Properties

Label 162.6.c.n.55.1
Level $162$
Weight $6$
Character 162.55
Analytic conductor $25.982$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,-32,12,0,176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.6.c.n.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{2} +(-8.00000 - 13.8564i) q^{4} +(-9.99038 - 17.3038i) q^{5} +(101.158 - 175.210i) q^{7} +64.0000 q^{8} +79.9230 q^{10} +(-10.4923 + 18.1731i) q^{11} +(116.696 + 202.124i) q^{13} +(404.631 + 700.841i) q^{14} +(-128.000 + 221.703i) q^{16} -1304.81 q^{17} -1429.93 q^{19} +(-159.846 + 276.862i) q^{20} +(-41.9691 - 72.6926i) q^{22} +(964.146 + 1669.95i) q^{23} +(1362.88 - 2360.59i) q^{25} -933.569 q^{26} -3237.05 q^{28} +(-2187.15 + 3788.25i) q^{29} +(-4576.07 - 7925.98i) q^{31} +(-512.000 - 886.810i) q^{32} +(2609.62 - 4520.00i) q^{34} -4042.41 q^{35} -8889.11 q^{37} +(2859.86 - 4953.42i) q^{38} +(-639.384 - 1107.45i) q^{40} +(7905.70 + 13693.1i) q^{41} +(-2019.18 + 3497.33i) q^{43} +335.753 q^{44} -7713.17 q^{46} +(13343.7 - 23112.0i) q^{47} +(-12062.3 - 20892.4i) q^{49} +(5451.54 + 9442.34i) q^{50} +(1867.14 - 3233.98i) q^{52} -37821.7 q^{53} +419.287 q^{55} +(6474.09 - 11213.5i) q^{56} +(-8748.59 - 15153.0i) q^{58} +(-14840.6 - 25704.7i) q^{59} +(8559.30 - 14825.1i) q^{61} +36608.5 q^{62} +4096.00 q^{64} +(2331.68 - 4038.58i) q^{65} +(-34359.8 - 59513.0i) q^{67} +(10438.5 + 18080.0i) q^{68} +(8084.83 - 14003.3i) q^{70} -22122.8 q^{71} -3260.65 q^{73} +(17778.2 - 30792.8i) q^{74} +(11439.4 + 19813.7i) q^{76} +(2122.75 + 3676.71i) q^{77} +(-33869.5 + 58663.7i) q^{79} +5115.08 q^{80} -63245.6 q^{82} +(-23085.8 + 39985.9i) q^{83} +(13035.6 + 22578.3i) q^{85} +(-8076.73 - 13989.3i) q^{86} +(-671.505 + 1163.08i) q^{88} -26065.6 q^{89} +47218.8 q^{91} +(15426.3 - 26719.2i) q^{92} +(53374.8 + 92447.9i) q^{94} +(14285.6 + 24743.3i) q^{95} +(-8814.24 + 15266.7i) q^{97} +96498.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 32 q^{4} + 12 q^{5} + 176 q^{7} + 256 q^{8} - 96 q^{10} + 540 q^{11} + 446 q^{13} + 704 q^{14} - 512 q^{16} - 3120 q^{17} - 3184 q^{19} + 192 q^{20} + 2160 q^{22} + 1404 q^{23} + 4828 q^{25}+ \cdots + 64080 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 3.46410i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −9.99038 17.3038i −0.178713 0.309541i 0.762727 0.646721i \(-0.223860\pi\)
−0.941440 + 0.337180i \(0.890527\pi\)
\(6\) 0 0
\(7\) 101.158 175.210i 0.780286 1.35149i −0.151489 0.988459i \(-0.548407\pi\)
0.931775 0.363036i \(-0.118260\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 79.9230 0.252739
\(11\) −10.4923 + 18.1731i −0.0261449 + 0.0452844i −0.878802 0.477187i \(-0.841656\pi\)
0.852657 + 0.522471i \(0.174990\pi\)
\(12\) 0 0
\(13\) 116.696 + 202.124i 0.191513 + 0.331710i 0.945752 0.324890i \(-0.105327\pi\)
−0.754239 + 0.656600i \(0.771994\pi\)
\(14\) 404.631 + 700.841i 0.551745 + 0.955651i
\(15\) 0 0
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −1304.81 −1.09503 −0.547514 0.836796i \(-0.684426\pi\)
−0.547514 + 0.836796i \(0.684426\pi\)
\(18\) 0 0
\(19\) −1429.93 −0.908722 −0.454361 0.890818i \(-0.650132\pi\)
−0.454361 + 0.890818i \(0.650132\pi\)
\(20\) −159.846 + 276.862i −0.0893567 + 0.154770i
\(21\) 0 0
\(22\) −41.9691 72.6926i −0.0184873 0.0320209i
\(23\) 964.146 + 1669.95i 0.380035 + 0.658239i 0.991067 0.133366i \(-0.0425787\pi\)
−0.611032 + 0.791606i \(0.709245\pi\)
\(24\) 0 0
\(25\) 1362.88 2360.59i 0.436123 0.755387i
\(26\) −933.569 −0.270840
\(27\) 0 0
\(28\) −3237.05 −0.780286
\(29\) −2187.15 + 3788.25i −0.482929 + 0.836457i −0.999808 0.0196013i \(-0.993760\pi\)
0.516879 + 0.856058i \(0.327094\pi\)
\(30\) 0 0
\(31\) −4576.07 7925.98i −0.855240 1.48132i −0.876422 0.481544i \(-0.840076\pi\)
0.0211813 0.999776i \(-0.493257\pi\)
\(32\) −512.000 886.810i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 2609.62 4520.00i 0.387151 0.670565i
\(35\) −4042.41 −0.557790
\(36\) 0 0
\(37\) −8889.11 −1.06747 −0.533733 0.845653i \(-0.679211\pi\)
−0.533733 + 0.845653i \(0.679211\pi\)
\(38\) 2859.86 4953.42i 0.321282 0.556476i
\(39\) 0 0
\(40\) −639.384 1107.45i −0.0631847 0.109439i
\(41\) 7905.70 + 13693.1i 0.734481 + 1.27216i 0.954951 + 0.296765i \(0.0959077\pi\)
−0.220469 + 0.975394i \(0.570759\pi\)
\(42\) 0 0
\(43\) −2019.18 + 3497.33i −0.166535 + 0.288446i −0.937199 0.348795i \(-0.886591\pi\)
0.770665 + 0.637241i \(0.219924\pi\)
\(44\) 335.753 0.0261449
\(45\) 0 0
\(46\) −7713.17 −0.537450
\(47\) 13343.7 23112.0i 0.881113 1.52613i 0.0310080 0.999519i \(-0.490128\pi\)
0.850105 0.526613i \(-0.176538\pi\)
\(48\) 0 0
\(49\) −12062.3 20892.4i −0.717692 1.24308i
\(50\) 5451.54 + 9442.34i 0.308386 + 0.534139i
\(51\) 0 0
\(52\) 1867.14 3233.98i 0.0957565 0.165855i
\(53\) −37821.7 −1.84949 −0.924744 0.380590i \(-0.875721\pi\)
−0.924744 + 0.380590i \(0.875721\pi\)
\(54\) 0 0
\(55\) 419.287 0.0186898
\(56\) 6474.09 11213.5i 0.275873 0.477826i
\(57\) 0 0
\(58\) −8748.59 15153.0i −0.341482 0.591464i
\(59\) −14840.6 25704.7i −0.555037 0.961352i −0.997901 0.0647630i \(-0.979371\pi\)
0.442864 0.896589i \(-0.353962\pi\)
\(60\) 0 0
\(61\) 8559.30 14825.1i 0.294519 0.510122i −0.680354 0.732884i \(-0.738174\pi\)
0.974873 + 0.222762i \(0.0715072\pi\)
\(62\) 36608.5 1.20949
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 2331.68 4038.58i 0.0684519 0.118562i
\(66\) 0 0
\(67\) −34359.8 59513.0i −0.935113 1.61966i −0.774433 0.632656i \(-0.781965\pi\)
−0.160680 0.987007i \(-0.551369\pi\)
\(68\) 10438.5 + 18080.0i 0.273757 + 0.474161i
\(69\) 0 0
\(70\) 8084.83 14003.3i 0.197209 0.341575i
\(71\) −22122.8 −0.520827 −0.260414 0.965497i \(-0.583859\pi\)
−0.260414 + 0.965497i \(0.583859\pi\)
\(72\) 0 0
\(73\) −3260.65 −0.0716139 −0.0358070 0.999359i \(-0.511400\pi\)
−0.0358070 + 0.999359i \(0.511400\pi\)
\(74\) 17778.2 30792.8i 0.377406 0.653687i
\(75\) 0 0
\(76\) 11439.4 + 19813.7i 0.227180 + 0.393488i
\(77\) 2122.75 + 3676.71i 0.0408011 + 0.0706695i
\(78\) 0 0
\(79\) −33869.5 + 58663.7i −0.610578 + 1.05755i 0.380565 + 0.924754i \(0.375729\pi\)
−0.991143 + 0.132798i \(0.957604\pi\)
\(80\) 5115.08 0.0893567
\(81\) 0 0
\(82\) −63245.6 −1.03871
\(83\) −23085.8 + 39985.9i −0.367833 + 0.637105i −0.989226 0.146393i \(-0.953233\pi\)
0.621394 + 0.783499i \(0.286567\pi\)
\(84\) 0 0
\(85\) 13035.6 + 22578.3i 0.195696 + 0.338956i
\(86\) −8076.73 13989.3i −0.117758 0.203962i
\(87\) 0 0
\(88\) −671.505 + 1163.08i −0.00924363 + 0.0160104i
\(89\) −26065.6 −0.348813 −0.174407 0.984674i \(-0.555801\pi\)
−0.174407 + 0.984674i \(0.555801\pi\)
\(90\) 0 0
\(91\) 47218.8 0.597739
\(92\) 15426.3 26719.2i 0.190017 0.329120i
\(93\) 0 0
\(94\) 53374.8 + 92447.9i 0.623041 + 1.07914i
\(95\) 14285.6 + 24743.3i 0.162401 + 0.281286i
\(96\) 0 0
\(97\) −8814.24 + 15266.7i −0.0951165 + 0.164747i −0.909657 0.415360i \(-0.863656\pi\)
0.814541 + 0.580106i \(0.196989\pi\)
\(98\) 96498.0 1.01497
\(99\) 0 0
\(100\) −43612.3 −0.436123
\(101\) −82822.6 + 143453.i −0.807878 + 1.39929i 0.106453 + 0.994318i \(0.466050\pi\)
−0.914331 + 0.404967i \(0.867283\pi\)
\(102\) 0 0
\(103\) 32320.9 + 55981.5i 0.300186 + 0.519938i 0.976178 0.216972i \(-0.0696179\pi\)
−0.675992 + 0.736909i \(0.736285\pi\)
\(104\) 7468.55 + 12935.9i 0.0677101 + 0.117277i
\(105\) 0 0
\(106\) 75643.4 131018.i 0.653893 1.13258i
\(107\) −28673.3 −0.242113 −0.121057 0.992646i \(-0.538628\pi\)
−0.121057 + 0.992646i \(0.538628\pi\)
\(108\) 0 0
\(109\) 173801. 1.40115 0.700575 0.713578i \(-0.252927\pi\)
0.700575 + 0.713578i \(0.252927\pi\)
\(110\) −838.574 + 1452.45i −0.00660784 + 0.0114451i
\(111\) 0 0
\(112\) 25896.4 + 44853.8i 0.195071 + 0.337874i
\(113\) −79890.0 138374.i −0.588567 1.01943i −0.994420 0.105490i \(-0.966359\pi\)
0.405853 0.913938i \(-0.366975\pi\)
\(114\) 0 0
\(115\) 19264.4 33366.9i 0.135835 0.235272i
\(116\) 69988.7 0.482929
\(117\) 0 0
\(118\) 118725. 0.784941
\(119\) −131992. + 228616.i −0.854435 + 1.47993i
\(120\) 0 0
\(121\) 80305.3 + 139093.i 0.498633 + 0.863657i
\(122\) 34237.2 + 59300.6i 0.208257 + 0.360711i
\(123\) 0 0
\(124\) −73217.1 + 126816.i −0.427620 + 0.740660i
\(125\) −116903. −0.669191
\(126\) 0 0
\(127\) 48402.8 0.266294 0.133147 0.991096i \(-0.457492\pi\)
0.133147 + 0.991096i \(0.457492\pi\)
\(128\) −8192.00 + 14189.0i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 9326.71 + 16154.3i 0.0484028 + 0.0838361i
\(131\) −30009.1 51977.3i −0.152783 0.264628i 0.779467 0.626444i \(-0.215490\pi\)
−0.932250 + 0.361816i \(0.882157\pi\)
\(132\) 0 0
\(133\) −144648. + 250538.i −0.709063 + 1.22813i
\(134\) 274879. 1.32245
\(135\) 0 0
\(136\) −83507.9 −0.387151
\(137\) 129008. 223449.i 0.587240 1.01713i −0.407352 0.913271i \(-0.633548\pi\)
0.994592 0.103859i \(-0.0331190\pi\)
\(138\) 0 0
\(139\) 163161. + 282603.i 0.716275 + 1.24062i 0.962466 + 0.271403i \(0.0874876\pi\)
−0.246191 + 0.969221i \(0.579179\pi\)
\(140\) 32339.3 + 56013.3i 0.139448 + 0.241530i
\(141\) 0 0
\(142\) 44245.5 76635.5i 0.184140 0.318940i
\(143\) −4897.63 −0.0200284
\(144\) 0 0
\(145\) 87401.7 0.345223
\(146\) 6521.30 11295.2i 0.0253193 0.0438544i
\(147\) 0 0
\(148\) 71112.9 + 123171.i 0.266867 + 0.462226i
\(149\) −172196. 298253.i −0.635416 1.10057i −0.986427 0.164202i \(-0.947495\pi\)
0.351010 0.936372i \(-0.385838\pi\)
\(150\) 0 0
\(151\) −80917.2 + 140153.i −0.288801 + 0.500218i −0.973524 0.228586i \(-0.926590\pi\)
0.684723 + 0.728804i \(0.259923\pi\)
\(152\) −91515.6 −0.321282
\(153\) 0 0
\(154\) −16982.0 −0.0577014
\(155\) −91433.3 + 158367.i −0.305686 + 0.529463i
\(156\) 0 0
\(157\) −219924. 380919.i −0.712071 1.23334i −0.964078 0.265618i \(-0.914424\pi\)
0.252008 0.967725i \(-0.418909\pi\)
\(158\) −135478. 234655.i −0.431744 0.747802i
\(159\) 0 0
\(160\) −10230.2 + 17719.1i −0.0315924 + 0.0547196i
\(161\) 390123. 1.18614
\(162\) 0 0
\(163\) 133043. 0.392213 0.196107 0.980583i \(-0.437170\pi\)
0.196107 + 0.980583i \(0.437170\pi\)
\(164\) 126491. 219089.i 0.367241 0.636079i
\(165\) 0 0
\(166\) −92343.4 159943.i −0.260097 0.450501i
\(167\) 138865. + 240521.i 0.385302 + 0.667363i 0.991811 0.127714i \(-0.0407639\pi\)
−0.606509 + 0.795077i \(0.707431\pi\)
\(168\) 0 0
\(169\) 158411. 274375.i 0.426646 0.738972i
\(170\) −104285. −0.276756
\(171\) 0 0
\(172\) 64613.8 0.166535
\(173\) 115075. 199316.i 0.292325 0.506322i −0.682034 0.731320i \(-0.738904\pi\)
0.974359 + 0.224999i \(0.0722378\pi\)
\(174\) 0 0
\(175\) −275732. 477583.i −0.680601 1.17884i
\(176\) −2686.02 4652.32i −0.00653624 0.0113211i
\(177\) 0 0
\(178\) 52131.2 90293.9i 0.123324 0.213604i
\(179\) 211343. 0.493011 0.246505 0.969141i \(-0.420718\pi\)
0.246505 + 0.969141i \(0.420718\pi\)
\(180\) 0 0
\(181\) −215516. −0.488971 −0.244485 0.969653i \(-0.578619\pi\)
−0.244485 + 0.969653i \(0.578619\pi\)
\(182\) −94437.7 + 163571.i −0.211333 + 0.366039i
\(183\) 0 0
\(184\) 61705.3 + 106877.i 0.134363 + 0.232723i
\(185\) 88805.6 + 153816.i 0.190770 + 0.330424i
\(186\) 0 0
\(187\) 13690.4 23712.5i 0.0286295 0.0495877i
\(188\) −426998. −0.881113
\(189\) 0 0
\(190\) −114284. −0.229669
\(191\) 281147. 486961.i 0.557635 0.965853i −0.440058 0.897969i \(-0.645042\pi\)
0.997693 0.0678833i \(-0.0216246\pi\)
\(192\) 0 0
\(193\) 202689. + 351068.i 0.391685 + 0.678419i 0.992672 0.120840i \(-0.0385589\pi\)
−0.600987 + 0.799259i \(0.705226\pi\)
\(194\) −35257.0 61066.9i −0.0672575 0.116493i
\(195\) 0 0
\(196\) −192996. + 334279.i −0.358846 + 0.621540i
\(197\) −1.02252e6 −1.87718 −0.938589 0.345036i \(-0.887867\pi\)
−0.938589 + 0.345036i \(0.887867\pi\)
\(198\) 0 0
\(199\) −11535.1 −0.0206485 −0.0103243 0.999947i \(-0.503286\pi\)
−0.0103243 + 0.999947i \(0.503286\pi\)
\(200\) 87224.6 151077.i 0.154193 0.267070i
\(201\) 0 0
\(202\) −331291. 573812.i −0.571256 0.989444i
\(203\) 442493. + 766421.i 0.753645 + 1.30535i
\(204\) 0 0
\(205\) 157962. 273598.i 0.262523 0.454704i
\(206\) −258567. −0.424527
\(207\) 0 0
\(208\) −59748.4 −0.0957565
\(209\) 15003.2 25986.3i 0.0237585 0.0411509i
\(210\) 0 0
\(211\) −327550. 567334.i −0.506491 0.877269i −0.999972 0.00751170i \(-0.997609\pi\)
0.493481 0.869757i \(-0.335724\pi\)
\(212\) 302574. + 524073.i 0.462372 + 0.800852i
\(213\) 0 0
\(214\) 57346.7 99327.4i 0.0856000 0.148264i
\(215\) 80689.6 0.119048
\(216\) 0 0
\(217\) −1.85162e6 −2.66933
\(218\) −347601. + 602063.i −0.495382 + 0.858026i
\(219\) 0 0
\(220\) −3354.30 5809.81i −0.00467245 0.00809292i
\(221\) −152266. 263733.i −0.209712 0.363232i
\(222\) 0 0
\(223\) 435975. 755130.i 0.587082 1.01686i −0.407530 0.913192i \(-0.633610\pi\)
0.994612 0.103665i \(-0.0330568\pi\)
\(224\) −207171. −0.275873
\(225\) 0 0
\(226\) 639120. 0.832360
\(227\) 323662. 560600.i 0.416896 0.722085i −0.578729 0.815520i \(-0.696451\pi\)
0.995625 + 0.0934346i \(0.0297846\pi\)
\(228\) 0 0
\(229\) 132358. + 229251.i 0.166787 + 0.288883i 0.937288 0.348555i \(-0.113327\pi\)
−0.770501 + 0.637438i \(0.779994\pi\)
\(230\) 77057.5 + 133467.i 0.0960495 + 0.166363i
\(231\) 0 0
\(232\) −139977. + 242448.i −0.170741 + 0.295732i
\(233\) 859254. 1.03689 0.518444 0.855112i \(-0.326512\pi\)
0.518444 + 0.855112i \(0.326512\pi\)
\(234\) 0 0
\(235\) −533235. −0.629867
\(236\) −237450. + 411275.i −0.277518 + 0.480676i
\(237\) 0 0
\(238\) −527967. 914465.i −0.604177 1.04647i
\(239\) 181801. + 314888.i 0.205873 + 0.356583i 0.950411 0.310998i \(-0.100663\pi\)
−0.744537 + 0.667581i \(0.767330\pi\)
\(240\) 0 0
\(241\) 665386. 1.15248e6i 0.737957 1.27818i −0.215456 0.976514i \(-0.569124\pi\)
0.953414 0.301666i \(-0.0975428\pi\)
\(242\) −642443. −0.705173
\(243\) 0 0
\(244\) −273898. −0.294519
\(245\) −241013. + 417447.i −0.256522 + 0.444310i
\(246\) 0 0
\(247\) −166867. 289023.i −0.174032 0.301432i
\(248\) −292868. 507263.i −0.302373 0.523726i
\(249\) 0 0
\(250\) 233806. 404963.i 0.236595 0.409794i
\(251\) 615398. 0.616555 0.308278 0.951296i \(-0.400247\pi\)
0.308278 + 0.951296i \(0.400247\pi\)
\(252\) 0 0
\(253\) −40464.3 −0.0397439
\(254\) −96805.7 + 167672.i −0.0941492 + 0.163071i
\(255\) 0 0
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) 588685. + 1.01963e6i 0.555968 + 0.962965i 0.997828 + 0.0658808i \(0.0209857\pi\)
−0.441859 + 0.897084i \(0.645681\pi\)
\(258\) 0 0
\(259\) −899202. + 1.55746e6i −0.832929 + 1.44267i
\(260\) −74613.7 −0.0684519
\(261\) 0 0
\(262\) 240073. 0.216068
\(263\) 69008.5 119526.i 0.0615195 0.106555i −0.833625 0.552330i \(-0.813739\pi\)
0.895145 + 0.445775i \(0.147072\pi\)
\(264\) 0 0
\(265\) 377853. + 654461.i 0.330528 + 0.572492i
\(266\) −578594. 1.00215e6i −0.501383 0.868421i
\(267\) 0 0
\(268\) −549757. + 952207.i −0.467556 + 0.809831i
\(269\) −985165. −0.830096 −0.415048 0.909800i \(-0.636235\pi\)
−0.415048 + 0.909800i \(0.636235\pi\)
\(270\) 0 0
\(271\) 841010. 0.695629 0.347815 0.937563i \(-0.386924\pi\)
0.347815 + 0.937563i \(0.386924\pi\)
\(272\) 167016. 289280.i 0.136879 0.237081i
\(273\) 0 0
\(274\) 516033. + 893795.i 0.415242 + 0.719220i
\(275\) 28599.5 + 49535.8i 0.0228048 + 0.0394991i
\(276\) 0 0
\(277\) −10653.6 + 18452.5i −0.00834248 + 0.0144496i −0.870167 0.492758i \(-0.835989\pi\)
0.861824 + 0.507207i \(0.169322\pi\)
\(278\) −1.30529e6 −1.01297
\(279\) 0 0
\(280\) −258715. −0.197209
\(281\) 841126. 1.45687e6i 0.635470 1.10067i −0.350945 0.936396i \(-0.614140\pi\)
0.986415 0.164271i \(-0.0525270\pi\)
\(282\) 0 0
\(283\) 395785. + 685520.i 0.293761 + 0.508808i 0.974696 0.223535i \(-0.0717598\pi\)
−0.680935 + 0.732344i \(0.738427\pi\)
\(284\) 176982. + 306542.i 0.130207 + 0.225525i
\(285\) 0 0
\(286\) 9795.26 16965.9i 0.00708110 0.0122648i
\(287\) 3.19889e6 2.29242
\(288\) 0 0
\(289\) 282676. 0.199087
\(290\) −174803. + 302769.i −0.122055 + 0.211405i
\(291\) 0 0
\(292\) 26085.2 + 45180.9i 0.0179035 + 0.0310097i
\(293\) −1.15302e6 1.99710e6i −0.784638 1.35903i −0.929215 0.369539i \(-0.879515\pi\)
0.144577 0.989494i \(-0.453818\pi\)
\(294\) 0 0
\(295\) −296527. + 513599.i −0.198385 + 0.343613i
\(296\) −568903. −0.377406
\(297\) 0 0
\(298\) 1.37757e6 0.898615
\(299\) −225024. + 389753.i −0.145563 + 0.252123i
\(300\) 0 0
\(301\) 408511. + 707563.i 0.259889 + 0.450141i
\(302\) −323669. 560611.i −0.204213 0.353707i
\(303\) 0 0
\(304\) 183031. 317019.i 0.113590 0.196744i
\(305\) −342043. −0.210538
\(306\) 0 0
\(307\) 2.92870e6 1.77349 0.886745 0.462260i \(-0.152961\pi\)
0.886745 + 0.462260i \(0.152961\pi\)
\(308\) 33963.9 58827.3i 0.0204005 0.0353348i
\(309\) 0 0
\(310\) −365733. 633469.i −0.216153 0.374387i
\(311\) 540095. + 935473.i 0.316643 + 0.548441i 0.979785 0.200052i \(-0.0641110\pi\)
−0.663143 + 0.748493i \(0.730778\pi\)
\(312\) 0 0
\(313\) 321741. 557272.i 0.185629 0.321519i −0.758159 0.652069i \(-0.773901\pi\)
0.943788 + 0.330550i \(0.107234\pi\)
\(314\) 1.75939e6 1.00702
\(315\) 0 0
\(316\) 1.08382e6 0.610578
\(317\) −577091. + 999552.i −0.322550 + 0.558672i −0.981013 0.193940i \(-0.937873\pi\)
0.658464 + 0.752612i \(0.271207\pi\)
\(318\) 0 0
\(319\) −45896.3 79494.7i −0.0252523 0.0437382i
\(320\) −40920.6 70876.6i −0.0223392 0.0386926i
\(321\) 0 0
\(322\) −780246. + 1.35143e6i −0.419365 + 0.726361i
\(323\) 1.86579e6 0.995076
\(324\) 0 0
\(325\) 636174. 0.334093
\(326\) −266085. + 460874.i −0.138668 + 0.240180i
\(327\) 0 0
\(328\) 505965. + 876357.i 0.259678 + 0.449776i
\(329\) −2.69964e6 4.67591e6i −1.37504 2.38164i
\(330\) 0 0
\(331\) 107519. 186228.i 0.0539404 0.0934274i −0.837794 0.545986i \(-0.816155\pi\)
0.891735 + 0.452558i \(0.149489\pi\)
\(332\) 738747. 0.367833
\(333\) 0 0
\(334\) −1.11092e6 −0.544900
\(335\) −686535. + 1.18911e6i −0.334234 + 0.578911i
\(336\) 0 0
\(337\) 1.71484e6 + 2.97019e6i 0.822526 + 1.42466i 0.903796 + 0.427964i \(0.140769\pi\)
−0.0812700 + 0.996692i \(0.525898\pi\)
\(338\) 633642. + 1.09750e6i 0.301684 + 0.522532i
\(339\) 0 0
\(340\) 208569. 361252.i 0.0978481 0.169478i
\(341\) 192053. 0.0894408
\(342\) 0 0
\(343\) −1.48044e6 −0.679448
\(344\) −129228. + 223829.i −0.0588788 + 0.101981i
\(345\) 0 0
\(346\) 460300. + 797263.i 0.206705 + 0.358024i
\(347\) 802264. + 1.38956e6i 0.357679 + 0.619518i 0.987573 0.157163i \(-0.0502348\pi\)
−0.629894 + 0.776681i \(0.716902\pi\)
\(348\) 0 0
\(349\) −356261. + 617062.i −0.156569 + 0.271185i −0.933629 0.358241i \(-0.883377\pi\)
0.777060 + 0.629426i \(0.216710\pi\)
\(350\) 2.20586e6 0.962516
\(351\) 0 0
\(352\) 21488.2 0.00924363
\(353\) 1.43528e6 2.48597e6i 0.613054 1.06184i −0.377668 0.925941i \(-0.623274\pi\)
0.990723 0.135900i \(-0.0433926\pi\)
\(354\) 0 0
\(355\) 221015. + 382809.i 0.0930788 + 0.161217i
\(356\) 208525. + 361176.i 0.0872033 + 0.151041i
\(357\) 0 0
\(358\) −422687. + 732115.i −0.174306 + 0.301906i
\(359\) −3.96829e6 −1.62505 −0.812525 0.582926i \(-0.801908\pi\)
−0.812525 + 0.582926i \(0.801908\pi\)
\(360\) 0 0
\(361\) −431397. −0.174225
\(362\) 431032. 746569.i 0.172877 0.299432i
\(363\) 0 0
\(364\) −377751. 654284.i −0.149435 0.258829i
\(365\) 32575.2 + 56421.8i 0.0127984 + 0.0221674i
\(366\) 0 0
\(367\) −1.79190e6 + 3.10365e6i −0.694461 + 1.20284i 0.275902 + 0.961186i \(0.411024\pi\)
−0.970362 + 0.241655i \(0.922310\pi\)
\(368\) −493643. −0.190017
\(369\) 0 0
\(370\) −710445. −0.269790
\(371\) −3.82596e6 + 6.62675e6i −1.44313 + 2.49957i
\(372\) 0 0
\(373\) 317676. + 550230.i 0.118226 + 0.204773i 0.919065 0.394107i \(-0.128946\pi\)
−0.800839 + 0.598880i \(0.795613\pi\)
\(374\) 54761.7 + 94850.1i 0.0202441 + 0.0350638i
\(375\) 0 0
\(376\) 853997. 1.47917e6i 0.311520 0.539569i
\(377\) −1.02093e6 −0.369948
\(378\) 0 0
\(379\) 399337. 0.142804 0.0714022 0.997448i \(-0.477253\pi\)
0.0714022 + 0.997448i \(0.477253\pi\)
\(380\) 228569. 395893.i 0.0812004 0.140643i
\(381\) 0 0
\(382\) 1.12459e6 + 1.94784e6i 0.394308 + 0.682961i
\(383\) 1.63313e6 + 2.82866e6i 0.568883 + 0.985334i 0.996677 + 0.0814575i \(0.0259575\pi\)
−0.427794 + 0.903876i \(0.640709\pi\)
\(384\) 0 0
\(385\) 42414.1 73463.4i 0.0145834 0.0252592i
\(386\) −1.62151e6 −0.553927
\(387\) 0 0
\(388\) 282056. 0.0951165
\(389\) 526396. 911744.i 0.176376 0.305491i −0.764261 0.644907i \(-0.776896\pi\)
0.940636 + 0.339416i \(0.110229\pi\)
\(390\) 0 0
\(391\) −1.25803e6 2.17897e6i −0.416149 0.720791i
\(392\) −771984. 1.33712e6i −0.253742 0.439495i
\(393\) 0 0
\(394\) 2.04504e6 3.54211e6i 0.663683 1.14953i
\(395\) 1.35348e6 0.436474
\(396\) 0 0
\(397\) 1.37875e6 0.439045 0.219522 0.975607i \(-0.429550\pi\)
0.219522 + 0.975607i \(0.429550\pi\)
\(398\) 23070.2 39958.8i 0.00730036 0.0126446i
\(399\) 0 0
\(400\) 348898. + 604310.i 0.109031 + 0.188847i
\(401\) −830386. 1.43827e6i −0.257881 0.446663i 0.707793 0.706420i \(-0.249691\pi\)
−0.965674 + 0.259757i \(0.916358\pi\)
\(402\) 0 0
\(403\) 1.06802e6 1.84986e6i 0.327579 0.567384i
\(404\) 2.65032e6 0.807878
\(405\) 0 0
\(406\) −3.53995e6 −1.06581
\(407\) 93266.9 161543.i 0.0279088 0.0483395i
\(408\) 0 0
\(409\) −2.70023e6 4.67693e6i −0.798164 1.38246i −0.920811 0.390010i \(-0.872472\pi\)
0.122647 0.992450i \(-0.460862\pi\)
\(410\) 631848. + 1.09439e6i 0.185632 + 0.321524i
\(411\) 0 0
\(412\) 517135. 895703.i 0.150093 0.259969i
\(413\) −6.00497e6 −1.73235
\(414\) 0 0
\(415\) 922546. 0.262947
\(416\) 119497. 206975.i 0.0338550 0.0586386i
\(417\) 0 0
\(418\) 60012.9 + 103945.i 0.0167998 + 0.0290981i
\(419\) 3.00517e6 + 5.20510e6i 0.836245 + 1.44842i 0.893013 + 0.450032i \(0.148587\pi\)
−0.0567675 + 0.998387i \(0.518079\pi\)
\(420\) 0 0
\(421\) 1.86568e6 3.23146e6i 0.513018 0.888573i −0.486868 0.873476i \(-0.661861\pi\)
0.999886 0.0150977i \(-0.00480593\pi\)
\(422\) 2.62040e6 0.716287
\(423\) 0 0
\(424\) −2.42059e6 −0.653893
\(425\) −1.77831e6 + 3.08012e6i −0.477567 + 0.827171i
\(426\) 0 0
\(427\) −1.73168e6 2.99935e6i −0.459618 0.796082i
\(428\) 229387. + 397310.i 0.0605284 + 0.104838i
\(429\) 0 0
\(430\) −161379. + 279517.i −0.0420897 + 0.0729016i
\(431\) 293652. 0.0761448 0.0380724 0.999275i \(-0.487878\pi\)
0.0380724 + 0.999275i \(0.487878\pi\)
\(432\) 0 0
\(433\) −731246. −0.187432 −0.0937160 0.995599i \(-0.529875\pi\)
−0.0937160 + 0.995599i \(0.529875\pi\)
\(434\) 3.70324e6 6.41419e6i 0.943750 1.63462i
\(435\) 0 0
\(436\) −1.39040e6 2.40825e6i −0.350288 0.606716i
\(437\) −1.37866e6 2.38791e6i −0.345346 0.598156i
\(438\) 0 0
\(439\) −970387. + 1.68076e6i −0.240316 + 0.416240i −0.960804 0.277227i \(-0.910585\pi\)
0.720488 + 0.693467i \(0.243918\pi\)
\(440\) 26834.4 0.00660784
\(441\) 0 0
\(442\) 1.21813e6 0.296578
\(443\) 2.27045e6 3.93254e6i 0.549672 0.952059i −0.448625 0.893720i \(-0.648086\pi\)
0.998297 0.0583394i \(-0.0185805\pi\)
\(444\) 0 0
\(445\) 260405. + 451035.i 0.0623376 + 0.107972i
\(446\) 1.74390e6 + 3.02052e6i 0.415130 + 0.719026i
\(447\) 0 0
\(448\) 414342. 717661.i 0.0975357 0.168937i
\(449\) −6.94484e6 −1.62572 −0.812861 0.582457i \(-0.802091\pi\)
−0.812861 + 0.582457i \(0.802091\pi\)
\(450\) 0 0
\(451\) −331795. −0.0768119
\(452\) −1.27824e6 + 2.21398e6i −0.294284 + 0.509714i
\(453\) 0 0
\(454\) 1.29465e6 + 2.24240e6i 0.294790 + 0.510591i
\(455\) −471734. 817068.i −0.106824 0.185025i
\(456\) 0 0
\(457\) −1.27256e6 + 2.20414e6i −0.285028 + 0.493684i −0.972616 0.232418i \(-0.925336\pi\)
0.687588 + 0.726101i \(0.258670\pi\)
\(458\) −1.05887e6 −0.235872
\(459\) 0 0
\(460\) −616460. −0.135835
\(461\) 3.93640e6 6.81805e6i 0.862675 1.49420i −0.00666268 0.999978i \(-0.502121\pi\)
0.869338 0.494219i \(-0.164546\pi\)
\(462\) 0 0
\(463\) −2.98583e6 5.17160e6i −0.647309 1.12117i −0.983763 0.179473i \(-0.942561\pi\)
0.336453 0.941700i \(-0.390773\pi\)
\(464\) −559910. 969792.i −0.120732 0.209114i
\(465\) 0 0
\(466\) −1.71851e6 + 2.97654e6i −0.366595 + 0.634961i
\(467\) −1.75432e6 −0.372235 −0.186118 0.982527i \(-0.559591\pi\)
−0.186118 + 0.982527i \(0.559591\pi\)
\(468\) 0 0
\(469\) −1.39030e7 −2.91862
\(470\) 1.06647e6 1.84718e6i 0.222691 0.385713i
\(471\) 0 0
\(472\) −949799. 1.64510e6i −0.196235 0.339889i
\(473\) −42371.6 73389.8i −0.00870807 0.0150828i
\(474\) 0 0
\(475\) −1.94883e6 + 3.37547e6i −0.396315 + 0.686437i
\(476\) 4.22373e6 0.854435
\(477\) 0 0
\(478\) −1.45440e6 −0.291149
\(479\) 222551. 385470.i 0.0443191 0.0767630i −0.843015 0.537890i \(-0.819221\pi\)
0.887334 + 0.461127i \(0.152555\pi\)
\(480\) 0 0
\(481\) −1.03733e6 1.79670e6i −0.204434 0.354089i
\(482\) 2.66155e6 + 4.60993e6i 0.521815 + 0.903810i
\(483\) 0 0
\(484\) 1.28489e6 2.22549e6i 0.249316 0.431829i
\(485\) 352231. 0.0679943
\(486\) 0 0
\(487\) 9.62628e6 1.83923 0.919615 0.392821i \(-0.128501\pi\)
0.919615 + 0.392821i \(0.128501\pi\)
\(488\) 547795. 948809.i 0.104128 0.180355i
\(489\) 0 0
\(490\) −964052. 1.66979e6i −0.181389 0.314174i
\(491\) −2.67834e6 4.63902e6i −0.501374 0.868405i −0.999999 0.00158682i \(-0.999495\pi\)
0.498625 0.866818i \(-0.333838\pi\)
\(492\) 0 0
\(493\) 2.85381e6 4.94295e6i 0.528821 0.915944i
\(494\) 1.33494e6 0.246118
\(495\) 0 0
\(496\) 2.34295e6 0.427620
\(497\) −2.23789e6 + 3.87614e6i −0.406394 + 0.703895i
\(498\) 0 0
\(499\) −3.06721e6 5.31256e6i −0.551432 0.955108i −0.998172 0.0604440i \(-0.980748\pi\)
0.446740 0.894664i \(-0.352585\pi\)
\(500\) 935223. + 1.61985e6i 0.167298 + 0.289768i
\(501\) 0 0
\(502\) −1.23080e6 + 2.13180e6i −0.217985 + 0.377562i
\(503\) 5.69058e6 1.00285 0.501425 0.865201i \(-0.332809\pi\)
0.501425 + 0.865201i \(0.332809\pi\)
\(504\) 0 0
\(505\) 3.30972e6 0.577514
\(506\) 80928.6 140172.i 0.0140516 0.0243381i
\(507\) 0 0
\(508\) −387223. 670690.i −0.0665735 0.115309i
\(509\) −2.87553e6 4.98057e6i −0.491953 0.852088i 0.508004 0.861355i \(-0.330384\pi\)
−0.999957 + 0.00926687i \(0.997050\pi\)
\(510\) 0 0
\(511\) −329840. + 571300.i −0.0558793 + 0.0967858i
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −4.70948e6 −0.786258
\(515\) 645796. 1.11855e6i 0.107295 0.185840i
\(516\) 0 0
\(517\) 280011. + 484994.i 0.0460733 + 0.0798013i
\(518\) −3.59681e6 6.22985e6i −0.588970 1.02013i
\(519\) 0 0
\(520\) 149227. 258469.i 0.0242014 0.0419180i
\(521\) −6.91604e6 −1.11625 −0.558127 0.829756i \(-0.688480\pi\)
−0.558127 + 0.829756i \(0.688480\pi\)
\(522\) 0 0
\(523\) 175282. 0.0280209 0.0140105 0.999902i \(-0.495540\pi\)
0.0140105 + 0.999902i \(0.495540\pi\)
\(524\) −480146. + 831638.i −0.0763915 + 0.132314i
\(525\) 0 0
\(526\) 276034. + 478105.i 0.0435009 + 0.0753457i
\(527\) 5.97091e6 + 1.03419e7i 0.936513 + 1.62209i
\(528\) 0 0
\(529\) 1.35902e6 2.35389e6i 0.211147 0.365718i
\(530\) −3.02283e6 −0.467437
\(531\) 0 0
\(532\) 4.62875e6 0.709063
\(533\) −1.84513e6 + 3.19586e6i −0.281325 + 0.487270i
\(534\) 0 0
\(535\) 286458. + 496159.i 0.0432689 + 0.0749440i
\(536\) −2.19903e6 3.80883e6i −0.330612 0.572637i
\(537\) 0 0
\(538\) 1.97033e6 3.41271e6i 0.293483 0.508328i
\(539\) 506241. 0.0750561
\(540\) 0 0
\(541\) 3.11921e6 0.458196 0.229098 0.973403i \(-0.426422\pi\)
0.229098 + 0.973403i \(0.426422\pi\)
\(542\) −1.68202e6 + 2.91334e6i −0.245942 + 0.425984i
\(543\) 0 0
\(544\) 668063. + 1.15712e6i 0.0967878 + 0.167641i
\(545\) −1.73633e6 3.00742e6i −0.250404 0.433713i
\(546\) 0 0
\(547\) −2.45367e6 + 4.24987e6i −0.350628 + 0.607306i −0.986360 0.164604i \(-0.947365\pi\)
0.635731 + 0.771910i \(0.280699\pi\)
\(548\) −4.12826e6 −0.587240
\(549\) 0 0
\(550\) −228796. −0.0322509
\(551\) 3.12747e6 5.41693e6i 0.438848 0.760107i
\(552\) 0 0
\(553\) 6.85232e6 + 1.18686e7i 0.952850 + 1.65039i
\(554\) −42614.2 73810.0i −0.00589903 0.0102174i
\(555\) 0 0
\(556\) 2.61058e6 4.52165e6i 0.358137 0.620312i
\(557\) 1.41122e7 1.92734 0.963669 0.267099i \(-0.0860651\pi\)
0.963669 + 0.267099i \(0.0860651\pi\)
\(558\) 0 0
\(559\) −942523. −0.127574
\(560\) 517429. 896214.i 0.0697238 0.120765i
\(561\) 0 0
\(562\) 3.36450e6 + 5.82749e6i 0.449345 + 0.778289i
\(563\) 3.72663e6 + 6.45472e6i 0.495502 + 0.858235i 0.999987 0.00518570i \(-0.00165067\pi\)
−0.504484 + 0.863421i \(0.668317\pi\)
\(564\) 0 0
\(565\) −1.59626e6 + 2.76481e6i −0.210370 + 0.364371i
\(566\) −3.16628e6 −0.415440
\(567\) 0 0
\(568\) −1.41586e6 −0.184140
\(569\) −3.24943e6 + 5.62817e6i −0.420752 + 0.728763i −0.996013 0.0892062i \(-0.971567\pi\)
0.575261 + 0.817970i \(0.304900\pi\)
\(570\) 0 0
\(571\) 5.56754e6 + 9.64326e6i 0.714617 + 1.23775i 0.963107 + 0.269118i \(0.0867321\pi\)
−0.248491 + 0.968634i \(0.579935\pi\)
\(572\) 39181.0 + 67863.5i 0.00500709 + 0.00867254i
\(573\) 0 0
\(574\) −6.39778e6 + 1.10813e7i −0.810493 + 1.40382i
\(575\) 5.25608e6 0.662968
\(576\) 0 0
\(577\) −5.28971e6 −0.661443 −0.330721 0.943728i \(-0.607292\pi\)
−0.330721 + 0.943728i \(0.607292\pi\)
\(578\) −565352. + 979218.i −0.0703881 + 0.121916i
\(579\) 0 0
\(580\) −699214. 1.21107e6i −0.0863058 0.149486i
\(581\) 4.67062e6 + 8.08975e6i 0.574030 + 0.994248i
\(582\) 0 0
\(583\) 396835. 687339.i 0.0483547 0.0837529i
\(584\) −208682. −0.0253193
\(585\) 0 0
\(586\) 9.22419e6 1.10965
\(587\) −4.68325e6 + 8.11163e6i −0.560986 + 0.971657i 0.436424 + 0.899741i \(0.356245\pi\)
−0.997411 + 0.0719160i \(0.977089\pi\)
\(588\) 0 0
\(589\) 6.54346e6 + 1.13336e7i 0.777176 + 1.34611i
\(590\) −1.18611e6 2.05440e6i −0.140279 0.242971i
\(591\) 0 0
\(592\) 1.13781e6 1.97074e6i 0.133433 0.231113i
\(593\) −5.82148e6 −0.679825 −0.339912 0.940457i \(-0.610397\pi\)
−0.339912 + 0.940457i \(0.610397\pi\)
\(594\) 0 0
\(595\) 5.27459e6 0.610796
\(596\) −2.75514e6 + 4.77205e6i −0.317708 + 0.550287i
\(597\) 0 0
\(598\) −900097. 1.55901e6i −0.102929 0.178278i
\(599\) −7.98480e6 1.38301e7i −0.909279 1.57492i −0.815068 0.579365i \(-0.803301\pi\)
−0.0942102 0.995552i \(-0.530033\pi\)
\(600\) 0 0
\(601\) 334611. 579563.i 0.0377880 0.0654508i −0.846513 0.532368i \(-0.821302\pi\)
0.884301 + 0.466918i \(0.154636\pi\)
\(602\) −3.26809e6 −0.367539
\(603\) 0 0
\(604\) 2.58935e6 0.288801
\(605\) 1.60456e6 2.77918e6i 0.178225 0.308694i
\(606\) 0 0
\(607\) 1.30270e6 + 2.25634e6i 0.143507 + 0.248561i 0.928815 0.370544i \(-0.120829\pi\)
−0.785308 + 0.619105i \(0.787495\pi\)
\(608\) 732124. + 1.26808e6i 0.0803204 + 0.139119i
\(609\) 0 0
\(610\) 684085. 1.18487e6i 0.0744365 0.128928i
\(611\) 6.22863e6 0.674978
\(612\) 0 0
\(613\) 4.33667e6 0.466128 0.233064 0.972461i \(-0.425125\pi\)
0.233064 + 0.972461i \(0.425125\pi\)
\(614\) −5.85739e6 + 1.01453e7i −0.627023 + 1.08604i
\(615\) 0 0
\(616\) 135856. + 235309.i 0.0144254 + 0.0249854i
\(617\) −2.45487e6 4.25195e6i −0.259606 0.449651i 0.706530 0.707683i \(-0.250259\pi\)
−0.966136 + 0.258032i \(0.916926\pi\)
\(618\) 0 0
\(619\) 4.49719e6 7.78936e6i 0.471753 0.817100i −0.527725 0.849415i \(-0.676955\pi\)
0.999478 + 0.0323155i \(0.0102881\pi\)
\(620\) 2.92587e6 0.305686
\(621\) 0 0
\(622\) −4.32076e6 −0.447800
\(623\) −2.63674e6 + 4.56696e6i −0.272174 + 0.471419i
\(624\) 0 0
\(625\) −3.09111e6 5.35396e6i −0.316530 0.548246i
\(626\) 1.28696e6 + 2.22909e6i 0.131260 + 0.227348i
\(627\) 0 0
\(628\) −3.51878e6 + 6.09471e6i −0.356035 + 0.616671i
\(629\) 1.15986e7 1.16891
\(630\) 0 0
\(631\) −4.33057e6 −0.432984 −0.216492 0.976284i \(-0.569461\pi\)
−0.216492 + 0.976284i \(0.569461\pi\)
\(632\) −2.16765e6 + 3.75448e6i −0.215872 + 0.373901i
\(633\) 0 0
\(634\) −2.30837e6 3.99821e6i −0.228077 0.395041i
\(635\) −483563. 837556.i −0.0475903 0.0824289i
\(636\) 0 0
\(637\) 2.81524e6 4.87613e6i 0.274895 0.476132i
\(638\) 367170. 0.0357121
\(639\) 0 0
\(640\) 327365. 0.0315924
\(641\) 2.13709e6 3.70154e6i 0.205436 0.355826i −0.744835 0.667248i \(-0.767472\pi\)
0.950272 + 0.311422i \(0.100805\pi\)
\(642\) 0 0
\(643\) 5.50562e6 + 9.53602e6i 0.525145 + 0.909578i 0.999571 + 0.0292823i \(0.00932219\pi\)
−0.474426 + 0.880295i \(0.657344\pi\)
\(644\) −3.12098e6 5.40570e6i −0.296536 0.513615i
\(645\) 0 0
\(646\) −3.73158e6 + 6.46329e6i −0.351813 + 0.609357i
\(647\) 8.39293e6 0.788230 0.394115 0.919061i \(-0.371051\pi\)
0.394115 + 0.919061i \(0.371051\pi\)
\(648\) 0 0
\(649\) 622847. 0.0580456
\(650\) −1.27235e6 + 2.20377e6i −0.118120 + 0.204589i
\(651\) 0 0
\(652\) −1.06434e6 1.84349e6i −0.0980533 0.169833i
\(653\) −3.53386e6 6.12082e6i −0.324314 0.561729i 0.657059 0.753839i \(-0.271800\pi\)
−0.981373 + 0.192110i \(0.938467\pi\)
\(654\) 0 0
\(655\) −599605. + 1.03855e6i −0.0546088 + 0.0945851i
\(656\) −4.04772e6 −0.367241
\(657\) 0 0
\(658\) 2.15971e7 1.94460
\(659\) −2.37353e6 + 4.11108e6i −0.212903 + 0.368758i −0.952622 0.304157i \(-0.901625\pi\)
0.739719 + 0.672916i \(0.234958\pi\)
\(660\) 0 0
\(661\) 3.96475e6 + 6.86716e6i 0.352950 + 0.611327i 0.986765 0.162158i \(-0.0518454\pi\)
−0.633815 + 0.773484i \(0.718512\pi\)
\(662\) 430075. + 744911.i 0.0381416 + 0.0660632i
\(663\) 0 0
\(664\) −1.47749e6 + 2.55909e6i −0.130049 + 0.225251i
\(665\) 5.78037e6 0.506876
\(666\) 0 0
\(667\) −8.43492e6 −0.734119
\(668\) 2.22184e6 3.84834e6i 0.192651 0.333682i
\(669\) 0 0
\(670\) −2.74614e6 4.75646e6i −0.236339 0.409352i
\(671\) 179613. + 311099.i 0.0154004 + 0.0266742i
\(672\) 0 0
\(673\) −2.29624e6 + 3.97721e6i −0.195425 + 0.338486i −0.947040 0.321116i \(-0.895942\pi\)
0.751615 + 0.659602i \(0.229275\pi\)
\(674\) −1.37187e7 −1.16323
\(675\) 0 0
\(676\) −5.06914e6 −0.426646
\(677\) 9.26736e6 1.60515e7i 0.777113 1.34600i −0.156486 0.987680i \(-0.550017\pi\)
0.933599 0.358319i \(-0.116650\pi\)
\(678\) 0 0
\(679\) 1.78326e6 + 3.08869e6i 0.148436 + 0.257099i
\(680\) 834276. + 1.44501e6i 0.0691891 + 0.119839i
\(681\) 0 0
\(682\) −384107. + 665292.i −0.0316221 + 0.0547711i
\(683\) −1.28540e7 −1.05436 −0.527179 0.849754i \(-0.676750\pi\)
−0.527179 + 0.849754i \(0.676750\pi\)
\(684\) 0 0
\(685\) −5.15536e6 −0.419791
\(686\) 2.96089e6 5.12841e6i 0.240221 0.416075i
\(687\) 0 0
\(688\) −516911. 895315.i −0.0416336 0.0721116i
\(689\) −4.41365e6 7.64466e6i −0.354201 0.613494i
\(690\) 0 0
\(691\) −3.74818e6 + 6.49204e6i −0.298624 + 0.517232i −0.975821 0.218569i \(-0.929861\pi\)
0.677197 + 0.735802i \(0.263194\pi\)
\(692\) −3.68240e6 −0.292325
\(693\) 0 0
\(694\) −6.41811e6 −0.505835
\(695\) 3.26008e6 5.64663e6i 0.256016 0.443432i
\(696\) 0 0
\(697\) −1.03154e7 1.78669e7i −0.804278 1.39305i
\(698\) −1.42504e6 2.46825e6i −0.110711 0.191757i
\(699\) 0 0
\(700\) −4.41172e6 + 7.64132e6i −0.340301 + 0.589418i
\(701\) 4.13449e6 0.317780 0.158890 0.987296i \(-0.449208\pi\)
0.158890 + 0.987296i \(0.449208\pi\)
\(702\) 0 0
\(703\) 1.27108e7 0.970030
\(704\) −42976.3 + 74437.2i −0.00326812 + 0.00566055i
\(705\) 0 0
\(706\) 5.74111e6 + 9.94389e6i 0.433495 + 0.750835i
\(707\) 1.67563e7 + 2.90227e7i 1.26075 + 2.18368i
\(708\) 0 0
\(709\) −557752. + 966054.i −0.0416702 + 0.0721749i −0.886108 0.463478i \(-0.846601\pi\)
0.844438 + 0.535653i \(0.179935\pi\)
\(710\) −1.76812e6 −0.131633
\(711\) 0 0
\(712\) −1.66820e6 −0.123324
\(713\) 8.82400e6 1.52836e7i 0.650042 1.12591i
\(714\) 0 0
\(715\) 48929.2 + 84747.8i 0.00357934 + 0.00619960i
\(716\) −1.69075e6 2.92846e6i −0.123253 0.213480i
\(717\) 0 0
\(718\) 7.93657e6 1.37465e7i 0.574542 0.995136i
\(719\) 1.06330e7 0.767068 0.383534 0.923527i \(-0.374707\pi\)
0.383534 + 0.923527i \(0.374707\pi\)
\(720\) 0 0
\(721\) 1.30780e7 0.936924
\(722\) 862795. 1.49440e6i 0.0615977 0.106690i
\(723\) 0 0
\(724\) 1.72413e6 + 2.98628e6i 0.122243 + 0.211731i
\(725\) 5.96166e6 + 1.03259e7i 0.421233 + 0.729596i
\(726\) 0 0
\(727\) 5.37428e6 9.30853e6i 0.377124 0.653198i −0.613518 0.789680i \(-0.710246\pi\)
0.990643 + 0.136482i \(0.0435797\pi\)
\(728\) 3.02201e6 0.211333
\(729\) 0 0
\(730\) −260601. −0.0180996
\(731\) 2.63465e6 4.56335e6i 0.182360 0.315857i
\(732\) 0 0
\(733\) −9.70537e6 1.68102e7i −0.667194 1.15561i −0.978685 0.205365i \(-0.934162\pi\)
0.311492 0.950249i \(-0.399171\pi\)
\(734\) −7.16758e6 1.24146e7i −0.491058 0.850537i
\(735\) 0 0
\(736\) 987285. 1.71003e6i 0.0671813 0.116361i
\(737\) 1.44205e6 0.0977939
\(738\) 0 0
\(739\) −2.50920e7 −1.69015 −0.845074 0.534649i \(-0.820444\pi\)
−0.845074 + 0.534649i \(0.820444\pi\)
\(740\) 1.42089e6 2.46105e6i 0.0953852 0.165212i
\(741\) 0 0
\(742\) −1.53038e7 2.65070e7i −1.02045 1.76746i
\(743\) −7.40755e6 1.28303e7i −0.492269 0.852635i 0.507691 0.861539i \(-0.330499\pi\)
−0.999960 + 0.00890388i \(0.997166\pi\)
\(744\) 0 0
\(745\) −3.44062e6 + 5.95932e6i −0.227115 + 0.393374i
\(746\) −2.54140e6 −0.167196
\(747\) 0 0
\(748\) −438094. −0.0286295
\(749\) −2.90053e6 + 5.02386e6i −0.188918 + 0.327215i
\(750\) 0 0
\(751\) −8.52016e6 1.47574e7i −0.551249 0.954792i −0.998185 0.0602258i \(-0.980818\pi\)
0.446935 0.894566i \(-0.352515\pi\)
\(752\) 3.41599e6 + 5.91666e6i 0.220278 + 0.381533i
\(753\) 0 0
\(754\) 2.04185e6 3.53659e6i 0.130797 0.226546i
\(755\) 3.23358e6 0.206450
\(756\) 0 0
\(757\) 7.65160e6 0.485303 0.242651 0.970114i \(-0.421983\pi\)
0.242651 + 0.970114i \(0.421983\pi\)
\(758\) −798674. + 1.38334e6i −0.0504890 + 0.0874495i
\(759\) 0 0
\(760\) 914275. + 1.58357e6i 0.0574173 + 0.0994497i
\(761\) 9.27073e6 + 1.60574e7i 0.580300 + 1.00511i 0.995444 + 0.0953528i \(0.0303979\pi\)
−0.415144 + 0.909756i \(0.636269\pi\)
\(762\) 0 0
\(763\) 1.75813e7 3.04516e7i 1.09330 1.89365i
\(764\) −8.99671e6 −0.557635
\(765\) 0 0
\(766\) −1.30650e7 −0.804522
\(767\) 3.46368e6 5.99928e6i 0.212593 0.368223i
\(768\) 0 0
\(769\) 4.19019e6 + 7.25762e6i 0.255516 + 0.442567i 0.965036 0.262119i \(-0.0844213\pi\)
−0.709520 + 0.704686i \(0.751088\pi\)
\(770\) 169656. + 293854.i 0.0103120 + 0.0178609i
\(771\) 0 0
\(772\) 3.24303e6 5.61709e6i 0.195843 0.339209i
\(773\) −2.44216e7 −1.47003 −0.735015 0.678051i \(-0.762825\pi\)
−0.735015 + 0.678051i \(0.762825\pi\)
\(774\) 0 0
\(775\) −2.49466e7 −1.49196
\(776\) −564112. + 977070.i −0.0336287 + 0.0582467i
\(777\) 0 0
\(778\) 2.10558e6 + 3.64698e6i 0.124716 + 0.216015i
\(779\) −1.13046e7 1.95801e7i −0.667439 1.15604i
\(780\) 0 0
\(781\) 232118. 402040.i 0.0136170 0.0235853i
\(782\) 1.00642e7 0.588523
\(783\) 0 0
\(784\) 6.17587e6 0.358846
\(785\) −4.39425e6 + 7.61106e6i −0.254513 + 0.440830i
\(786\) 0 0
\(787\) −1.25097e7 2.16674e7i −0.719960 1.24701i −0.961015 0.276497i \(-0.910827\pi\)
0.241054 0.970512i \(-0.422507\pi\)
\(788\) 8.18015e6 + 1.41684e7i 0.469295 + 0.812842i
\(789\) 0 0
\(790\) −2.70695e6 + 4.68858e6i −0.154317 + 0.267284i
\(791\) −3.23259e7 −1.83700
\(792\) 0 0
\(793\) 3.99535e6 0.225617
\(794\) −2.75750e6 + 4.77612e6i −0.155226 + 0.268859i
\(795\) 0 0
\(796\) 92280.9 + 159835.i 0.00516213 + 0.00894108i
\(797\) 5.05956e6 + 8.76342e6i 0.282142 + 0.488684i 0.971912 0.235345i \(-0.0756219\pi\)
−0.689770 + 0.724028i \(0.742289\pi\)
\(798\) 0 0
\(799\) −1.74110e7 + 3.01568e7i −0.964844 + 1.67116i
\(800\) −2.79119e6 −0.154193
\(801\) 0 0
\(802\) 6.64309e6 0.364699
\(803\) 34211.6 59256.3i 0.00187234 0.00324299i
\(804\) 0 0
\(805\) −3.89748e6 6.75063e6i −0.211980 0.367159i
\(806\) 4.27208e6 + 7.39945e6i 0.231634 + 0.401201i
\(807\) 0 0
\(808\) −5.30065e6 + 9.18099e6i −0.285628 + 0.494722i
\(809\) 1.49150e7 0.801218 0.400609 0.916249i \(-0.368799\pi\)
0.400609 + 0.916249i \(0.368799\pi\)
\(810\) 0 0
\(811\) −1.89183e7 −1.01002 −0.505011 0.863113i \(-0.668512\pi\)
−0.505011 + 0.863113i \(0.668512\pi\)
\(812\) 7.07990e6 1.22627e7i 0.376822 0.652676i
\(813\) 0 0
\(814\) 373068. + 646172.i 0.0197345 + 0.0341812i
\(815\) −1.32915e6 2.30215e6i −0.0700937 0.121406i
\(816\) 0 0
\(817\) 2.88729e6 5.00093e6i 0.151334 0.262117i
\(818\) 2.16018e7 1.12877
\(819\) 0 0
\(820\) −5.05478e6 −0.262523
\(821\) −1.26791e7 + 2.19608e7i −0.656492 + 1.13708i 0.325026 + 0.945705i \(0.394627\pi\)
−0.981518 + 0.191372i \(0.938706\pi\)
\(822\) 0 0
\(823\) 1.22397e7 + 2.11998e7i 0.629900 + 1.09102i 0.987571 + 0.157172i \(0.0502376\pi\)
−0.357671 + 0.933848i \(0.616429\pi\)
\(824\) 2.06854e6 + 3.58281e6i 0.106132 + 0.183826i
\(825\) 0 0
\(826\) 1.20099e7 2.08018e7i 0.612478 1.06084i
\(827\) −3.15281e7 −1.60300 −0.801502 0.597993i \(-0.795965\pi\)
−0.801502 + 0.597993i \(0.795965\pi\)
\(828\) 0 0
\(829\) −3.30952e7 −1.67255 −0.836274 0.548312i \(-0.815271\pi\)
−0.836274 + 0.548312i \(0.815271\pi\)
\(830\) −1.84509e6 + 3.19579e6i −0.0929657 + 0.161021i
\(831\) 0 0
\(832\) 477987. + 827899.i 0.0239391 + 0.0414638i
\(833\) 1.57390e7 + 2.72607e7i 0.785893 + 1.36121i
\(834\) 0 0
\(835\) 2.77463e6 4.80580e6i 0.137717 0.238533i
\(836\) −480103. −0.0237585
\(837\) 0 0
\(838\) −2.40413e7 −1.18263
\(839\) 8.03959e6 1.39250e7i 0.394302 0.682951i −0.598710 0.800966i \(-0.704320\pi\)
0.993012 + 0.118015i \(0.0376531\pi\)
\(840\) 0 0
\(841\) 688348. + 1.19225e6i 0.0335597 + 0.0581271i
\(842\) 7.46273e6 + 1.29258e7i 0.362759 + 0.628316i
\(843\) 0 0
\(844\) −5.24081e6 + 9.07734e6i −0.253246 + 0.438634i
\(845\) −6.33033e6 −0.304989
\(846\) 0 0
\(847\) 3.24940e7 1.55630
\(848\) 4.84118e6 8.38517e6i 0.231186 0.400426i
\(849\) 0 0
\(850\) −7.11323e6 1.23205e7i −0.337691 0.584898i
\(851\) −8.57040e6 1.48444e7i −0.405674 0.702648i
\(852\) 0 0
\(853\) −2.84195e6 + 4.92240e6i −0.133735 + 0.231635i −0.925113 0.379691i \(-0.876030\pi\)
0.791379 + 0.611326i \(0.209364\pi\)
\(854\) 1.38534e7 0.649999
\(855\) 0 0
\(856\) −1.83509e6 −0.0856000
\(857\) −2.25933e6 + 3.91328e6i −0.105082 + 0.182007i −0.913772 0.406228i \(-0.866844\pi\)
0.808690 + 0.588235i \(0.200177\pi\)
\(858\) 0 0
\(859\) −148468. 257154.i −0.00686515 0.0118908i 0.862572 0.505934i \(-0.168852\pi\)
−0.869438 + 0.494043i \(0.835519\pi\)
\(860\) −645517. 1.11807e6i −0.0297619 0.0515492i
\(861\) 0 0
\(862\) −587304. + 1.01724e6i −0.0269212 + 0.0466289i
\(863\) −1.89964e7 −0.868251 −0.434125 0.900852i \(-0.642943\pi\)
−0.434125 + 0.900852i \(0.642943\pi\)
\(864\) 0 0
\(865\) −4.59857e6 −0.208970
\(866\) 1.46249e6 2.53311e6i 0.0662672 0.114778i
\(867\) 0 0
\(868\) 1.48129e7 + 2.56568e7i 0.667332 + 1.15585i
\(869\) −710736. 1.23103e6i −0.0319270 0.0552992i
\(870\) 0 0
\(871\) 8.01932e6 1.38899e7i 0.358172 0.620373i
\(872\) 1.11232e7 0.495382
\(873\) 0 0
\(874\) 1.10293e7 0.488393
\(875\) −1.18256e7 + 2.04826e7i −0.522160 + 0.904408i
\(876\) 0 0
\(877\) −7.85608e6 1.36071e7i −0.344911 0.597403i 0.640427 0.768019i \(-0.278757\pi\)
−0.985338 + 0.170616i \(0.945424\pi\)
\(878\) −3.88155e6 6.72304e6i −0.169929 0.294326i
\(879\) 0 0
\(880\) −53668.7 + 92957.0i −0.00233623 + 0.00404646i
\(881\) 1.34864e7 0.585404 0.292702 0.956204i \(-0.405446\pi\)
0.292702 + 0.956204i \(0.405446\pi\)
\(882\) 0 0
\(883\) 3.54880e7 1.53172 0.765861 0.643006i \(-0.222313\pi\)
0.765861 + 0.643006i \(0.222313\pi\)
\(884\) −2.43626e6 + 4.21973e6i −0.104856 + 0.181616i
\(885\) 0 0
\(886\) 9.08182e6 + 1.57302e7i 0.388677 + 0.673208i
\(887\) −1.44698e7 2.50624e7i −0.617522 1.06958i −0.989936 0.141513i \(-0.954803\pi\)
0.372414 0.928067i \(-0.378530\pi\)
\(888\) 0 0
\(889\) 4.89632e6 8.48067e6i 0.207786 0.359895i
\(890\) −2.08324e6 −0.0881587
\(891\) 0 0
\(892\) −1.39512e7 −0.587082
\(893\) −1.90806e7 + 3.30485e7i −0.800687 + 1.38683i
\(894\) 0 0
\(895\) −2.11140e6 3.65705e6i −0.0881076 0.152607i
\(896\) 1.65737e6 + 2.87064e6i 0.0689682 + 0.119456i
\(897\) 0 0
\(898\) 1.38897e7 2.40576e7i 0.574780 0.995548i
\(899\) 4.00341e7 1.65208
\(900\) 0 0
\(901\) 4.93502e7 2.02524
\(902\) 663590. 1.14937e6i 0.0271571 0.0470375i
\(903\) 0 0
\(904\) −5.11296e6 8.85591e6i −0.208090 0.360423i
\(905\) 2.15309e6 + 3.72926e6i 0.0873856 + 0.151356i
\(906\) 0 0
\(907\) −3.41845e6 + 5.92094e6i −0.137979 + 0.238986i −0.926731 0.375725i \(-0.877394\pi\)
0.788753 + 0.614711i \(0.210727\pi\)
\(908\) −1.03572e7 −0.416896
\(909\) 0 0
\(910\) 3.77387e6 0.151072
\(911\) 2.06379e7 3.57459e7i 0.823891 1.42702i −0.0788725 0.996885i \(-0.525132\pi\)
0.902764 0.430137i \(-0.141535\pi\)
\(912\) 0 0
\(913\) −484446. 839085.i −0.0192339 0.0333142i
\(914\) −5.09024e6 8.81656e6i −0.201545 0.349087i
\(915\) 0 0
\(916\) 2.11773e6 3.66802e6i 0.0833935 0.144442i
\(917\) −1.21426e7 −0.476858
\(918\) 0 0
\(919\) 324016. 0.0126555 0.00632773 0.999980i \(-0.497986\pi\)
0.00632773 + 0.999980i \(0.497986\pi\)
\(920\) 1.23292e6 2.13548e6i 0.0480248 0.0831813i
\(921\) 0 0
\(922\) 1.57456e7 + 2.72722e7i 0.610003 + 1.05656i
\(923\) −2.58164e6 4.47153e6i −0.0997451 0.172764i
\(924\) 0 0
\(925\) −1.21148e7 + 2.09835e7i −0.465547 + 0.806350i
\(926\) 2.38866e7 0.915434
\(927\) 0 0
\(928\) 4.47928e6 0.170741
\(929\) −1.02225e7 + 1.77059e7i −0.388614 + 0.673099i −0.992263 0.124151i \(-0.960379\pi\)
0.603650 + 0.797250i \(0.293713\pi\)
\(930\) 0 0
\(931\) 1.72482e7 + 2.98747e7i 0.652182 + 1.12961i
\(932\) −6.87403e6 1.19062e7i −0.259222 0.448985i
\(933\) 0 0
\(934\) 3.50865e6 6.07715e6i 0.131605 0.227947i
\(935\) −547090. −0.0204659
\(936\) 0 0
\(937\) 661898. 0.0246287 0.0123144 0.999924i \(-0.496080\pi\)
0.0123144 + 0.999924i \(0.496080\pi\)
\(938\) 2.78061e7 4.81615e7i 1.03189 1.78728i
\(939\) 0 0
\(940\) 4.26588e6 + 7.38871e6i 0.157467 + 0.272740i
\(941\) 4.39669e6 + 7.61529e6i 0.161865 + 0.280358i 0.935537 0.353228i \(-0.114916\pi\)
−0.773673 + 0.633585i \(0.781583\pi\)
\(942\) 0 0
\(943\) −1.52445e7 + 2.64042e7i −0.558257 + 0.966929i
\(944\) 7.59839e6 0.277518
\(945\) 0 0
\(946\) 338973. 0.0123151
\(947\) −1.67722e7 + 2.90503e7i −0.607736 + 1.05263i 0.383876 + 0.923385i \(0.374589\pi\)
−0.991613 + 0.129246i \(0.958744\pi\)
\(948\) 0 0
\(949\) −380506. 659055.i −0.0137150 0.0237551i
\(950\) −7.79532e6 1.35019e7i −0.280237 0.485384i
\(951\) 0 0
\(952\) −8.44747e6 + 1.46314e7i −0.302088 + 0.523233i
\(953\) 2.34073e7 0.834872 0.417436 0.908706i \(-0.362929\pi\)
0.417436 + 0.908706i \(0.362929\pi\)
\(954\) 0 0
\(955\) −1.12351e7 −0.398628
\(956\) 2.90881e6 5.03820e6i 0.102937 0.178292i
\(957\) 0 0
\(958\) 890205. + 1.54188e6i 0.0313384 + 0.0542796i
\(959\) −2.61003e7 4.52071e7i −0.916431 1.58730i
\(960\) 0 0
\(961\) −2.75662e7 + 4.77461e7i −0.962872 + 1.66774i
\(962\) 8.29860e6 0.289113
\(963\) 0 0
\(964\) −2.12924e7 −0.737957
\(965\) 4.04988e6 7.01461e6i 0.139999 0.242485i
\(966\) 0 0
\(967\) 971981. + 1.68352e6i 0.0334266 + 0.0578965i 0.882255 0.470772i \(-0.156025\pi\)
−0.848828 + 0.528669i \(0.822691\pi\)
\(968\) 5.13954e6 + 8.90195e6i 0.176293 + 0.305349i
\(969\) 0 0
\(970\) −704461. + 1.22016e6i −0.0240396 + 0.0416379i
\(971\) −5.80784e7 −1.97682 −0.988409 0.151811i \(-0.951489\pi\)
−0.988409 + 0.151811i \(0.951489\pi\)
\(972\) 0 0
\(973\) 6.60200e7 2.23560
\(974\) −1.92526e7 + 3.33464e7i −0.650266 + 1.12629i
\(975\) 0 0
\(976\) 2.19118e6 + 3.79524e6i 0.0736298 + 0.127531i
\(977\) −2.29782e6 3.97995e6i −0.0770158 0.133395i 0.824945 0.565213i \(-0.191206\pi\)
−0.901961 + 0.431817i \(0.857873\pi\)
\(978\) 0 0
\(979\) 273487. 473694.i 0.00911970 0.0157958i
\(980\) 7.71242e6 0.256522
\(981\) 0 0
\(982\) 2.14267e7 0.709049
\(983\) 1.05477e7 1.82691e7i 0.348155 0.603022i −0.637767 0.770230i \(-0.720142\pi\)
0.985922 + 0.167207i \(0.0534749\pi\)
\(984\) 0 0
\(985\) 1.02154e7 + 1.76935e7i 0.335477 + 0.581063i
\(986\) 1.14153e7 + 1.97718e7i 0.373933 + 0.647670i
\(987\) 0 0
\(988\) −2.66988e6 + 4.62437e6i −0.0870160 + 0.150716i
\(989\) −7.78714e6 −0.253156
\(990\) 0 0
\(991\) 2.32369e7 0.751614 0.375807 0.926698i \(-0.377366\pi\)
0.375807 + 0.926698i \(0.377366\pi\)
\(992\) −4.68589e6 + 8.11621e6i −0.151187 + 0.261863i
\(993\) 0 0
\(994\) −8.95155e6 1.55045e7i −0.287364 0.497729i
\(995\) 115240. + 199602.i 0.00369017 + 0.00639156i
\(996\) 0 0
\(997\) −1.57477e7 + 2.72758e7i −0.501740 + 0.869039i 0.498258 + 0.867029i \(0.333973\pi\)
−0.999998 + 0.00201040i \(0.999360\pi\)
\(998\) 2.45377e7 0.779842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.c.n.55.1 4
3.2 odd 2 162.6.c.p.55.2 4
9.2 odd 6 162.6.a.c.1.1 2
9.4 even 3 inner 162.6.c.n.109.1 4
9.5 odd 6 162.6.c.p.109.2 4
9.7 even 3 162.6.a.g.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.6.a.c.1.1 2 9.2 odd 6
162.6.a.g.1.2 yes 2 9.7 even 3
162.6.c.n.55.1 4 1.1 even 1 trivial
162.6.c.n.109.1 4 9.4 even 3 inner
162.6.c.p.55.2 4 3.2 odd 2
162.6.c.p.109.2 4 9.5 odd 6