Properties

Label 162.6.c.n
Level $162$
Weight $6$
Character orbit 162.c
Analytic conductor $25.982$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,-32,12,0,176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \beta_1 - 4) q^{2} - 16 \beta_1 q^{4} + ( - 5 \beta_{2} + 6 \beta_1) q^{5} + (22 \beta_{3} - 22 \beta_{2} + \cdots + 88) q^{7} + 64 q^{8} + (20 \beta_{3} - 24) q^{10} + ( - 56 \beta_{3} + 56 \beta_{2} + \cdots + 270) q^{11}+ \cdots + (15488 \beta_{3} + 16020) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 32 q^{4} + 12 q^{5} + 176 q^{7} + 256 q^{8} - 96 q^{10} + 540 q^{11} + 446 q^{13} + 704 q^{14} - 512 q^{16} - 3120 q^{17} - 3184 q^{19} + 192 q^{20} + 2160 q^{22} + 1404 q^{23} + 4828 q^{25}+ \cdots + 64080 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\zeta_{12}^{3} + 3\zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\zeta_{12}^{3} + 6\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 9 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−2.00000 + 3.46410i 0 −8.00000 13.8564i −9.99038 17.3038i 0 101.158 175.210i 64.0000 0 79.9230
55.2 −2.00000 + 3.46410i 0 −8.00000 13.8564i 15.9904 + 27.6962i 0 −13.1577 + 22.7898i 64.0000 0 −127.923
109.1 −2.00000 3.46410i 0 −8.00000 + 13.8564i −9.99038 + 17.3038i 0 101.158 + 175.210i 64.0000 0 79.9230
109.2 −2.00000 3.46410i 0 −8.00000 + 13.8564i 15.9904 27.6962i 0 −13.1577 22.7898i 64.0000 0 −127.923
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.c.n 4
3.b odd 2 1 162.6.c.p 4
9.c even 3 1 162.6.a.g yes 2
9.c even 3 1 inner 162.6.c.n 4
9.d odd 6 1 162.6.a.c 2
9.d odd 6 1 162.6.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.6.a.c 2 9.d odd 6 1
162.6.a.g yes 2 9.c even 3 1
162.6.c.n 4 1.a even 1 1 trivial
162.6.c.n 4 9.c even 3 1 inner
162.6.c.p 4 3.b odd 2 1
162.6.c.p 4 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 12T_{5}^{3} + 783T_{5}^{2} + 7668T_{5} + 408321 \) acting on \(S_{6}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 12 T^{3} + \cdots + 408321 \) Copy content Toggle raw display
$7$ \( T^{4} - 176 T^{3} + \cdots + 28344976 \) Copy content Toggle raw display
$11$ \( T^{4} - 540 T^{3} + \cdots + 138579984 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 2462243641 \) Copy content Toggle raw display
$17$ \( (T^{2} + 1560 T + 332973)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1592 T + 231748)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 1022096736144 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 862614698311809 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 82\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( (T^{2} - 3526 T - 110359331)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 36\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 59\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( (T^{2} + 45672 T + 296911584)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 89\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 19\!\cdots\!81 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 40\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T^{2} + 24708 T + 57192516)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 60322 T - 207320927)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{2} - 110976 T - 3572073531)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
show more
show less