Properties

Label 162.6.c.p.55.2
Level $162$
Weight $6$
Character 162.55
Analytic conductor $25.982$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,6,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,-32,-12,0,176] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.6.c.p.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-8.00000 - 13.8564i) q^{4} +(9.99038 + 17.3038i) q^{5} +(101.158 - 175.210i) q^{7} -64.0000 q^{8} +79.9230 q^{10} +(10.4923 - 18.1731i) q^{11} +(116.696 + 202.124i) q^{13} +(-404.631 - 700.841i) q^{14} +(-128.000 + 221.703i) q^{16} +1304.81 q^{17} -1429.93 q^{19} +(159.846 - 276.862i) q^{20} +(-41.9691 - 72.6926i) q^{22} +(-964.146 - 1669.95i) q^{23} +(1362.88 - 2360.59i) q^{25} +933.569 q^{26} -3237.05 q^{28} +(2187.15 - 3788.25i) q^{29} +(-4576.07 - 7925.98i) q^{31} +(512.000 + 886.810i) q^{32} +(2609.62 - 4520.00i) q^{34} +4042.41 q^{35} -8889.11 q^{37} +(-2859.86 + 4953.42i) q^{38} +(-639.384 - 1107.45i) q^{40} +(-7905.70 - 13693.1i) q^{41} +(-2019.18 + 3497.33i) q^{43} -335.753 q^{44} -7713.17 q^{46} +(-13343.7 + 23112.0i) q^{47} +(-12062.3 - 20892.4i) q^{49} +(-5451.54 - 9442.34i) q^{50} +(1867.14 - 3233.98i) q^{52} +37821.7 q^{53} +419.287 q^{55} +(-6474.09 + 11213.5i) q^{56} +(-8748.59 - 15153.0i) q^{58} +(14840.6 + 25704.7i) q^{59} +(8559.30 - 14825.1i) q^{61} -36608.5 q^{62} +4096.00 q^{64} +(-2331.68 + 4038.58i) q^{65} +(-34359.8 - 59513.0i) q^{67} +(-10438.5 - 18080.0i) q^{68} +(8084.83 - 14003.3i) q^{70} +22122.8 q^{71} -3260.65 q^{73} +(-17778.2 + 30792.8i) q^{74} +(11439.4 + 19813.7i) q^{76} +(-2122.75 - 3676.71i) q^{77} +(-33869.5 + 58663.7i) q^{79} -5115.08 q^{80} -63245.6 q^{82} +(23085.8 - 39985.9i) q^{83} +(13035.6 + 22578.3i) q^{85} +(8076.73 + 13989.3i) q^{86} +(-671.505 + 1163.08i) q^{88} +26065.6 q^{89} +47218.8 q^{91} +(-15426.3 + 26719.2i) q^{92} +(53374.8 + 92447.9i) q^{94} +(-14285.6 - 24743.3i) q^{95} +(-8814.24 + 15266.7i) q^{97} -96498.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 32 q^{4} - 12 q^{5} + 176 q^{7} - 256 q^{8} - 96 q^{10} - 540 q^{11} + 446 q^{13} - 704 q^{14} - 512 q^{16} + 3120 q^{17} - 3184 q^{19} - 192 q^{20} + 2160 q^{22} - 1404 q^{23} + 4828 q^{25}+ \cdots - 64080 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 9.99038 + 17.3038i 0.178713 + 0.309541i 0.941440 0.337180i \(-0.109473\pi\)
−0.762727 + 0.646721i \(0.776140\pi\)
\(6\) 0 0
\(7\) 101.158 175.210i 0.780286 1.35149i −0.151489 0.988459i \(-0.548407\pi\)
0.931775 0.363036i \(-0.118260\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 79.9230 0.252739
\(11\) 10.4923 18.1731i 0.0261449 0.0452844i −0.852657 0.522471i \(-0.825010\pi\)
0.878802 + 0.477187i \(0.158344\pi\)
\(12\) 0 0
\(13\) 116.696 + 202.124i 0.191513 + 0.331710i 0.945752 0.324890i \(-0.105327\pi\)
−0.754239 + 0.656600i \(0.771994\pi\)
\(14\) −404.631 700.841i −0.551745 0.955651i
\(15\) 0 0
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 1304.81 1.09503 0.547514 0.836796i \(-0.315574\pi\)
0.547514 + 0.836796i \(0.315574\pi\)
\(18\) 0 0
\(19\) −1429.93 −0.908722 −0.454361 0.890818i \(-0.650132\pi\)
−0.454361 + 0.890818i \(0.650132\pi\)
\(20\) 159.846 276.862i 0.0893567 0.154770i
\(21\) 0 0
\(22\) −41.9691 72.6926i −0.0184873 0.0320209i
\(23\) −964.146 1669.95i −0.380035 0.658239i 0.611032 0.791606i \(-0.290755\pi\)
−0.991067 + 0.133366i \(0.957421\pi\)
\(24\) 0 0
\(25\) 1362.88 2360.59i 0.436123 0.755387i
\(26\) 933.569 0.270840
\(27\) 0 0
\(28\) −3237.05 −0.780286
\(29\) 2187.15 3788.25i 0.482929 0.836457i −0.516879 0.856058i \(-0.672906\pi\)
0.999808 + 0.0196013i \(0.00623968\pi\)
\(30\) 0 0
\(31\) −4576.07 7925.98i −0.855240 1.48132i −0.876422 0.481544i \(-0.840076\pi\)
0.0211813 0.999776i \(-0.493257\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2609.62 4520.00i 0.387151 0.670565i
\(35\) 4042.41 0.557790
\(36\) 0 0
\(37\) −8889.11 −1.06747 −0.533733 0.845653i \(-0.679211\pi\)
−0.533733 + 0.845653i \(0.679211\pi\)
\(38\) −2859.86 + 4953.42i −0.321282 + 0.556476i
\(39\) 0 0
\(40\) −639.384 1107.45i −0.0631847 0.109439i
\(41\) −7905.70 13693.1i −0.734481 1.27216i −0.954951 0.296765i \(-0.904092\pi\)
0.220469 0.975394i \(-0.429241\pi\)
\(42\) 0 0
\(43\) −2019.18 + 3497.33i −0.166535 + 0.288446i −0.937199 0.348795i \(-0.886591\pi\)
0.770665 + 0.637241i \(0.219924\pi\)
\(44\) −335.753 −0.0261449
\(45\) 0 0
\(46\) −7713.17 −0.537450
\(47\) −13343.7 + 23112.0i −0.881113 + 1.52613i −0.0310080 + 0.999519i \(0.509872\pi\)
−0.850105 + 0.526613i \(0.823462\pi\)
\(48\) 0 0
\(49\) −12062.3 20892.4i −0.717692 1.24308i
\(50\) −5451.54 9442.34i −0.308386 0.534139i
\(51\) 0 0
\(52\) 1867.14 3233.98i 0.0957565 0.165855i
\(53\) 37821.7 1.84949 0.924744 0.380590i \(-0.124279\pi\)
0.924744 + 0.380590i \(0.124279\pi\)
\(54\) 0 0
\(55\) 419.287 0.0186898
\(56\) −6474.09 + 11213.5i −0.275873 + 0.477826i
\(57\) 0 0
\(58\) −8748.59 15153.0i −0.341482 0.591464i
\(59\) 14840.6 + 25704.7i 0.555037 + 0.961352i 0.997901 + 0.0647630i \(0.0206292\pi\)
−0.442864 + 0.896589i \(0.646038\pi\)
\(60\) 0 0
\(61\) 8559.30 14825.1i 0.294519 0.510122i −0.680354 0.732884i \(-0.738174\pi\)
0.974873 + 0.222762i \(0.0715072\pi\)
\(62\) −36608.5 −1.20949
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2331.68 + 4038.58i −0.0684519 + 0.118562i
\(66\) 0 0
\(67\) −34359.8 59513.0i −0.935113 1.61966i −0.774433 0.632656i \(-0.781965\pi\)
−0.160680 0.987007i \(-0.551369\pi\)
\(68\) −10438.5 18080.0i −0.273757 0.474161i
\(69\) 0 0
\(70\) 8084.83 14003.3i 0.197209 0.341575i
\(71\) 22122.8 0.520827 0.260414 0.965497i \(-0.416141\pi\)
0.260414 + 0.965497i \(0.416141\pi\)
\(72\) 0 0
\(73\) −3260.65 −0.0716139 −0.0358070 0.999359i \(-0.511400\pi\)
−0.0358070 + 0.999359i \(0.511400\pi\)
\(74\) −17778.2 + 30792.8i −0.377406 + 0.653687i
\(75\) 0 0
\(76\) 11439.4 + 19813.7i 0.227180 + 0.393488i
\(77\) −2122.75 3676.71i −0.0408011 0.0706695i
\(78\) 0 0
\(79\) −33869.5 + 58663.7i −0.610578 + 1.05755i 0.380565 + 0.924754i \(0.375729\pi\)
−0.991143 + 0.132798i \(0.957604\pi\)
\(80\) −5115.08 −0.0893567
\(81\) 0 0
\(82\) −63245.6 −1.03871
\(83\) 23085.8 39985.9i 0.367833 0.637105i −0.621394 0.783499i \(-0.713433\pi\)
0.989226 + 0.146393i \(0.0467665\pi\)
\(84\) 0 0
\(85\) 13035.6 + 22578.3i 0.195696 + 0.338956i
\(86\) 8076.73 + 13989.3i 0.117758 + 0.203962i
\(87\) 0 0
\(88\) −671.505 + 1163.08i −0.00924363 + 0.0160104i
\(89\) 26065.6 0.348813 0.174407 0.984674i \(-0.444199\pi\)
0.174407 + 0.984674i \(0.444199\pi\)
\(90\) 0 0
\(91\) 47218.8 0.597739
\(92\) −15426.3 + 26719.2i −0.190017 + 0.329120i
\(93\) 0 0
\(94\) 53374.8 + 92447.9i 0.623041 + 1.07914i
\(95\) −14285.6 24743.3i −0.162401 0.281286i
\(96\) 0 0
\(97\) −8814.24 + 15266.7i −0.0951165 + 0.164747i −0.909657 0.415360i \(-0.863656\pi\)
0.814541 + 0.580106i \(0.196989\pi\)
\(98\) −96498.0 −1.01497
\(99\) 0 0
\(100\) −43612.3 −0.436123
\(101\) 82822.6 143453.i 0.807878 1.39929i −0.106453 0.994318i \(-0.533950\pi\)
0.914331 0.404967i \(-0.132717\pi\)
\(102\) 0 0
\(103\) 32320.9 + 55981.5i 0.300186 + 0.519938i 0.976178 0.216972i \(-0.0696179\pi\)
−0.675992 + 0.736909i \(0.736285\pi\)
\(104\) −7468.55 12935.9i −0.0677101 0.117277i
\(105\) 0 0
\(106\) 75643.4 131018.i 0.653893 1.13258i
\(107\) 28673.3 0.242113 0.121057 0.992646i \(-0.461372\pi\)
0.121057 + 0.992646i \(0.461372\pi\)
\(108\) 0 0
\(109\) 173801. 1.40115 0.700575 0.713578i \(-0.252927\pi\)
0.700575 + 0.713578i \(0.252927\pi\)
\(110\) 838.574 1452.45i 0.00660784 0.0114451i
\(111\) 0 0
\(112\) 25896.4 + 44853.8i 0.195071 + 0.337874i
\(113\) 79890.0 + 138374.i 0.588567 + 1.01943i 0.994420 + 0.105490i \(0.0336412\pi\)
−0.405853 + 0.913938i \(0.633025\pi\)
\(114\) 0 0
\(115\) 19264.4 33366.9i 0.135835 0.235272i
\(116\) −69988.7 −0.482929
\(117\) 0 0
\(118\) 118725. 0.784941
\(119\) 131992. 228616.i 0.854435 1.47993i
\(120\) 0 0
\(121\) 80305.3 + 139093.i 0.498633 + 0.863657i
\(122\) −34237.2 59300.6i −0.208257 0.360711i
\(123\) 0 0
\(124\) −73217.1 + 126816.i −0.427620 + 0.740660i
\(125\) 116903. 0.669191
\(126\) 0 0
\(127\) 48402.8 0.266294 0.133147 0.991096i \(-0.457492\pi\)
0.133147 + 0.991096i \(0.457492\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 9326.71 + 16154.3i 0.0484028 + 0.0838361i
\(131\) 30009.1 + 51977.3i 0.152783 + 0.264628i 0.932250 0.361816i \(-0.117843\pi\)
−0.779467 + 0.626444i \(0.784510\pi\)
\(132\) 0 0
\(133\) −144648. + 250538.i −0.709063 + 1.22813i
\(134\) −274879. −1.32245
\(135\) 0 0
\(136\) −83507.9 −0.387151
\(137\) −129008. + 223449.i −0.587240 + 1.01713i 0.407352 + 0.913271i \(0.366452\pi\)
−0.994592 + 0.103859i \(0.966881\pi\)
\(138\) 0 0
\(139\) 163161. + 282603.i 0.716275 + 1.24062i 0.962466 + 0.271403i \(0.0874876\pi\)
−0.246191 + 0.969221i \(0.579179\pi\)
\(140\) −32339.3 56013.3i −0.139448 0.241530i
\(141\) 0 0
\(142\) 44245.5 76635.5i 0.184140 0.318940i
\(143\) 4897.63 0.0200284
\(144\) 0 0
\(145\) 87401.7 0.345223
\(146\) −6521.30 + 11295.2i −0.0253193 + 0.0438544i
\(147\) 0 0
\(148\) 71112.9 + 123171.i 0.266867 + 0.462226i
\(149\) 172196. + 298253.i 0.635416 + 1.10057i 0.986427 + 0.164202i \(0.0525049\pi\)
−0.351010 + 0.936372i \(0.614162\pi\)
\(150\) 0 0
\(151\) −80917.2 + 140153.i −0.288801 + 0.500218i −0.973524 0.228586i \(-0.926590\pi\)
0.684723 + 0.728804i \(0.259923\pi\)
\(152\) 91515.6 0.321282
\(153\) 0 0
\(154\) −16982.0 −0.0577014
\(155\) 91433.3 158367.i 0.305686 0.529463i
\(156\) 0 0
\(157\) −219924. 380919.i −0.712071 1.23334i −0.964078 0.265618i \(-0.914424\pi\)
0.252008 0.967725i \(-0.418909\pi\)
\(158\) 135478. + 234655.i 0.431744 + 0.747802i
\(159\) 0 0
\(160\) −10230.2 + 17719.1i −0.0315924 + 0.0547196i
\(161\) −390123. −1.18614
\(162\) 0 0
\(163\) 133043. 0.392213 0.196107 0.980583i \(-0.437170\pi\)
0.196107 + 0.980583i \(0.437170\pi\)
\(164\) −126491. + 219089.i −0.367241 + 0.636079i
\(165\) 0 0
\(166\) −92343.4 159943.i −0.260097 0.450501i
\(167\) −138865. 240521.i −0.385302 0.667363i 0.606509 0.795077i \(-0.292569\pi\)
−0.991811 + 0.127714i \(0.959236\pi\)
\(168\) 0 0
\(169\) 158411. 274375.i 0.426646 0.738972i
\(170\) 104285. 0.276756
\(171\) 0 0
\(172\) 64613.8 0.166535
\(173\) −115075. + 199316.i −0.292325 + 0.506322i −0.974359 0.224999i \(-0.927762\pi\)
0.682034 + 0.731320i \(0.261096\pi\)
\(174\) 0 0
\(175\) −275732. 477583.i −0.680601 1.17884i
\(176\) 2686.02 + 4652.32i 0.00653624 + 0.0113211i
\(177\) 0 0
\(178\) 52131.2 90293.9i 0.123324 0.213604i
\(179\) −211343. −0.493011 −0.246505 0.969141i \(-0.579282\pi\)
−0.246505 + 0.969141i \(0.579282\pi\)
\(180\) 0 0
\(181\) −215516. −0.488971 −0.244485 0.969653i \(-0.578619\pi\)
−0.244485 + 0.969653i \(0.578619\pi\)
\(182\) 94437.7 163571.i 0.211333 0.366039i
\(183\) 0 0
\(184\) 61705.3 + 106877.i 0.134363 + 0.232723i
\(185\) −88805.6 153816.i −0.190770 0.330424i
\(186\) 0 0
\(187\) 13690.4 23712.5i 0.0286295 0.0495877i
\(188\) 426998. 0.881113
\(189\) 0 0
\(190\) −114284. −0.229669
\(191\) −281147. + 486961.i −0.557635 + 0.965853i 0.440058 + 0.897969i \(0.354958\pi\)
−0.997693 + 0.0678833i \(0.978375\pi\)
\(192\) 0 0
\(193\) 202689. + 351068.i 0.391685 + 0.678419i 0.992672 0.120840i \(-0.0385589\pi\)
−0.600987 + 0.799259i \(0.705226\pi\)
\(194\) 35257.0 + 61066.9i 0.0672575 + 0.116493i
\(195\) 0 0
\(196\) −192996. + 334279.i −0.358846 + 0.621540i
\(197\) 1.02252e6 1.87718 0.938589 0.345036i \(-0.112133\pi\)
0.938589 + 0.345036i \(0.112133\pi\)
\(198\) 0 0
\(199\) −11535.1 −0.0206485 −0.0103243 0.999947i \(-0.503286\pi\)
−0.0103243 + 0.999947i \(0.503286\pi\)
\(200\) −87224.6 + 151077.i −0.154193 + 0.267070i
\(201\) 0 0
\(202\) −331291. 573812.i −0.571256 0.989444i
\(203\) −442493. 766421.i −0.753645 1.30535i
\(204\) 0 0
\(205\) 157962. 273598.i 0.262523 0.454704i
\(206\) 258567. 0.424527
\(207\) 0 0
\(208\) −59748.4 −0.0957565
\(209\) −15003.2 + 25986.3i −0.0237585 + 0.0411509i
\(210\) 0 0
\(211\) −327550. 567334.i −0.506491 0.877269i −0.999972 0.00751170i \(-0.997609\pi\)
0.493481 0.869757i \(-0.335724\pi\)
\(212\) −302574. 524073.i −0.462372 0.800852i
\(213\) 0 0
\(214\) 57346.7 99327.4i 0.0856000 0.148264i
\(215\) −80689.6 −0.119048
\(216\) 0 0
\(217\) −1.85162e6 −2.66933
\(218\) 347601. 602063.i 0.495382 0.858026i
\(219\) 0 0
\(220\) −3354.30 5809.81i −0.00467245 0.00809292i
\(221\) 152266. + 263733.i 0.209712 + 0.363232i
\(222\) 0 0
\(223\) 435975. 755130.i 0.587082 1.01686i −0.407530 0.913192i \(-0.633610\pi\)
0.994612 0.103665i \(-0.0330568\pi\)
\(224\) 207171. 0.275873
\(225\) 0 0
\(226\) 639120. 0.832360
\(227\) −323662. + 560600.i −0.416896 + 0.722085i −0.995625 0.0934346i \(-0.970215\pi\)
0.578729 + 0.815520i \(0.303549\pi\)
\(228\) 0 0
\(229\) 132358. + 229251.i 0.166787 + 0.288883i 0.937288 0.348555i \(-0.113327\pi\)
−0.770501 + 0.637438i \(0.779994\pi\)
\(230\) −77057.5 133467.i −0.0960495 0.166363i
\(231\) 0 0
\(232\) −139977. + 242448.i −0.170741 + 0.295732i
\(233\) −859254. −1.03689 −0.518444 0.855112i \(-0.673488\pi\)
−0.518444 + 0.855112i \(0.673488\pi\)
\(234\) 0 0
\(235\) −533235. −0.629867
\(236\) 237450. 411275.i 0.277518 0.480676i
\(237\) 0 0
\(238\) −527967. 914465.i −0.604177 1.04647i
\(239\) −181801. 314888.i −0.205873 0.356583i 0.744537 0.667581i \(-0.232670\pi\)
−0.950411 + 0.310998i \(0.899337\pi\)
\(240\) 0 0
\(241\) 665386. 1.15248e6i 0.737957 1.27818i −0.215456 0.976514i \(-0.569124\pi\)
0.953414 0.301666i \(-0.0975428\pi\)
\(242\) 642443. 0.705173
\(243\) 0 0
\(244\) −273898. −0.294519
\(245\) 241013. 417447.i 0.256522 0.444310i
\(246\) 0 0
\(247\) −166867. 289023.i −0.174032 0.301432i
\(248\) 292868. + 507263.i 0.302373 + 0.523726i
\(249\) 0 0
\(250\) 233806. 404963.i 0.236595 0.409794i
\(251\) −615398. −0.616555 −0.308278 0.951296i \(-0.599753\pi\)
−0.308278 + 0.951296i \(0.599753\pi\)
\(252\) 0 0
\(253\) −40464.3 −0.0397439
\(254\) 96805.7 167672.i 0.0941492 0.163071i
\(255\) 0 0
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −588685. 1.01963e6i −0.555968 0.962965i −0.997828 0.0658808i \(-0.979014\pi\)
0.441859 0.897084i \(-0.354319\pi\)
\(258\) 0 0
\(259\) −899202. + 1.55746e6i −0.832929 + 1.44267i
\(260\) 74613.7 0.0684519
\(261\) 0 0
\(262\) 240073. 0.216068
\(263\) −69008.5 + 119526.i −0.0615195 + 0.106555i −0.895145 0.445775i \(-0.852928\pi\)
0.833625 + 0.552330i \(0.186261\pi\)
\(264\) 0 0
\(265\) 377853. + 654461.i 0.330528 + 0.572492i
\(266\) 578594. + 1.00215e6i 0.501383 + 0.868421i
\(267\) 0 0
\(268\) −549757. + 952207.i −0.467556 + 0.809831i
\(269\) 985165. 0.830096 0.415048 0.909800i \(-0.363765\pi\)
0.415048 + 0.909800i \(0.363765\pi\)
\(270\) 0 0
\(271\) 841010. 0.695629 0.347815 0.937563i \(-0.386924\pi\)
0.347815 + 0.937563i \(0.386924\pi\)
\(272\) −167016. + 289280.i −0.136879 + 0.237081i
\(273\) 0 0
\(274\) 516033. + 893795.i 0.415242 + 0.719220i
\(275\) −28599.5 49535.8i −0.0228048 0.0394991i
\(276\) 0 0
\(277\) −10653.6 + 18452.5i −0.00834248 + 0.0144496i −0.870167 0.492758i \(-0.835989\pi\)
0.861824 + 0.507207i \(0.169322\pi\)
\(278\) 1.30529e6 1.01297
\(279\) 0 0
\(280\) −258715. −0.197209
\(281\) −841126. + 1.45687e6i −0.635470 + 1.10067i 0.350945 + 0.936396i \(0.385860\pi\)
−0.986415 + 0.164271i \(0.947473\pi\)
\(282\) 0 0
\(283\) 395785. + 685520.i 0.293761 + 0.508808i 0.974696 0.223535i \(-0.0717598\pi\)
−0.680935 + 0.732344i \(0.738427\pi\)
\(284\) −176982. 306542.i −0.130207 0.225525i
\(285\) 0 0
\(286\) 9795.26 16965.9i 0.00708110 0.0122648i
\(287\) −3.19889e6 −2.29242
\(288\) 0 0
\(289\) 282676. 0.199087
\(290\) 174803. 302769.i 0.122055 0.211405i
\(291\) 0 0
\(292\) 26085.2 + 45180.9i 0.0179035 + 0.0310097i
\(293\) 1.15302e6 + 1.99710e6i 0.784638 + 1.35903i 0.929215 + 0.369539i \(0.120485\pi\)
−0.144577 + 0.989494i \(0.546182\pi\)
\(294\) 0 0
\(295\) −296527. + 513599.i −0.198385 + 0.343613i
\(296\) 568903. 0.377406
\(297\) 0 0
\(298\) 1.37757e6 0.898615
\(299\) 225024. 389753.i 0.145563 0.252123i
\(300\) 0 0
\(301\) 408511. + 707563.i 0.259889 + 0.450141i
\(302\) 323669. + 560611.i 0.204213 + 0.353707i
\(303\) 0 0
\(304\) 183031. 317019.i 0.113590 0.196744i
\(305\) 342043. 0.210538
\(306\) 0 0
\(307\) 2.92870e6 1.77349 0.886745 0.462260i \(-0.152961\pi\)
0.886745 + 0.462260i \(0.152961\pi\)
\(308\) −33963.9 + 58827.3i −0.0204005 + 0.0353348i
\(309\) 0 0
\(310\) −365733. 633469.i −0.216153 0.374387i
\(311\) −540095. 935473.i −0.316643 0.548441i 0.663143 0.748493i \(-0.269222\pi\)
−0.979785 + 0.200052i \(0.935889\pi\)
\(312\) 0 0
\(313\) 321741. 557272.i 0.185629 0.321519i −0.758159 0.652069i \(-0.773901\pi\)
0.943788 + 0.330550i \(0.107234\pi\)
\(314\) −1.75939e6 −1.00702
\(315\) 0 0
\(316\) 1.08382e6 0.610578
\(317\) 577091. 999552.i 0.322550 0.558672i −0.658464 0.752612i \(-0.728793\pi\)
0.981013 + 0.193940i \(0.0621268\pi\)
\(318\) 0 0
\(319\) −45896.3 79494.7i −0.0252523 0.0437382i
\(320\) 40920.6 + 70876.6i 0.0223392 + 0.0386926i
\(321\) 0 0
\(322\) −780246. + 1.35143e6i −0.419365 + 0.726361i
\(323\) −1.86579e6 −0.995076
\(324\) 0 0
\(325\) 636174. 0.334093
\(326\) 266085. 460874.i 0.138668 0.240180i
\(327\) 0 0
\(328\) 505965. + 876357.i 0.259678 + 0.449776i
\(329\) 2.69964e6 + 4.67591e6i 1.37504 + 2.38164i
\(330\) 0 0
\(331\) 107519. 186228.i 0.0539404 0.0934274i −0.837794 0.545986i \(-0.816155\pi\)
0.891735 + 0.452558i \(0.149489\pi\)
\(332\) −738747. −0.367833
\(333\) 0 0
\(334\) −1.11092e6 −0.544900
\(335\) 686535. 1.18911e6i 0.334234 0.578911i
\(336\) 0 0
\(337\) 1.71484e6 + 2.97019e6i 0.822526 + 1.42466i 0.903796 + 0.427964i \(0.140769\pi\)
−0.0812700 + 0.996692i \(0.525898\pi\)
\(338\) −633642. 1.09750e6i −0.301684 0.522532i
\(339\) 0 0
\(340\) 208569. 361252.i 0.0978481 0.169478i
\(341\) −192053. −0.0894408
\(342\) 0 0
\(343\) −1.48044e6 −0.679448
\(344\) 129228. 223829.i 0.0588788 0.101981i
\(345\) 0 0
\(346\) 460300. + 797263.i 0.206705 + 0.358024i
\(347\) −802264. 1.38956e6i −0.357679 0.619518i 0.629894 0.776681i \(-0.283098\pi\)
−0.987573 + 0.157163i \(0.949765\pi\)
\(348\) 0 0
\(349\) −356261. + 617062.i −0.156569 + 0.271185i −0.933629 0.358241i \(-0.883377\pi\)
0.777060 + 0.629426i \(0.216710\pi\)
\(350\) −2.20586e6 −0.962516
\(351\) 0 0
\(352\) 21488.2 0.00924363
\(353\) −1.43528e6 + 2.48597e6i −0.613054 + 1.06184i 0.377668 + 0.925941i \(0.376726\pi\)
−0.990723 + 0.135900i \(0.956607\pi\)
\(354\) 0 0
\(355\) 221015. + 382809.i 0.0930788 + 0.161217i
\(356\) −208525. 361176.i −0.0872033 0.151041i
\(357\) 0 0
\(358\) −422687. + 732115.i −0.174306 + 0.301906i
\(359\) 3.96829e6 1.62505 0.812525 0.582926i \(-0.198092\pi\)
0.812525 + 0.582926i \(0.198092\pi\)
\(360\) 0 0
\(361\) −431397. −0.174225
\(362\) −431032. + 746569.i −0.172877 + 0.299432i
\(363\) 0 0
\(364\) −377751. 654284.i −0.149435 0.258829i
\(365\) −32575.2 56421.8i −0.0127984 0.0221674i
\(366\) 0 0
\(367\) −1.79190e6 + 3.10365e6i −0.694461 + 1.20284i 0.275902 + 0.961186i \(0.411024\pi\)
−0.970362 + 0.241655i \(0.922310\pi\)
\(368\) 493643. 0.190017
\(369\) 0 0
\(370\) −710445. −0.269790
\(371\) 3.82596e6 6.62675e6i 1.44313 2.49957i
\(372\) 0 0
\(373\) 317676. + 550230.i 0.118226 + 0.204773i 0.919065 0.394107i \(-0.128946\pi\)
−0.800839 + 0.598880i \(0.795613\pi\)
\(374\) −54761.7 94850.1i −0.0202441 0.0350638i
\(375\) 0 0
\(376\) 853997. 1.47917e6i 0.311520 0.539569i
\(377\) 1.02093e6 0.369948
\(378\) 0 0
\(379\) 399337. 0.142804 0.0714022 0.997448i \(-0.477253\pi\)
0.0714022 + 0.997448i \(0.477253\pi\)
\(380\) −228569. + 395893.i −0.0812004 + 0.140643i
\(381\) 0 0
\(382\) 1.12459e6 + 1.94784e6i 0.394308 + 0.682961i
\(383\) −1.63313e6 2.82866e6i −0.568883 0.985334i −0.996677 0.0814575i \(-0.974043\pi\)
0.427794 0.903876i \(-0.359291\pi\)
\(384\) 0 0
\(385\) 42414.1 73463.4i 0.0145834 0.0252592i
\(386\) 1.62151e6 0.553927
\(387\) 0 0
\(388\) 282056. 0.0951165
\(389\) −526396. + 911744.i −0.176376 + 0.305491i −0.940636 0.339416i \(-0.889771\pi\)
0.764261 + 0.644907i \(0.223104\pi\)
\(390\) 0 0
\(391\) −1.25803e6 2.17897e6i −0.416149 0.720791i
\(392\) 771984. + 1.33712e6i 0.253742 + 0.439495i
\(393\) 0 0
\(394\) 2.04504e6 3.54211e6i 0.663683 1.14953i
\(395\) −1.35348e6 −0.436474
\(396\) 0 0
\(397\) 1.37875e6 0.439045 0.219522 0.975607i \(-0.429550\pi\)
0.219522 + 0.975607i \(0.429550\pi\)
\(398\) −23070.2 + 39958.8i −0.00730036 + 0.0126446i
\(399\) 0 0
\(400\) 348898. + 604310.i 0.109031 + 0.188847i
\(401\) 830386. + 1.43827e6i 0.257881 + 0.446663i 0.965674 0.259757i \(-0.0836424\pi\)
−0.707793 + 0.706420i \(0.750309\pi\)
\(402\) 0 0
\(403\) 1.06802e6 1.84986e6i 0.327579 0.567384i
\(404\) −2.65032e6 −0.807878
\(405\) 0 0
\(406\) −3.53995e6 −1.06581
\(407\) −93266.9 + 161543.i −0.0279088 + 0.0483395i
\(408\) 0 0
\(409\) −2.70023e6 4.67693e6i −0.798164 1.38246i −0.920811 0.390010i \(-0.872472\pi\)
0.122647 0.992450i \(-0.460862\pi\)
\(410\) −631848. 1.09439e6i −0.185632 0.321524i
\(411\) 0 0
\(412\) 517135. 895703.i 0.150093 0.259969i
\(413\) 6.00497e6 1.73235
\(414\) 0 0
\(415\) 922546. 0.262947
\(416\) −119497. + 206975.i −0.0338550 + 0.0586386i
\(417\) 0 0
\(418\) 60012.9 + 103945.i 0.0167998 + 0.0290981i
\(419\) −3.00517e6 5.20510e6i −0.836245 1.44842i −0.893013 0.450032i \(-0.851413\pi\)
0.0567675 0.998387i \(-0.481921\pi\)
\(420\) 0 0
\(421\) 1.86568e6 3.23146e6i 0.513018 0.888573i −0.486868 0.873476i \(-0.661861\pi\)
0.999886 0.0150977i \(-0.00480593\pi\)
\(422\) −2.62040e6 −0.716287
\(423\) 0 0
\(424\) −2.42059e6 −0.653893
\(425\) 1.77831e6 3.08012e6i 0.477567 0.827171i
\(426\) 0 0
\(427\) −1.73168e6 2.99935e6i −0.459618 0.796082i
\(428\) −229387. 397310.i −0.0605284 0.104838i
\(429\) 0 0
\(430\) −161379. + 279517.i −0.0420897 + 0.0729016i
\(431\) −293652. −0.0761448 −0.0380724 0.999275i \(-0.512122\pi\)
−0.0380724 + 0.999275i \(0.512122\pi\)
\(432\) 0 0
\(433\) −731246. −0.187432 −0.0937160 0.995599i \(-0.529875\pi\)
−0.0937160 + 0.995599i \(0.529875\pi\)
\(434\) −3.70324e6 + 6.41419e6i −0.943750 + 1.63462i
\(435\) 0 0
\(436\) −1.39040e6 2.40825e6i −0.350288 0.606716i
\(437\) 1.37866e6 + 2.38791e6i 0.345346 + 0.598156i
\(438\) 0 0
\(439\) −970387. + 1.68076e6i −0.240316 + 0.416240i −0.960804 0.277227i \(-0.910585\pi\)
0.720488 + 0.693467i \(0.243918\pi\)
\(440\) −26834.4 −0.00660784
\(441\) 0 0
\(442\) 1.21813e6 0.296578
\(443\) −2.27045e6 + 3.93254e6i −0.549672 + 0.952059i 0.448625 + 0.893720i \(0.351914\pi\)
−0.998297 + 0.0583394i \(0.981419\pi\)
\(444\) 0 0
\(445\) 260405. + 451035.i 0.0623376 + 0.107972i
\(446\) −1.74390e6 3.02052e6i −0.415130 0.719026i
\(447\) 0 0
\(448\) 414342. 717661.i 0.0975357 0.168937i
\(449\) 6.94484e6 1.62572 0.812861 0.582457i \(-0.197909\pi\)
0.812861 + 0.582457i \(0.197909\pi\)
\(450\) 0 0
\(451\) −331795. −0.0768119
\(452\) 1.27824e6 2.21398e6i 0.294284 0.509714i
\(453\) 0 0
\(454\) 1.29465e6 + 2.24240e6i 0.294790 + 0.510591i
\(455\) 471734. + 817068.i 0.106824 + 0.185025i
\(456\) 0 0
\(457\) −1.27256e6 + 2.20414e6i −0.285028 + 0.493684i −0.972616 0.232418i \(-0.925336\pi\)
0.687588 + 0.726101i \(0.258670\pi\)
\(458\) 1.05887e6 0.235872
\(459\) 0 0
\(460\) −616460. −0.135835
\(461\) −3.93640e6 + 6.81805e6i −0.862675 + 1.49420i 0.00666268 + 0.999978i \(0.497879\pi\)
−0.869338 + 0.494219i \(0.835454\pi\)
\(462\) 0 0
\(463\) −2.98583e6 5.17160e6i −0.647309 1.12117i −0.983763 0.179473i \(-0.942561\pi\)
0.336453 0.941700i \(-0.390773\pi\)
\(464\) 559910. + 969792.i 0.120732 + 0.209114i
\(465\) 0 0
\(466\) −1.71851e6 + 2.97654e6i −0.366595 + 0.634961i
\(467\) 1.75432e6 0.372235 0.186118 0.982527i \(-0.440409\pi\)
0.186118 + 0.982527i \(0.440409\pi\)
\(468\) 0 0
\(469\) −1.39030e7 −2.91862
\(470\) −1.06647e6 + 1.84718e6i −0.222691 + 0.385713i
\(471\) 0 0
\(472\) −949799. 1.64510e6i −0.196235 0.339889i
\(473\) 42371.6 + 73389.8i 0.00870807 + 0.0150828i
\(474\) 0 0
\(475\) −1.94883e6 + 3.37547e6i −0.396315 + 0.686437i
\(476\) −4.22373e6 −0.854435
\(477\) 0 0
\(478\) −1.45440e6 −0.291149
\(479\) −222551. + 385470.i −0.0443191 + 0.0767630i −0.887334 0.461127i \(-0.847445\pi\)
0.843015 + 0.537890i \(0.180779\pi\)
\(480\) 0 0
\(481\) −1.03733e6 1.79670e6i −0.204434 0.354089i
\(482\) −2.66155e6 4.60993e6i −0.521815 0.903810i
\(483\) 0 0
\(484\) 1.28489e6 2.22549e6i 0.249316 0.431829i
\(485\) −352231. −0.0679943
\(486\) 0 0
\(487\) 9.62628e6 1.83923 0.919615 0.392821i \(-0.128501\pi\)
0.919615 + 0.392821i \(0.128501\pi\)
\(488\) −547795. + 948809.i −0.104128 + 0.180355i
\(489\) 0 0
\(490\) −964052. 1.66979e6i −0.181389 0.314174i
\(491\) 2.67834e6 + 4.63902e6i 0.501374 + 0.868405i 0.999999 + 0.00158682i \(0.000505100\pi\)
−0.498625 + 0.866818i \(0.666162\pi\)
\(492\) 0 0
\(493\) 2.85381e6 4.94295e6i 0.528821 0.915944i
\(494\) −1.33494e6 −0.246118
\(495\) 0 0
\(496\) 2.34295e6 0.427620
\(497\) 2.23789e6 3.87614e6i 0.406394 0.703895i
\(498\) 0 0
\(499\) −3.06721e6 5.31256e6i −0.551432 0.955108i −0.998172 0.0604440i \(-0.980748\pi\)
0.446740 0.894664i \(-0.352585\pi\)
\(500\) −935223. 1.61985e6i −0.167298 0.289768i
\(501\) 0 0
\(502\) −1.23080e6 + 2.13180e6i −0.217985 + 0.377562i
\(503\) −5.69058e6 −1.00285 −0.501425 0.865201i \(-0.667191\pi\)
−0.501425 + 0.865201i \(0.667191\pi\)
\(504\) 0 0
\(505\) 3.30972e6 0.577514
\(506\) −80928.6 + 140172.i −0.0140516 + 0.0243381i
\(507\) 0 0
\(508\) −387223. 670690.i −0.0665735 0.115309i
\(509\) 2.87553e6 + 4.98057e6i 0.491953 + 0.852088i 0.999957 0.00926687i \(-0.00294978\pi\)
−0.508004 + 0.861355i \(0.669616\pi\)
\(510\) 0 0
\(511\) −329840. + 571300.i −0.0558793 + 0.0967858i
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −4.70948e6 −0.786258
\(515\) −645796. + 1.11855e6i −0.107295 + 0.185840i
\(516\) 0 0
\(517\) 280011. + 484994.i 0.0460733 + 0.0798013i
\(518\) 3.59681e6 + 6.22985e6i 0.588970 + 1.02013i
\(519\) 0 0
\(520\) 149227. 258469.i 0.0242014 0.0419180i
\(521\) 6.91604e6 1.11625 0.558127 0.829756i \(-0.311520\pi\)
0.558127 + 0.829756i \(0.311520\pi\)
\(522\) 0 0
\(523\) 175282. 0.0280209 0.0140105 0.999902i \(-0.495540\pi\)
0.0140105 + 0.999902i \(0.495540\pi\)
\(524\) 480146. 831638.i 0.0763915 0.132314i
\(525\) 0 0
\(526\) 276034. + 478105.i 0.0435009 + 0.0753457i
\(527\) −5.97091e6 1.03419e7i −0.936513 1.62209i
\(528\) 0 0
\(529\) 1.35902e6 2.35389e6i 0.211147 0.365718i
\(530\) 3.02283e6 0.467437
\(531\) 0 0
\(532\) 4.62875e6 0.709063
\(533\) 1.84513e6 3.19586e6i 0.281325 0.487270i
\(534\) 0 0
\(535\) 286458. + 496159.i 0.0432689 + 0.0749440i
\(536\) 2.19903e6 + 3.80883e6i 0.330612 + 0.572637i
\(537\) 0 0
\(538\) 1.97033e6 3.41271e6i 0.293483 0.508328i
\(539\) −506241. −0.0750561
\(540\) 0 0
\(541\) 3.11921e6 0.458196 0.229098 0.973403i \(-0.426422\pi\)
0.229098 + 0.973403i \(0.426422\pi\)
\(542\) 1.68202e6 2.91334e6i 0.245942 0.425984i
\(543\) 0 0
\(544\) 668063. + 1.15712e6i 0.0967878 + 0.167641i
\(545\) 1.73633e6 + 3.00742e6i 0.250404 + 0.433713i
\(546\) 0 0
\(547\) −2.45367e6 + 4.24987e6i −0.350628 + 0.607306i −0.986360 0.164604i \(-0.947365\pi\)
0.635731 + 0.771910i \(0.280699\pi\)
\(548\) 4.12826e6 0.587240
\(549\) 0 0
\(550\) −228796. −0.0322509
\(551\) −3.12747e6 + 5.41693e6i −0.438848 + 0.760107i
\(552\) 0 0
\(553\) 6.85232e6 + 1.18686e7i 0.952850 + 1.65039i
\(554\) 42614.2 + 73810.0i 0.00589903 + 0.0102174i
\(555\) 0 0
\(556\) 2.61058e6 4.52165e6i 0.358137 0.620312i
\(557\) −1.41122e7 −1.92734 −0.963669 0.267099i \(-0.913935\pi\)
−0.963669 + 0.267099i \(0.913935\pi\)
\(558\) 0 0
\(559\) −942523. −0.127574
\(560\) −517429. + 896214.i −0.0697238 + 0.120765i
\(561\) 0 0
\(562\) 3.36450e6 + 5.82749e6i 0.449345 + 0.778289i
\(563\) −3.72663e6 6.45472e6i −0.495502 0.858235i 0.504484 0.863421i \(-0.331683\pi\)
−0.999987 + 0.00518570i \(0.998349\pi\)
\(564\) 0 0
\(565\) −1.59626e6 + 2.76481e6i −0.210370 + 0.364371i
\(566\) 3.16628e6 0.415440
\(567\) 0 0
\(568\) −1.41586e6 −0.184140
\(569\) 3.24943e6 5.62817e6i 0.420752 0.728763i −0.575261 0.817970i \(-0.695100\pi\)
0.996013 + 0.0892062i \(0.0284330\pi\)
\(570\) 0 0
\(571\) 5.56754e6 + 9.64326e6i 0.714617 + 1.23775i 0.963107 + 0.269118i \(0.0867321\pi\)
−0.248491 + 0.968634i \(0.579935\pi\)
\(572\) −39181.0 67863.5i −0.00500709 0.00867254i
\(573\) 0 0
\(574\) −6.39778e6 + 1.10813e7i −0.810493 + 1.40382i
\(575\) −5.25608e6 −0.662968
\(576\) 0 0
\(577\) −5.28971e6 −0.661443 −0.330721 0.943728i \(-0.607292\pi\)
−0.330721 + 0.943728i \(0.607292\pi\)
\(578\) 565352. 979218.i 0.0703881 0.121916i
\(579\) 0 0
\(580\) −699214. 1.21107e6i −0.0863058 0.149486i
\(581\) −4.67062e6 8.08975e6i −0.574030 0.994248i
\(582\) 0 0
\(583\) 396835. 687339.i 0.0483547 0.0837529i
\(584\) 208682. 0.0253193
\(585\) 0 0
\(586\) 9.22419e6 1.10965
\(587\) 4.68325e6 8.11163e6i 0.560986 0.971657i −0.436424 0.899741i \(-0.643755\pi\)
0.997411 0.0719160i \(-0.0229114\pi\)
\(588\) 0 0
\(589\) 6.54346e6 + 1.13336e7i 0.777176 + 1.34611i
\(590\) 1.18611e6 + 2.05440e6i 0.140279 + 0.242971i
\(591\) 0 0
\(592\) 1.13781e6 1.97074e6i 0.133433 0.231113i
\(593\) 5.82148e6 0.679825 0.339912 0.940457i \(-0.389603\pi\)
0.339912 + 0.940457i \(0.389603\pi\)
\(594\) 0 0
\(595\) 5.27459e6 0.610796
\(596\) 2.75514e6 4.77205e6i 0.317708 0.550287i
\(597\) 0 0
\(598\) −900097. 1.55901e6i −0.102929 0.178278i
\(599\) 7.98480e6 + 1.38301e7i 0.909279 + 1.57492i 0.815068 + 0.579365i \(0.196699\pi\)
0.0942102 + 0.995552i \(0.469967\pi\)
\(600\) 0 0
\(601\) 334611. 579563.i 0.0377880 0.0654508i −0.846513 0.532368i \(-0.821302\pi\)
0.884301 + 0.466918i \(0.154636\pi\)
\(602\) 3.26809e6 0.367539
\(603\) 0 0
\(604\) 2.58935e6 0.288801
\(605\) −1.60456e6 + 2.77918e6i −0.178225 + 0.308694i
\(606\) 0 0
\(607\) 1.30270e6 + 2.25634e6i 0.143507 + 0.248561i 0.928815 0.370544i \(-0.120829\pi\)
−0.785308 + 0.619105i \(0.787495\pi\)
\(608\) −732124. 1.26808e6i −0.0803204 0.139119i
\(609\) 0 0
\(610\) 684085. 1.18487e6i 0.0744365 0.128928i
\(611\) −6.22863e6 −0.674978
\(612\) 0 0
\(613\) 4.33667e6 0.466128 0.233064 0.972461i \(-0.425125\pi\)
0.233064 + 0.972461i \(0.425125\pi\)
\(614\) 5.85739e6 1.01453e7i 0.627023 1.08604i
\(615\) 0 0
\(616\) 135856. + 235309.i 0.0144254 + 0.0249854i
\(617\) 2.45487e6 + 4.25195e6i 0.259606 + 0.449651i 0.966136 0.258032i \(-0.0830739\pi\)
−0.706530 + 0.707683i \(0.749741\pi\)
\(618\) 0 0
\(619\) 4.49719e6 7.78936e6i 0.471753 0.817100i −0.527725 0.849415i \(-0.676955\pi\)
0.999478 + 0.0323155i \(0.0102881\pi\)
\(620\) −2.92587e6 −0.305686
\(621\) 0 0
\(622\) −4.32076e6 −0.447800
\(623\) 2.63674e6 4.56696e6i 0.272174 0.471419i
\(624\) 0 0
\(625\) −3.09111e6 5.35396e6i −0.316530 0.548246i
\(626\) −1.28696e6 2.22909e6i −0.131260 0.227348i
\(627\) 0 0
\(628\) −3.51878e6 + 6.09471e6i −0.356035 + 0.616671i
\(629\) −1.15986e7 −1.16891
\(630\) 0 0
\(631\) −4.33057e6 −0.432984 −0.216492 0.976284i \(-0.569461\pi\)
−0.216492 + 0.976284i \(0.569461\pi\)
\(632\) 2.16765e6 3.75448e6i 0.215872 0.373901i
\(633\) 0 0
\(634\) −2.30837e6 3.99821e6i −0.228077 0.395041i
\(635\) 483563. + 837556.i 0.0475903 + 0.0824289i
\(636\) 0 0
\(637\) 2.81524e6 4.87613e6i 0.274895 0.476132i
\(638\) −367170. −0.0357121
\(639\) 0 0
\(640\) 327365. 0.0315924
\(641\) −2.13709e6 + 3.70154e6i −0.205436 + 0.355826i −0.950272 0.311422i \(-0.899195\pi\)
0.744835 + 0.667248i \(0.232528\pi\)
\(642\) 0 0
\(643\) 5.50562e6 + 9.53602e6i 0.525145 + 0.909578i 0.999571 + 0.0292823i \(0.00932219\pi\)
−0.474426 + 0.880295i \(0.657344\pi\)
\(644\) 3.12098e6 + 5.40570e6i 0.296536 + 0.513615i
\(645\) 0 0
\(646\) −3.73158e6 + 6.46329e6i −0.351813 + 0.609357i
\(647\) −8.39293e6 −0.788230 −0.394115 0.919061i \(-0.628949\pi\)
−0.394115 + 0.919061i \(0.628949\pi\)
\(648\) 0 0
\(649\) 622847. 0.0580456
\(650\) 1.27235e6 2.20377e6i 0.118120 0.204589i
\(651\) 0 0
\(652\) −1.06434e6 1.84349e6i −0.0980533 0.169833i
\(653\) 3.53386e6 + 6.12082e6i 0.324314 + 0.561729i 0.981373 0.192110i \(-0.0615331\pi\)
−0.657059 + 0.753839i \(0.728200\pi\)
\(654\) 0 0
\(655\) −599605. + 1.03855e6i −0.0546088 + 0.0945851i
\(656\) 4.04772e6 0.367241
\(657\) 0 0
\(658\) 2.15971e7 1.94460
\(659\) 2.37353e6 4.11108e6i 0.212903 0.368758i −0.739719 0.672916i \(-0.765042\pi\)
0.952622 + 0.304157i \(0.0983749\pi\)
\(660\) 0 0
\(661\) 3.96475e6 + 6.86716e6i 0.352950 + 0.611327i 0.986765 0.162158i \(-0.0518454\pi\)
−0.633815 + 0.773484i \(0.718512\pi\)
\(662\) −430075. 744911.i −0.0381416 0.0660632i
\(663\) 0 0
\(664\) −1.47749e6 + 2.55909e6i −0.130049 + 0.225251i
\(665\) −5.78037e6 −0.506876
\(666\) 0 0
\(667\) −8.43492e6 −0.734119
\(668\) −2.22184e6 + 3.84834e6i −0.192651 + 0.333682i
\(669\) 0 0
\(670\) −2.74614e6 4.75646e6i −0.236339 0.409352i
\(671\) −179613. 311099.i −0.0154004 0.0266742i
\(672\) 0 0
\(673\) −2.29624e6 + 3.97721e6i −0.195425 + 0.338486i −0.947040 0.321116i \(-0.895942\pi\)
0.751615 + 0.659602i \(0.229275\pi\)
\(674\) 1.37187e7 1.16323
\(675\) 0 0
\(676\) −5.06914e6 −0.426646
\(677\) −9.26736e6 + 1.60515e7i −0.777113 + 1.34600i 0.156486 + 0.987680i \(0.449983\pi\)
−0.933599 + 0.358319i \(0.883350\pi\)
\(678\) 0 0
\(679\) 1.78326e6 + 3.08869e6i 0.148436 + 0.257099i
\(680\) −834276. 1.44501e6i −0.0691891 0.119839i
\(681\) 0 0
\(682\) −384107. + 665292.i −0.0316221 + 0.0547711i
\(683\) 1.28540e7 1.05436 0.527179 0.849754i \(-0.323250\pi\)
0.527179 + 0.849754i \(0.323250\pi\)
\(684\) 0 0
\(685\) −5.15536e6 −0.419791
\(686\) −2.96089e6 + 5.12841e6i −0.240221 + 0.416075i
\(687\) 0 0
\(688\) −516911. 895315.i −0.0416336 0.0721116i
\(689\) 4.41365e6 + 7.64466e6i 0.354201 + 0.613494i
\(690\) 0 0
\(691\) −3.74818e6 + 6.49204e6i −0.298624 + 0.517232i −0.975821 0.218569i \(-0.929861\pi\)
0.677197 + 0.735802i \(0.263194\pi\)
\(692\) 3.68240e6 0.292325
\(693\) 0 0
\(694\) −6.41811e6 −0.505835
\(695\) −3.26008e6 + 5.64663e6i −0.256016 + 0.443432i
\(696\) 0 0
\(697\) −1.03154e7 1.78669e7i −0.804278 1.39305i
\(698\) 1.42504e6 + 2.46825e6i 0.110711 + 0.191757i
\(699\) 0 0
\(700\) −4.41172e6 + 7.64132e6i −0.340301 + 0.589418i
\(701\) −4.13449e6 −0.317780 −0.158890 0.987296i \(-0.550792\pi\)
−0.158890 + 0.987296i \(0.550792\pi\)
\(702\) 0 0
\(703\) 1.27108e7 0.970030
\(704\) 42976.3 74437.2i 0.00326812 0.00566055i
\(705\) 0 0
\(706\) 5.74111e6 + 9.94389e6i 0.433495 + 0.750835i
\(707\) −1.67563e7 2.90227e7i −1.26075 2.18368i
\(708\) 0 0
\(709\) −557752. + 966054.i −0.0416702 + 0.0721749i −0.886108 0.463478i \(-0.846601\pi\)
0.844438 + 0.535653i \(0.179935\pi\)
\(710\) 1.76812e6 0.131633
\(711\) 0 0
\(712\) −1.66820e6 −0.123324
\(713\) −8.82400e6 + 1.52836e7i −0.650042 + 1.12591i
\(714\) 0 0
\(715\) 48929.2 + 84747.8i 0.00357934 + 0.00619960i
\(716\) 1.69075e6 + 2.92846e6i 0.123253 + 0.213480i
\(717\) 0 0
\(718\) 7.93657e6 1.37465e7i 0.574542 0.995136i
\(719\) −1.06330e7 −0.767068 −0.383534 0.923527i \(-0.625293\pi\)
−0.383534 + 0.923527i \(0.625293\pi\)
\(720\) 0 0
\(721\) 1.30780e7 0.936924
\(722\) −862795. + 1.49440e6i −0.0615977 + 0.106690i
\(723\) 0 0
\(724\) 1.72413e6 + 2.98628e6i 0.122243 + 0.211731i
\(725\) −5.96166e6 1.03259e7i −0.421233 0.729596i
\(726\) 0 0
\(727\) 5.37428e6 9.30853e6i 0.377124 0.653198i −0.613518 0.789680i \(-0.710246\pi\)
0.990643 + 0.136482i \(0.0435797\pi\)
\(728\) −3.02201e6 −0.211333
\(729\) 0 0
\(730\) −260601. −0.0180996
\(731\) −2.63465e6 + 4.56335e6i −0.182360 + 0.315857i
\(732\) 0 0
\(733\) −9.70537e6 1.68102e7i −0.667194 1.15561i −0.978685 0.205365i \(-0.934162\pi\)
0.311492 0.950249i \(-0.399171\pi\)
\(734\) 7.16758e6 + 1.24146e7i 0.491058 + 0.850537i
\(735\) 0 0
\(736\) 987285. 1.71003e6i 0.0671813 0.116361i
\(737\) −1.44205e6 −0.0977939
\(738\) 0 0
\(739\) −2.50920e7 −1.69015 −0.845074 0.534649i \(-0.820444\pi\)
−0.845074 + 0.534649i \(0.820444\pi\)
\(740\) −1.42089e6 + 2.46105e6i −0.0953852 + 0.165212i
\(741\) 0 0
\(742\) −1.53038e7 2.65070e7i −1.02045 1.76746i
\(743\) 7.40755e6 + 1.28303e7i 0.492269 + 0.852635i 0.999960 0.00890388i \(-0.00283423\pi\)
−0.507691 + 0.861539i \(0.669501\pi\)
\(744\) 0 0
\(745\) −3.44062e6 + 5.95932e6i −0.227115 + 0.393374i
\(746\) 2.54140e6 0.167196
\(747\) 0 0
\(748\) −438094. −0.0286295
\(749\) 2.90053e6 5.02386e6i 0.188918 0.327215i
\(750\) 0 0
\(751\) −8.52016e6 1.47574e7i −0.551249 0.954792i −0.998185 0.0602258i \(-0.980818\pi\)
0.446935 0.894566i \(-0.352515\pi\)
\(752\) −3.41599e6 5.91666e6i −0.220278 0.381533i
\(753\) 0 0
\(754\) 2.04185e6 3.53659e6i 0.130797 0.226546i
\(755\) −3.23358e6 −0.206450
\(756\) 0 0
\(757\) 7.65160e6 0.485303 0.242651 0.970114i \(-0.421983\pi\)
0.242651 + 0.970114i \(0.421983\pi\)
\(758\) 798674. 1.38334e6i 0.0504890 0.0874495i
\(759\) 0 0
\(760\) 914275. + 1.58357e6i 0.0574173 + 0.0994497i
\(761\) −9.27073e6 1.60574e7i −0.580300 1.00511i −0.995444 0.0953528i \(-0.969602\pi\)
0.415144 0.909756i \(-0.363731\pi\)
\(762\) 0 0
\(763\) 1.75813e7 3.04516e7i 1.09330 1.89365i
\(764\) 8.99671e6 0.557635
\(765\) 0 0
\(766\) −1.30650e7 −0.804522
\(767\) −3.46368e6 + 5.99928e6i −0.212593 + 0.368223i
\(768\) 0 0
\(769\) 4.19019e6 + 7.25762e6i 0.255516 + 0.442567i 0.965036 0.262119i \(-0.0844213\pi\)
−0.709520 + 0.704686i \(0.751088\pi\)
\(770\) −169656. 293854.i −0.0103120 0.0178609i
\(771\) 0 0
\(772\) 3.24303e6 5.61709e6i 0.195843 0.339209i
\(773\) 2.44216e7 1.47003 0.735015 0.678051i \(-0.237175\pi\)
0.735015 + 0.678051i \(0.237175\pi\)
\(774\) 0 0
\(775\) −2.49466e7 −1.49196
\(776\) 564112. 977070.i 0.0336287 0.0582467i
\(777\) 0 0
\(778\) 2.10558e6 + 3.64698e6i 0.124716 + 0.216015i
\(779\) 1.13046e7 + 1.95801e7i 0.667439 + 1.15604i
\(780\) 0 0
\(781\) 232118. 402040.i 0.0136170 0.0235853i
\(782\) −1.00642e7 −0.588523
\(783\) 0 0
\(784\) 6.17587e6 0.358846
\(785\) 4.39425e6 7.61106e6i 0.254513 0.440830i
\(786\) 0 0
\(787\) −1.25097e7 2.16674e7i −0.719960 1.24701i −0.961015 0.276497i \(-0.910827\pi\)
0.241054 0.970512i \(-0.422507\pi\)
\(788\) −8.18015e6 1.41684e7i −0.469295 0.812842i
\(789\) 0 0
\(790\) −2.70695e6 + 4.68858e6i −0.154317 + 0.267284i
\(791\) 3.23259e7 1.83700
\(792\) 0 0
\(793\) 3.99535e6 0.225617
\(794\) 2.75750e6 4.77612e6i 0.155226 0.268859i
\(795\) 0 0
\(796\) 92280.9 + 159835.i 0.00516213 + 0.00894108i
\(797\) −5.05956e6 8.76342e6i −0.282142 0.488684i 0.689770 0.724028i \(-0.257711\pi\)
−0.971912 + 0.235345i \(0.924378\pi\)
\(798\) 0 0
\(799\) −1.74110e7 + 3.01568e7i −0.964844 + 1.67116i
\(800\) 2.79119e6 0.154193
\(801\) 0 0
\(802\) 6.64309e6 0.364699
\(803\) −34211.6 + 59256.3i −0.00187234 + 0.00324299i
\(804\) 0 0
\(805\) −3.89748e6 6.75063e6i −0.211980 0.367159i
\(806\) −4.27208e6 7.39945e6i −0.231634 0.401201i
\(807\) 0 0
\(808\) −5.30065e6 + 9.18099e6i −0.285628 + 0.494722i
\(809\) −1.49150e7 −0.801218 −0.400609 0.916249i \(-0.631201\pi\)
−0.400609 + 0.916249i \(0.631201\pi\)
\(810\) 0 0
\(811\) −1.89183e7 −1.01002 −0.505011 0.863113i \(-0.668512\pi\)
−0.505011 + 0.863113i \(0.668512\pi\)
\(812\) −7.07990e6 + 1.22627e7i −0.376822 + 0.652676i
\(813\) 0 0
\(814\) 373068. + 646172.i 0.0197345 + 0.0341812i
\(815\) 1.32915e6 + 2.30215e6i 0.0700937 + 0.121406i
\(816\) 0 0
\(817\) 2.88729e6 5.00093e6i 0.151334 0.262117i
\(818\) −2.16018e7 −1.12877
\(819\) 0 0
\(820\) −5.05478e6 −0.262523
\(821\) 1.26791e7 2.19608e7i 0.656492 1.13708i −0.325026 0.945705i \(-0.605373\pi\)
0.981518 0.191372i \(-0.0612937\pi\)
\(822\) 0 0
\(823\) 1.22397e7 + 2.11998e7i 0.629900 + 1.09102i 0.987571 + 0.157172i \(0.0502376\pi\)
−0.357671 + 0.933848i \(0.616429\pi\)
\(824\) −2.06854e6 3.58281e6i −0.106132 0.183826i
\(825\) 0 0
\(826\) 1.20099e7 2.08018e7i 0.612478 1.06084i
\(827\) 3.15281e7 1.60300 0.801502 0.597993i \(-0.204035\pi\)
0.801502 + 0.597993i \(0.204035\pi\)
\(828\) 0 0
\(829\) −3.30952e7 −1.67255 −0.836274 0.548312i \(-0.815271\pi\)
−0.836274 + 0.548312i \(0.815271\pi\)
\(830\) 1.84509e6 3.19579e6i 0.0929657 0.161021i
\(831\) 0 0
\(832\) 477987. + 827899.i 0.0239391 + 0.0414638i
\(833\) −1.57390e7 2.72607e7i −0.785893 1.36121i
\(834\) 0 0
\(835\) 2.77463e6 4.80580e6i 0.137717 0.238533i
\(836\) 480103. 0.0237585
\(837\) 0 0
\(838\) −2.40413e7 −1.18263
\(839\) −8.03959e6 + 1.39250e7i −0.394302 + 0.682951i −0.993012 0.118015i \(-0.962347\pi\)
0.598710 + 0.800966i \(0.295680\pi\)
\(840\) 0 0
\(841\) 688348. + 1.19225e6i 0.0335597 + 0.0581271i
\(842\) −7.46273e6 1.29258e7i −0.362759 0.628316i
\(843\) 0 0
\(844\) −5.24081e6 + 9.07734e6i −0.253246 + 0.438634i
\(845\) 6.33033e6 0.304989
\(846\) 0 0
\(847\) 3.24940e7 1.55630
\(848\) −4.84118e6 + 8.38517e6i −0.231186 + 0.400426i
\(849\) 0 0
\(850\) −7.11323e6 1.23205e7i −0.337691 0.584898i
\(851\) 8.57040e6 + 1.48444e7i 0.405674 + 0.702648i
\(852\) 0 0
\(853\) −2.84195e6 + 4.92240e6i −0.133735 + 0.231635i −0.925113 0.379691i \(-0.876030\pi\)
0.791379 + 0.611326i \(0.209364\pi\)
\(854\) −1.38534e7 −0.649999
\(855\) 0 0
\(856\) −1.83509e6 −0.0856000
\(857\) 2.25933e6 3.91328e6i 0.105082 0.182007i −0.808690 0.588235i \(-0.799823\pi\)
0.913772 + 0.406228i \(0.133156\pi\)
\(858\) 0 0
\(859\) −148468. 257154.i −0.00686515 0.0118908i 0.862572 0.505934i \(-0.168852\pi\)
−0.869438 + 0.494043i \(0.835519\pi\)
\(860\) 645517. + 1.11807e6i 0.0297619 + 0.0515492i
\(861\) 0 0
\(862\) −587304. + 1.01724e6i −0.0269212 + 0.0466289i
\(863\) 1.89964e7 0.868251 0.434125 0.900852i \(-0.357057\pi\)
0.434125 + 0.900852i \(0.357057\pi\)
\(864\) 0 0
\(865\) −4.59857e6 −0.208970
\(866\) −1.46249e6 + 2.53311e6i −0.0662672 + 0.114778i
\(867\) 0 0
\(868\) 1.48129e7 + 2.56568e7i 0.667332 + 1.15585i
\(869\) 710736. + 1.23103e6i 0.0319270 + 0.0552992i
\(870\) 0 0
\(871\) 8.01932e6 1.38899e7i 0.358172 0.620373i
\(872\) −1.11232e7 −0.495382
\(873\) 0 0
\(874\) 1.10293e7 0.488393
\(875\) 1.18256e7 2.04826e7i 0.522160 0.904408i
\(876\) 0 0
\(877\) −7.85608e6 1.36071e7i −0.344911 0.597403i 0.640427 0.768019i \(-0.278757\pi\)
−0.985338 + 0.170616i \(0.945424\pi\)
\(878\) 3.88155e6 + 6.72304e6i 0.169929 + 0.294326i
\(879\) 0 0
\(880\) −53668.7 + 92957.0i −0.00233623 + 0.00404646i
\(881\) −1.34864e7 −0.585404 −0.292702 0.956204i \(-0.594554\pi\)
−0.292702 + 0.956204i \(0.594554\pi\)
\(882\) 0 0
\(883\) 3.54880e7 1.53172 0.765861 0.643006i \(-0.222313\pi\)
0.765861 + 0.643006i \(0.222313\pi\)
\(884\) 2.43626e6 4.21973e6i 0.104856 0.181616i
\(885\) 0 0
\(886\) 9.08182e6 + 1.57302e7i 0.388677 + 0.673208i
\(887\) 1.44698e7 + 2.50624e7i 0.617522 + 1.06958i 0.989936 + 0.141513i \(0.0451967\pi\)
−0.372414 + 0.928067i \(0.621470\pi\)
\(888\) 0 0
\(889\) 4.89632e6 8.48067e6i 0.207786 0.359895i
\(890\) 2.08324e6 0.0881587
\(891\) 0 0
\(892\) −1.39512e7 −0.587082
\(893\) 1.90806e7 3.30485e7i 0.800687 1.38683i
\(894\) 0 0
\(895\) −2.11140e6 3.65705e6i −0.0881076 0.152607i
\(896\) −1.65737e6 2.87064e6i −0.0689682 0.119456i
\(897\) 0 0
\(898\) 1.38897e7 2.40576e7i 0.574780 0.995548i
\(899\) −4.00341e7 −1.65208
\(900\) 0 0
\(901\) 4.93502e7 2.02524
\(902\) −663590. + 1.14937e6i −0.0271571 + 0.0470375i
\(903\) 0 0
\(904\) −5.11296e6 8.85591e6i −0.208090 0.360423i
\(905\) −2.15309e6 3.72926e6i −0.0873856 0.151356i
\(906\) 0 0
\(907\) −3.41845e6 + 5.92094e6i −0.137979 + 0.238986i −0.926731 0.375725i \(-0.877394\pi\)
0.788753 + 0.614711i \(0.210727\pi\)
\(908\) 1.03572e7 0.416896
\(909\) 0 0
\(910\) 3.77387e6 0.151072
\(911\) −2.06379e7 + 3.57459e7i −0.823891 + 1.42702i 0.0788725 + 0.996885i \(0.474868\pi\)
−0.902764 + 0.430137i \(0.858465\pi\)
\(912\) 0 0
\(913\) −484446. 839085.i −0.0192339 0.0333142i
\(914\) 5.09024e6 + 8.81656e6i 0.201545 + 0.349087i
\(915\) 0 0
\(916\) 2.11773e6 3.66802e6i 0.0833935 0.144442i
\(917\) 1.21426e7 0.476858
\(918\) 0 0
\(919\) 324016. 0.0126555 0.00632773 0.999980i \(-0.497986\pi\)
0.00632773 + 0.999980i \(0.497986\pi\)
\(920\) −1.23292e6 + 2.13548e6i −0.0480248 + 0.0831813i
\(921\) 0 0
\(922\) 1.57456e7 + 2.72722e7i 0.610003 + 1.05656i
\(923\) 2.58164e6 + 4.47153e6i 0.0997451 + 0.172764i
\(924\) 0 0
\(925\) −1.21148e7 + 2.09835e7i −0.465547 + 0.806350i
\(926\) −2.38866e7 −0.915434
\(927\) 0 0
\(928\) 4.47928e6 0.170741
\(929\) 1.02225e7 1.77059e7i 0.388614 0.673099i −0.603650 0.797250i \(-0.706287\pi\)
0.992263 + 0.124151i \(0.0396208\pi\)
\(930\) 0 0
\(931\) 1.72482e7 + 2.98747e7i 0.652182 + 1.12961i
\(932\) 6.87403e6 + 1.19062e7i 0.259222 + 0.448985i
\(933\) 0 0
\(934\) 3.50865e6 6.07715e6i 0.131605 0.227947i
\(935\) 547090. 0.0204659
\(936\) 0 0
\(937\) 661898. 0.0246287 0.0123144 0.999924i \(-0.496080\pi\)
0.0123144 + 0.999924i \(0.496080\pi\)
\(938\) −2.78061e7 + 4.81615e7i −1.03189 + 1.78728i
\(939\) 0 0
\(940\) 4.26588e6 + 7.38871e6i 0.157467 + 0.272740i
\(941\) −4.39669e6 7.61529e6i −0.161865 0.280358i 0.773673 0.633585i \(-0.218417\pi\)
−0.935537 + 0.353228i \(0.885084\pi\)
\(942\) 0 0
\(943\) −1.52445e7 + 2.64042e7i −0.558257 + 0.966929i
\(944\) −7.59839e6 −0.277518
\(945\) 0 0
\(946\) 338973. 0.0123151
\(947\) 1.67722e7 2.90503e7i 0.607736 1.05263i −0.383876 0.923385i \(-0.625411\pi\)
0.991613 0.129246i \(-0.0412556\pi\)
\(948\) 0 0
\(949\) −380506. 659055.i −0.0137150 0.0237551i
\(950\) 7.79532e6 + 1.35019e7i 0.280237 + 0.485384i
\(951\) 0 0
\(952\) −8.44747e6 + 1.46314e7i −0.302088 + 0.523233i
\(953\) −2.34073e7 −0.834872 −0.417436 0.908706i \(-0.637071\pi\)
−0.417436 + 0.908706i \(0.637071\pi\)
\(954\) 0 0
\(955\) −1.12351e7 −0.398628
\(956\) −2.90881e6 + 5.03820e6i −0.102937 + 0.178292i
\(957\) 0 0
\(958\) 890205. + 1.54188e6i 0.0313384 + 0.0542796i
\(959\) 2.61003e7 + 4.52071e7i 0.916431 + 1.58730i
\(960\) 0 0
\(961\) −2.75662e7 + 4.77461e7i −0.962872 + 1.66774i
\(962\) −8.29860e6 −0.289113
\(963\) 0 0
\(964\) −2.12924e7 −0.737957
\(965\) −4.04988e6 + 7.01461e6i −0.139999 + 0.242485i
\(966\) 0 0
\(967\) 971981. + 1.68352e6i 0.0334266 + 0.0578965i 0.882255 0.470772i \(-0.156025\pi\)
−0.848828 + 0.528669i \(0.822691\pi\)
\(968\) −5.13954e6 8.90195e6i −0.176293 0.305349i
\(969\) 0 0
\(970\) −704461. + 1.22016e6i −0.0240396 + 0.0416379i
\(971\) 5.80784e7 1.97682 0.988409 0.151811i \(-0.0485106\pi\)
0.988409 + 0.151811i \(0.0485106\pi\)
\(972\) 0 0
\(973\) 6.60200e7 2.23560
\(974\) 1.92526e7 3.33464e7i 0.650266 1.12629i
\(975\) 0 0
\(976\) 2.19118e6 + 3.79524e6i 0.0736298 + 0.127531i
\(977\) 2.29782e6 + 3.97995e6i 0.0770158 + 0.133395i 0.901961 0.431817i \(-0.142127\pi\)
−0.824945 + 0.565213i \(0.808794\pi\)
\(978\) 0 0
\(979\) 273487. 473694.i 0.00911970 0.0157958i
\(980\) −7.71242e6 −0.256522
\(981\) 0 0
\(982\) 2.14267e7 0.709049
\(983\) −1.05477e7 + 1.82691e7i −0.348155 + 0.603022i −0.985922 0.167207i \(-0.946525\pi\)
0.637767 + 0.770230i \(0.279858\pi\)
\(984\) 0 0
\(985\) 1.02154e7 + 1.76935e7i 0.335477 + 0.581063i
\(986\) −1.14153e7 1.97718e7i −0.373933 0.647670i
\(987\) 0 0
\(988\) −2.66988e6 + 4.62437e6i −0.0870160 + 0.150716i
\(989\) 7.78714e6 0.253156
\(990\) 0 0
\(991\) 2.32369e7 0.751614 0.375807 0.926698i \(-0.377366\pi\)
0.375807 + 0.926698i \(0.377366\pi\)
\(992\) 4.68589e6 8.11621e6i 0.151187 0.261863i
\(993\) 0 0
\(994\) −8.95155e6 1.55045e7i −0.287364 0.497729i
\(995\) −115240. 199602.i −0.00369017 0.00639156i
\(996\) 0 0
\(997\) −1.57477e7 + 2.72758e7i −0.501740 + 0.869039i 0.498258 + 0.867029i \(0.333973\pi\)
−0.999998 + 0.00201040i \(0.999360\pi\)
\(998\) −2.45377e7 −0.779842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.c.p.55.2 4
3.2 odd 2 162.6.c.n.55.1 4
9.2 odd 6 162.6.a.g.1.2 yes 2
9.4 even 3 inner 162.6.c.p.109.2 4
9.5 odd 6 162.6.c.n.109.1 4
9.7 even 3 162.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.6.a.c.1.1 2 9.7 even 3
162.6.a.g.1.2 yes 2 9.2 odd 6
162.6.c.n.55.1 4 3.2 odd 2
162.6.c.n.109.1 4 9.5 odd 6
162.6.c.p.55.2 4 1.1 even 1 trivial
162.6.c.p.109.2 4 9.4 even 3 inner