Properties

Label 162.6
Level 162
Weight 6
Dimension 960
Nonzero newspaces 4
Sturm bound 8748
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(8748\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(162))\).

Total New Old
Modular forms 3753 960 2793
Cusp forms 3537 960 2577
Eisenstein series 216 0 216

Trace form

\( 960 q - 174 q^{5} + 174 q^{7} + 192 q^{8} - 24 q^{10} - 453 q^{11} - 2280 q^{13} - 120 q^{14} + 3468 q^{17} - 8676 q^{18} + 1638 q^{19} + 13920 q^{20} + 27486 q^{21} + 6636 q^{22} - 6918 q^{23} - 23616 q^{25}+ \cdots + 2645154 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(162))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
162.6.a \(\chi_{162}(1, \cdot)\) 162.6.a.a 1 1
162.6.a.b 1
162.6.a.c 2
162.6.a.d 2
162.6.a.e 2
162.6.a.f 2
162.6.a.g 2
162.6.a.h 2
162.6.a.i 3
162.6.a.j 3
162.6.c \(\chi_{162}(55, \cdot)\) 162.6.c.a 2 2
162.6.c.b 2
162.6.c.c 2
162.6.c.d 2
162.6.c.e 2
162.6.c.f 2
162.6.c.g 2
162.6.c.h 2
162.6.c.i 2
162.6.c.j 2
162.6.c.k 2
162.6.c.l 2
162.6.c.m 4
162.6.c.n 4
162.6.c.o 4
162.6.c.p 4
162.6.e \(\chi_{162}(19, \cdot)\) 162.6.e.a 42 6
162.6.e.b 48
162.6.g \(\chi_{162}(7, \cdot)\) n/a 810 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(162))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(162)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)