Properties

Label 168.2.k
Level 168168
Weight 22
Character orbit 168.k
Rep. character χ168(41,)\chi_{168}(41,\cdot)
Character field Q\Q
Dimension 88
Newform subspaces 11
Sturm bound 6464
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 168.k (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 6464
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(168,[χ])M_{2}(168, [\chi]).

Total New Old
Modular forms 40 8 32
Cusp forms 24 8 16
Eisenstein series 16 0 16

Trace form

8q4q7+4q9+4q158q2116q37+4q3932q43+16q4924q5128q57+32q63+16q67+56q79+32q8524q91+56q93+64q99+O(q100) 8 q - 4 q^{7} + 4 q^{9} + 4 q^{15} - 8 q^{21} - 16 q^{37} + 4 q^{39} - 32 q^{43} + 16 q^{49} - 24 q^{51} - 28 q^{57} + 32 q^{63} + 16 q^{67} + 56 q^{79} + 32 q^{85} - 24 q^{91} + 56 q^{93} + 64 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(168,[χ])S_{2}^{\mathrm{new}}(168, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
168.2.k.a 168.k 21.c 88 1.3411.341 8.0.342102016.5 None 168.2.k.a 00 00 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q3β2q5+(1β5β6+)q7+q+\beta _{1}q^{3}-\beta _{2}q^{5}+(-1-\beta _{5}-\beta _{6}+\cdots)q^{7}+\cdots

Decomposition of S2old(168,[χ])S_{2}^{\mathrm{old}}(168, [\chi]) into lower level spaces

S2old(168,[χ]) S_{2}^{\mathrm{old}}(168, [\chi]) \simeq S2new(42,[χ])S_{2}^{\mathrm{new}}(42, [\chi])3^{\oplus 3}\oplusS2new(84,[χ])S_{2}^{\mathrm{new}}(84, [\chi])2^{\oplus 2}