.0462 24.3554i 1.45576 0.863799i
\(796\) 0 0
\(797\) 48.6990 1.72501 0.862504 0.506051i \(-0.168895\pi\)
0.862504 + 0.506051i \(0.168895\pi\)
\(798\) 0 0
\(799\) 11.5076 0.407109
\(800\) 0 0
\(801\) −34.4936 + 0.823115i −1.21877 + 0.0290833i
\(802\) 0 0
\(803\) 18.8664 + 32.6775i 0.665779 + 1.15316i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15.6936 0.187220i 0.552441 0.00659045i
\(808\) 0 0
\(809\) −9.41967 5.43845i −0.331178 0.191206i 0.325186 0.945650i \(-0.394573\pi\)
−0.656364 + 0.754444i \(0.727906\pi\)
\(810\) 0 0
\(811\) 41.1708i 1.44570i 0.691004 + 0.722851i \(0.257169\pi\)
−0.691004 + 0.722851i \(0.742831\pi\)
\(812\) 0 0
\(813\) 8.24621 + 4.63068i 0.289207 + 0.162405i
\(814\) 0 0
\(815\) 21.5150 37.2650i 0.753637 1.30534i
\(816\) 0 0
\(817\) −22.2143 + 12.8255i −0.777182 + 0.448706i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.8838 + 7.43845i −0.449647 + 0.259604i −0.707681 0.706532i \(-0.750259\pi\)
0.258034 + 0.966136i \(0.416925\pi\)
\(822\) 0 0
\(823\) 10.5616 18.2931i 0.368153 0.637659i −0.621124 0.783712i \(-0.713324\pi\)
0.989277 + 0.146053i \(0.0466571\pi\)
\(824\) 0 0
\(825\) −19.4470 10.9205i −0.677057 0.380204i
\(826\) 0 0
\(827\) 33.8617i 1.17749i 0.808320 + 0.588744i \(0.200377\pi\)
−0.808320 + 0.588744i \(0.799623\pi\)
\(828\) 0 0
\(829\) 19.0957 + 11.0249i 0.663222 + 0.382911i 0.793503 0.608566i \(-0.208255\pi\)
−0.130282 + 0.991477i \(0.541588\pi\)
\(830\) 0 0
\(831\) −21.2096 + 0.253024i −0.735751 + 0.00877729i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.12311 8.87348i −0.177292 0.307079i
\(836\) 0 0
\(837\) 33.8068 + 17.9372i 1.16854 + 0.620002i
\(838\) 0 0
\(839\) −47.9096 −1.65402 −0.827011 0.562186i \(-0.809960\pi\)
−0.827011 + 0.562186i \(0.809960\pi\)
\(840\) 0 0
\(841\) −54.2311 −1.87004
\(842\) 0 0
\(843\) 42.4412 25.1832i 1.46175 0.867356i
\(844\) 0 0
\(845\) 15.2882 + 26.4799i 0.525929 + 0.910935i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.257309 21.5688i −0.00883082 0.740239i
\(850\) 0 0
\(851\) 3.46410 + 2.00000i 0.118748 + 0.0685591i
\(852\) 0 0
\(853\) 6.57576i 0.225150i 0.993643 + 0.112575i \(0.0359098\pi\)
−0.993643 + 0.112575i \(0.964090\pi\)
\(854\) 0 0
\(855\) −49.6155 + 30.2462i −1.69682 + 1.03440i
\(856\) 0 0
\(857\) 3.31077 5.73442i 0.113094 0.195884i −0.803922 0.594734i \(-0.797257\pi\)
0.917016 + 0.398850i \(0.130591\pi\)
\(858\) 0 0
\(859\) 38.5927 22.2815i 1.31677 0.760236i 0.333560 0.942729i \(-0.391750\pi\)
0.983207 + 0.182493i \(0.0584167\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.4175 + 17.5616i −1.03542 + 0.597802i −0.918534 0.395343i \(-0.870626\pi\)
−0.116890 + 0.993145i \(0.537293\pi\)
\(864\) 0 0
\(865\) 23.9309 41.4495i 0.813674 1.40932i
\(866\) 0 0
\(867\) 12.9299 23.0252i 0.439121 0.781977i
\(868\) 0 0
\(869\) 8.98485i 0.304790i
\(870\) 0 0
\(871\) −9.17507 5.29723i −0.310885 0.179490i
\(872\) 0 0
\(873\) −22.8805 12.4920i −0.774389 0.422790i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.3693 24.8884i −0.485217 0.840421i 0.514638 0.857407i \(-0.327926\pi\)
−0.999856 + 0.0169862i \(0.994593\pi\)
\(878\) 0 0
\(879\) 22.3431 + 37.6548i 0.753614 + 1.27006i
\(880\) 0 0
\(881\) −34.1774 −1.15147 −0.575733 0.817638i \(-0.695283\pi\)
−0.575733 + 0.817638i \(0.695283\pi\)
\(882\) 0 0
\(883\) −22.2462 −0.748645 −0.374322 0.927299i \(-0.622125\pi\)
−0.374322 + 0.927299i \(0.622125\pi\)
\(884\) 0 0
\(885\) −13.5843 22.8936i −0.456631 0.769559i
\(886\) 0 0
\(887\) −17.1702 29.7397i −0.576519 0.998561i −0.995875 0.0907387i \(-0.971077\pi\)
0.419355 0.907822i \(-0.362256\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.34070 + 28.0760i 0.0449153 + 0.940580i
\(892\) 0 0
\(893\) 48.2579 + 27.8617i 1.61489 + 0.932358i
\(894\) 0 0
\(895\) 14.7304i 0.492383i
\(896\) 0 0
\(897\) −2.87689 + 5.12311i −0.0960567 + 0.171056i
\(898\) 0 0
\(899\) −33.5968 + 58.1913i −1.12051 + 1.94079i
\(900\) 0 0
\(901\) 10.4631 6.04090i 0.348578 0.201251i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 41.0230 23.6847i 1.36365 0.787305i
\(906\) 0 0
\(907\) −8.24621 + 14.2829i −0.273811 + 0.474254i −0.969834 0.243765i \(-0.921618\pi\)
0.696023 + 0.718019i \(0.254951\pi\)
\(908\) 0 0
\(909\) −5.87787 9.64198i −0.194957 0.319804i
\(910\) 0 0
\(911\) 6.00000i 0.198789i −0.995048 0.0993944i \(-0.968309\pi\)
0.995048 0.0993944i \(-0.0316906\pi\)
\(912\) 0 0
\(913\) 4.58753 + 2.64861i 0.151825 + 0.0876563i
\(914\) 0 0
\(915\) −0.317551 26.6185i −0.0104979 0.879982i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.19224 + 5.52911i 0.105302 + 0.182389i 0.913862 0.406026i \(-0.133086\pi\)
−0.808559 + 0.588414i \(0.799752\pi\)
\(920\) 0 0
\(921\) −36.5470 + 21.6858i −1.20427 + 0.714571i
\(922\) 0 0
\(923\) 8.27190 0.272273
\(924\) 0 0
\(925\) −8.24621 −0.271134
\(926\) 0 0
\(927\) 0.337557 + 14.1457i 0.0110868 + 0.464607i
\(928\) 0 0
\(929\) −25.4064 44.0051i −0.833556 1.44376i −0.895201 0.445663i \(-0.852968\pi\)
0.0616445 0.998098i \(-0.480366\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 32.6752 0.389805i 1.06974 0.0127616i
\(934\) 0 0
\(935\) −10.8188 6.24621i −0.353811 0.204273i
\(936\) 0 0
\(937\) 18.8664i 0.616337i −0.951332 0.308168i \(-0.900284\pi\)
0.951332 0.308168i \(-0.0997161\pi\)
\(938\) 0 0
\(939\) 5.12311 + 2.87689i 0.167186 + 0.0938839i
\(940\) 0 0
\(941\) 5.11131 8.85305i 0.166624 0.288601i −0.770607 0.637311i \(-0.780047\pi\)
0.937231 + 0.348710i \(0.113380\pi\)
\(942\) 0 0
\(943\) 18.6325 10.7575i 0.606758 0.350312i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −44.7004 + 25.8078i −1.45257 + 0.838640i −0.998627 0.0523926i \(-0.983315\pi\)
−0.453940 + 0.891032i \(0.649982\pi\)
\(948\) 0 0
\(949\) −10.2462 + 17.7470i −0.332606 + 0.576091i
\(950\) 0 0
\(951\) −20.5625 11.5469i −0.666785 0.374435i
\(952\) 0 0
\(953\) 22.7386i 0.736577i −0.929712 0.368288i \(-0.879944\pi\)
0.929712 0.368288i \(-0.120056\pi\)
\(954\) 0 0
\(955\) 45.4344 + 26.2316i 1.47022 + 0.848833i
\(956\) 0 0
\(957\) −49.3468 + 0.588693i −1.59516 + 0.0190297i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.6231 + 20.1318i 0.374939 + 0.649413i
\(962\) 0 0
\(963\) −0.509786 21.3632i −0.0164276 0.688421i
\(964\) 0 0
\(965\) −21.5150 −0.692591
\(966\) 0 0
\(967\) 28.4924 0.916255 0.458127 0.888887i \(-0.348520\pi\)
0.458127 + 0.888887i \(0.348520\pi\)
\(968\) 0 0
\(969\) −12.6500 + 7.50609i −0.406376 + 0.241130i
\(970\) 0 0
\(971\) −12.9299 22.3952i −0.414939 0.718695i 0.580483 0.814272i \(-0.302864\pi\)
−0.995422 + 0.0955769i \(0.969530\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −0.144493 12.1120i −0.00462747 0.387895i
\(976\) 0 0
\(977\) −32.6957 18.8769i −1.04603 0.603925i −0.124494 0.992220i \(-0.539731\pi\)
−0.921535 + 0.388295i \(0.873064\pi\)
\(978\) 0 0
\(979\) 35.9193i 1.14799i
\(980\) 0 0
\(981\) 19.1231 + 31.3693i 0.610554 + 1.00155i
\(982\) 0 0
\(983\) −3.60109 + 6.23726i −0.114857 + 0.198938i −0.917723 0.397222i \(-0.869974\pi\)
0.802866 + 0.596160i \(0.203308\pi\)
\(984\) 0 0
\(985\) −44.7904 + 25.8597i −1.42714 + 0.823959i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.92820 + 4.00000i −0.220304 + 0.127193i
\(990\) 0 0
\(991\) −6.56155 + 11.3649i −0.208435 + 0.361019i −0.951222 0.308509i \(-0.900170\pi\)
0.742787 + 0.669528i \(0.233504\pi\)
\(992\) 0 0
\(993\) −18.8664 + 33.5968i −0.598706 + 1.06616i
\(994\) 0 0
\(995\) 30.2462i 0.958869i
\(996\) 0 0
\(997\) −7.34451 4.24035i −0.232603 0.134293i 0.379169 0.925327i \(-0.376210\pi\)
−0.611772 + 0.791034i \(0.709543\pi\)
\(998\) 0 0
\(999\) 5.51484 + 8.80832i 0.174482 + 0.278683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1176.2.u.a.521.3 16
3.2 odd 2 inner 1176.2.u.a.521.1 16
7.2 even 3 inner 1176.2.u.a.1097.8 16
7.3 odd 6 168.2.k.a.41.5 yes 8
7.4 even 3 168.2.k.a.41.4 yes 8
7.5 odd 6 inner 1176.2.u.a.1097.1 16
7.6 odd 2 inner 1176.2.u.a.521.6 16
21.2 odd 6 inner 1176.2.u.a.1097.6 16
21.5 even 6 inner 1176.2.u.a.1097.3 16
21.11 odd 6 168.2.k.a.41.6 yes 8
21.17 even 6 168.2.k.a.41.3 8
21.20 even 2 inner 1176.2.u.a.521.8 16
28.3 even 6 336.2.k.c.209.4 8
28.11 odd 6 336.2.k.c.209.5 8
56.3 even 6 1344.2.k.i.1217.5 8
56.11 odd 6 1344.2.k.i.1217.4 8
56.45 odd 6 1344.2.k.f.1217.4 8
56.53 even 6 1344.2.k.f.1217.5 8
84.11 even 6 336.2.k.c.209.3 8
84.59 odd 6 336.2.k.c.209.6 8
168.11 even 6 1344.2.k.i.1217.6 8
168.53 odd 6 1344.2.k.f.1217.3 8
168.59 odd 6 1344.2.k.i.1217.3 8
168.101 even 6 1344.2.k.f.1217.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.k.a.41.3 8 21.17 even 6
168.2.k.a.41.4 yes 8 7.4 even 3
168.2.k.a.41.5 yes 8 7.3 odd 6
168.2.k.a.41.6 yes 8 21.11 odd 6
336.2.k.c.209.3 8 84.11 even 6
336.2.k.c.209.4 8 28.3 even 6
336.2.k.c.209.5 8 28.11 odd 6
336.2.k.c.209.6 8 84.59 odd 6
1176.2.u.a.521.1 16 3.2 odd 2 inner
1176.2.u.a.521.3 16 1.1 even 1 trivial
1176.2.u.a.521.6 16 7.6 odd 2 inner
1176.2.u.a.521.8 16 21.20 even 2 inner
1176.2.u.a.1097.1 16 7.5 odd 6 inner
1176.2.u.a.1097.3 16 21.5 even 6 inner
1176.2.u.a.1097.6 16 21.2 odd 6 inner
1176.2.u.a.1097.8 16 7.2 even 3 inner
1344.2.k.f.1217.3 8 168.53 odd 6
1344.2.k.f.1217.4 8 56.45 odd 6
1344.2.k.f.1217.5 8 56.53 even 6
1344.2.k.f.1217.6 8 168.101 even 6
1344.2.k.i.1217.3 8 168.59 odd 6
1344.2.k.i.1217.4 8 56.11 odd 6
1344.2.k.i.1217.5 8 56.3 even 6
1344.2.k.i.1217.6 8 168.11 even 6