Properties

Label 1617.4.a.u.1.7
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1617,4,Mod(1,1617)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1617.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1617, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,-24,30,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 39x^{6} + 130x^{5} + 495x^{4} - 1290x^{3} - 2045x^{2} + 3952x + 1488 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-3.64724\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.64724 q^{2} -3.00000 q^{3} +5.30235 q^{4} -3.24850 q^{5} -10.9417 q^{6} -9.83896 q^{8} +9.00000 q^{9} -11.8481 q^{10} +11.0000 q^{11} -15.9071 q^{12} +40.9617 q^{13} +9.74551 q^{15} -78.3039 q^{16} +95.2103 q^{17} +32.8252 q^{18} -82.0022 q^{19} -17.2247 q^{20} +40.1196 q^{22} -56.3312 q^{23} +29.5169 q^{24} -114.447 q^{25} +149.397 q^{26} -27.0000 q^{27} +12.0038 q^{29} +35.5442 q^{30} +203.204 q^{31} -206.881 q^{32} -33.0000 q^{33} +347.255 q^{34} +47.7212 q^{36} -148.963 q^{37} -299.082 q^{38} -122.885 q^{39} +31.9619 q^{40} -30.5005 q^{41} +269.054 q^{43} +58.3259 q^{44} -29.2365 q^{45} -205.453 q^{46} +189.893 q^{47} +234.912 q^{48} -417.416 q^{50} -285.631 q^{51} +217.194 q^{52} -453.909 q^{53} -98.4755 q^{54} -35.7335 q^{55} +246.007 q^{57} +43.7807 q^{58} -376.189 q^{59} +51.6742 q^{60} -238.381 q^{61} +741.134 q^{62} -128.115 q^{64} -133.064 q^{65} -120.359 q^{66} +347.523 q^{67} +504.839 q^{68} +168.994 q^{69} -769.107 q^{71} -88.5506 q^{72} +600.823 q^{73} -543.302 q^{74} +343.342 q^{75} -434.805 q^{76} -448.192 q^{78} -1232.34 q^{79} +254.370 q^{80} +81.0000 q^{81} -111.243 q^{82} -351.925 q^{83} -309.291 q^{85} +981.305 q^{86} -36.0114 q^{87} -108.229 q^{88} -757.486 q^{89} -106.633 q^{90} -298.688 q^{92} -609.612 q^{93} +692.585 q^{94} +266.384 q^{95} +620.644 q^{96} -818.178 q^{97} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 24 q^{3} + 30 q^{4} + 20 q^{5} + 12 q^{6} - 78 q^{8} + 72 q^{9} + 94 q^{10} + 88 q^{11} - 90 q^{12} - 94 q^{13} - 60 q^{15} - 10 q^{16} + 144 q^{17} - 36 q^{18} - 8 q^{19} - 144 q^{20} - 44 q^{22}+ \cdots + 792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.64724 1.28949 0.644747 0.764396i \(-0.276963\pi\)
0.644747 + 0.764396i \(0.276963\pi\)
\(3\) −3.00000 −0.577350
\(4\) 5.30235 0.662794
\(5\) −3.24850 −0.290555 −0.145277 0.989391i \(-0.546407\pi\)
−0.145277 + 0.989391i \(0.546407\pi\)
\(6\) −10.9417 −0.744490
\(7\) 0 0
\(8\) −9.83896 −0.434825
\(9\) 9.00000 0.333333
\(10\) −11.8481 −0.374669
\(11\) 11.0000 0.301511
\(12\) −15.9071 −0.382664
\(13\) 40.9617 0.873903 0.436952 0.899485i \(-0.356058\pi\)
0.436952 + 0.899485i \(0.356058\pi\)
\(14\) 0 0
\(15\) 9.74551 0.167752
\(16\) −78.3039 −1.22350
\(17\) 95.2103 1.35835 0.679173 0.733978i \(-0.262339\pi\)
0.679173 + 0.733978i \(0.262339\pi\)
\(18\) 32.8252 0.429831
\(19\) −82.0022 −0.990136 −0.495068 0.868854i \(-0.664857\pi\)
−0.495068 + 0.868854i \(0.664857\pi\)
\(20\) −17.2247 −0.192578
\(21\) 0 0
\(22\) 40.1196 0.388797
\(23\) −56.3312 −0.510690 −0.255345 0.966850i \(-0.582189\pi\)
−0.255345 + 0.966850i \(0.582189\pi\)
\(24\) 29.5169 0.251046
\(25\) −114.447 −0.915578
\(26\) 149.397 1.12689
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 12.0038 0.0768637 0.0384318 0.999261i \(-0.487764\pi\)
0.0384318 + 0.999261i \(0.487764\pi\)
\(30\) 35.5442 0.216315
\(31\) 203.204 1.17731 0.588653 0.808385i \(-0.299658\pi\)
0.588653 + 0.808385i \(0.299658\pi\)
\(32\) −206.881 −1.14287
\(33\) −33.0000 −0.174078
\(34\) 347.255 1.75158
\(35\) 0 0
\(36\) 47.7212 0.220931
\(37\) −148.963 −0.661873 −0.330936 0.943653i \(-0.607365\pi\)
−0.330936 + 0.943653i \(0.607365\pi\)
\(38\) −299.082 −1.27677
\(39\) −122.885 −0.504548
\(40\) 31.9619 0.126340
\(41\) −30.5005 −0.116180 −0.0580900 0.998311i \(-0.518501\pi\)
−0.0580900 + 0.998311i \(0.518501\pi\)
\(42\) 0 0
\(43\) 269.054 0.954195 0.477098 0.878850i \(-0.341689\pi\)
0.477098 + 0.878850i \(0.341689\pi\)
\(44\) 58.3259 0.199840
\(45\) −29.2365 −0.0968517
\(46\) −205.453 −0.658532
\(47\) 189.893 0.589335 0.294667 0.955600i \(-0.404791\pi\)
0.294667 + 0.955600i \(0.404791\pi\)
\(48\) 234.912 0.706387
\(49\) 0 0
\(50\) −417.416 −1.18063
\(51\) −285.631 −0.784242
\(52\) 217.194 0.579218
\(53\) −453.909 −1.17640 −0.588200 0.808716i \(-0.700163\pi\)
−0.588200 + 0.808716i \(0.700163\pi\)
\(54\) −98.4755 −0.248163
\(55\) −35.7335 −0.0876056
\(56\) 0 0
\(57\) 246.007 0.571655
\(58\) 43.7807 0.0991153
\(59\) −376.189 −0.830095 −0.415048 0.909800i \(-0.636235\pi\)
−0.415048 + 0.909800i \(0.636235\pi\)
\(60\) 51.6742 0.111185
\(61\) −238.381 −0.500354 −0.250177 0.968200i \(-0.580489\pi\)
−0.250177 + 0.968200i \(0.580489\pi\)
\(62\) 741.134 1.51813
\(63\) 0 0
\(64\) −128.115 −0.250224
\(65\) −133.064 −0.253917
\(66\) −120.359 −0.224472
\(67\) 347.523 0.633682 0.316841 0.948479i \(-0.397378\pi\)
0.316841 + 0.948479i \(0.397378\pi\)
\(68\) 504.839 0.900304
\(69\) 168.994 0.294847
\(70\) 0 0
\(71\) −769.107 −1.28558 −0.642790 0.766042i \(-0.722223\pi\)
−0.642790 + 0.766042i \(0.722223\pi\)
\(72\) −88.5506 −0.144942
\(73\) 600.823 0.963302 0.481651 0.876363i \(-0.340037\pi\)
0.481651 + 0.876363i \(0.340037\pi\)
\(74\) −543.302 −0.853481
\(75\) 343.342 0.528609
\(76\) −434.805 −0.656257
\(77\) 0 0
\(78\) −448.192 −0.650612
\(79\) −1232.34 −1.75506 −0.877528 0.479526i \(-0.840809\pi\)
−0.877528 + 0.479526i \(0.840809\pi\)
\(80\) 254.370 0.355493
\(81\) 81.0000 0.111111
\(82\) −111.243 −0.149814
\(83\) −351.925 −0.465407 −0.232703 0.972548i \(-0.574757\pi\)
−0.232703 + 0.972548i \(0.574757\pi\)
\(84\) 0 0
\(85\) −309.291 −0.394674
\(86\) 981.305 1.23043
\(87\) −36.0114 −0.0443773
\(88\) −108.229 −0.131105
\(89\) −757.486 −0.902173 −0.451087 0.892480i \(-0.648963\pi\)
−0.451087 + 0.892480i \(0.648963\pi\)
\(90\) −106.633 −0.124890
\(91\) 0 0
\(92\) −298.688 −0.338482
\(93\) −609.612 −0.679718
\(94\) 692.585 0.759944
\(95\) 266.384 0.287689
\(96\) 620.644 0.659835
\(97\) −818.178 −0.856427 −0.428214 0.903678i \(-0.640857\pi\)
−0.428214 + 0.903678i \(0.640857\pi\)
\(98\) 0 0
\(99\) 99.0000 0.100504
\(100\) −606.840 −0.606840
\(101\) 553.647 0.545445 0.272722 0.962093i \(-0.412076\pi\)
0.272722 + 0.962093i \(0.412076\pi\)
\(102\) −1041.76 −1.01127
\(103\) −1533.22 −1.46673 −0.733363 0.679837i \(-0.762050\pi\)
−0.733363 + 0.679837i \(0.762050\pi\)
\(104\) −403.021 −0.379995
\(105\) 0 0
\(106\) −1655.51 −1.51696
\(107\) −330.037 −0.298186 −0.149093 0.988823i \(-0.547635\pi\)
−0.149093 + 0.988823i \(0.547635\pi\)
\(108\) −143.164 −0.127555
\(109\) −1466.41 −1.28859 −0.644296 0.764777i \(-0.722849\pi\)
−0.644296 + 0.764777i \(0.722849\pi\)
\(110\) −130.329 −0.112967
\(111\) 446.888 0.382132
\(112\) 0 0
\(113\) −1082.09 −0.900836 −0.450418 0.892818i \(-0.648725\pi\)
−0.450418 + 0.892818i \(0.648725\pi\)
\(114\) 897.245 0.737146
\(115\) 182.992 0.148384
\(116\) 63.6483 0.0509448
\(117\) 368.656 0.291301
\(118\) −1372.05 −1.07040
\(119\) 0 0
\(120\) −95.8857 −0.0729427
\(121\) 121.000 0.0909091
\(122\) −869.433 −0.645203
\(123\) 91.5016 0.0670766
\(124\) 1077.46 0.780312
\(125\) 777.845 0.556581
\(126\) 0 0
\(127\) −1047.31 −0.731760 −0.365880 0.930662i \(-0.619232\pi\)
−0.365880 + 0.930662i \(0.619232\pi\)
\(128\) 1187.79 0.820206
\(129\) −807.163 −0.550905
\(130\) −485.317 −0.327424
\(131\) −2556.91 −1.70533 −0.852664 0.522459i \(-0.825015\pi\)
−0.852664 + 0.522459i \(0.825015\pi\)
\(132\) −174.978 −0.115378
\(133\) 0 0
\(134\) 1267.50 0.817129
\(135\) 87.7096 0.0559173
\(136\) −936.770 −0.590642
\(137\) 697.531 0.434993 0.217497 0.976061i \(-0.430211\pi\)
0.217497 + 0.976061i \(0.430211\pi\)
\(138\) 616.360 0.380203
\(139\) 99.4507 0.0606856 0.0303428 0.999540i \(-0.490340\pi\)
0.0303428 + 0.999540i \(0.490340\pi\)
\(140\) 0 0
\(141\) −569.679 −0.340253
\(142\) −2805.12 −1.65775
\(143\) 450.579 0.263492
\(144\) −704.735 −0.407833
\(145\) −38.9943 −0.0223331
\(146\) 2191.35 1.24217
\(147\) 0 0
\(148\) −789.852 −0.438686
\(149\) −3248.44 −1.78606 −0.893030 0.449997i \(-0.851425\pi\)
−0.893030 + 0.449997i \(0.851425\pi\)
\(150\) 1252.25 0.681638
\(151\) −2472.19 −1.33235 −0.666173 0.745797i \(-0.732069\pi\)
−0.666173 + 0.745797i \(0.732069\pi\)
\(152\) 806.816 0.430536
\(153\) 856.893 0.452782
\(154\) 0 0
\(155\) −660.109 −0.342072
\(156\) −651.581 −0.334412
\(157\) −617.329 −0.313811 −0.156905 0.987614i \(-0.550152\pi\)
−0.156905 + 0.987614i \(0.550152\pi\)
\(158\) −4494.65 −2.26313
\(159\) 1361.73 0.679195
\(160\) 672.055 0.332066
\(161\) 0 0
\(162\) 295.426 0.143277
\(163\) 2674.29 1.28507 0.642535 0.766256i \(-0.277883\pi\)
0.642535 + 0.766256i \(0.277883\pi\)
\(164\) −161.725 −0.0770035
\(165\) 107.201 0.0505791
\(166\) −1283.55 −0.600139
\(167\) 2747.54 1.27312 0.636560 0.771227i \(-0.280357\pi\)
0.636560 + 0.771227i \(0.280357\pi\)
\(168\) 0 0
\(169\) −519.137 −0.236293
\(170\) −1128.06 −0.508930
\(171\) −738.020 −0.330045
\(172\) 1426.62 0.632435
\(173\) −506.133 −0.222431 −0.111216 0.993796i \(-0.535474\pi\)
−0.111216 + 0.993796i \(0.535474\pi\)
\(174\) −131.342 −0.0572242
\(175\) 0 0
\(176\) −861.343 −0.368899
\(177\) 1128.57 0.479256
\(178\) −2762.73 −1.16335
\(179\) 607.459 0.253652 0.126826 0.991925i \(-0.459521\pi\)
0.126826 + 0.991925i \(0.459521\pi\)
\(180\) −155.022 −0.0641927
\(181\) 2546.22 1.04563 0.522815 0.852446i \(-0.324882\pi\)
0.522815 + 0.852446i \(0.324882\pi\)
\(182\) 0 0
\(183\) 715.144 0.288879
\(184\) 554.241 0.222061
\(185\) 483.905 0.192310
\(186\) −2223.40 −0.876493
\(187\) 1047.31 0.409557
\(188\) 1006.88 0.390608
\(189\) 0 0
\(190\) 971.568 0.370973
\(191\) 2378.16 0.900931 0.450465 0.892794i \(-0.351258\pi\)
0.450465 + 0.892794i \(0.351258\pi\)
\(192\) 384.344 0.144467
\(193\) 2415.45 0.900868 0.450434 0.892810i \(-0.351269\pi\)
0.450434 + 0.892810i \(0.351269\pi\)
\(194\) −2984.09 −1.10436
\(195\) 399.193 0.146599
\(196\) 0 0
\(197\) −3381.10 −1.22281 −0.611404 0.791318i \(-0.709395\pi\)
−0.611404 + 0.791318i \(0.709395\pi\)
\(198\) 361.077 0.129599
\(199\) −4787.68 −1.70548 −0.852738 0.522339i \(-0.825059\pi\)
−0.852738 + 0.522339i \(0.825059\pi\)
\(200\) 1126.04 0.398116
\(201\) −1042.57 −0.365856
\(202\) 2019.28 0.703348
\(203\) 0 0
\(204\) −1514.52 −0.519791
\(205\) 99.0811 0.0337567
\(206\) −5592.02 −1.89133
\(207\) −506.981 −0.170230
\(208\) −3207.46 −1.06922
\(209\) −902.024 −0.298537
\(210\) 0 0
\(211\) 2580.29 0.841870 0.420935 0.907091i \(-0.361702\pi\)
0.420935 + 0.907091i \(0.361702\pi\)
\(212\) −2406.79 −0.779711
\(213\) 2307.32 0.742230
\(214\) −1203.73 −0.384509
\(215\) −874.024 −0.277246
\(216\) 265.652 0.0836820
\(217\) 0 0
\(218\) −5348.34 −1.66163
\(219\) −1802.47 −0.556163
\(220\) −189.472 −0.0580645
\(221\) 3899.98 1.18706
\(222\) 1629.91 0.492757
\(223\) −3554.80 −1.06747 −0.533737 0.845650i \(-0.679213\pi\)
−0.533737 + 0.845650i \(0.679213\pi\)
\(224\) 0 0
\(225\) −1030.03 −0.305193
\(226\) −3946.64 −1.16162
\(227\) −4875.17 −1.42545 −0.712723 0.701446i \(-0.752538\pi\)
−0.712723 + 0.701446i \(0.752538\pi\)
\(228\) 1304.41 0.378890
\(229\) 6303.38 1.81895 0.909475 0.415759i \(-0.136484\pi\)
0.909475 + 0.415759i \(0.136484\pi\)
\(230\) 667.416 0.191340
\(231\) 0 0
\(232\) −118.105 −0.0334222
\(233\) 3905.06 1.09798 0.548989 0.835829i \(-0.315013\pi\)
0.548989 + 0.835829i \(0.315013\pi\)
\(234\) 1344.58 0.375631
\(235\) −616.868 −0.171234
\(236\) −1994.69 −0.550183
\(237\) 3697.03 1.01328
\(238\) 0 0
\(239\) −3569.46 −0.966063 −0.483032 0.875603i \(-0.660464\pi\)
−0.483032 + 0.875603i \(0.660464\pi\)
\(240\) −763.111 −0.205244
\(241\) 4453.22 1.19028 0.595139 0.803623i \(-0.297097\pi\)
0.595139 + 0.803623i \(0.297097\pi\)
\(242\) 441.316 0.117227
\(243\) −243.000 −0.0641500
\(244\) −1263.98 −0.331632
\(245\) 0 0
\(246\) 333.728 0.0864949
\(247\) −3358.95 −0.865283
\(248\) −1999.32 −0.511922
\(249\) 1055.77 0.268703
\(250\) 2836.99 0.717707
\(251\) 5783.13 1.45429 0.727147 0.686482i \(-0.240846\pi\)
0.727147 + 0.686482i \(0.240846\pi\)
\(252\) 0 0
\(253\) −619.643 −0.153979
\(254\) −3819.78 −0.943600
\(255\) 927.873 0.227865
\(256\) 5357.06 1.30787
\(257\) 2593.12 0.629395 0.314698 0.949192i \(-0.398097\pi\)
0.314698 + 0.949192i \(0.398097\pi\)
\(258\) −2943.92 −0.710388
\(259\) 0 0
\(260\) −705.554 −0.168295
\(261\) 108.034 0.0256212
\(262\) −9325.65 −2.19901
\(263\) 8286.95 1.94295 0.971474 0.237145i \(-0.0762115\pi\)
0.971474 + 0.237145i \(0.0762115\pi\)
\(264\) 324.686 0.0756933
\(265\) 1474.52 0.341809
\(266\) 0 0
\(267\) 2272.46 0.520870
\(268\) 1842.69 0.420001
\(269\) 1891.43 0.428708 0.214354 0.976756i \(-0.431235\pi\)
0.214354 + 0.976756i \(0.431235\pi\)
\(270\) 319.898 0.0721051
\(271\) −1469.34 −0.329357 −0.164679 0.986347i \(-0.552659\pi\)
−0.164679 + 0.986347i \(0.552659\pi\)
\(272\) −7455.33 −1.66193
\(273\) 0 0
\(274\) 2544.06 0.560921
\(275\) −1258.92 −0.276057
\(276\) 896.064 0.195423
\(277\) −6429.80 −1.39469 −0.697346 0.716735i \(-0.745636\pi\)
−0.697346 + 0.716735i \(0.745636\pi\)
\(278\) 362.721 0.0782537
\(279\) 1828.84 0.392436
\(280\) 0 0
\(281\) −210.954 −0.0447846 −0.0223923 0.999749i \(-0.507128\pi\)
−0.0223923 + 0.999749i \(0.507128\pi\)
\(282\) −2077.76 −0.438754
\(283\) 926.036 0.194513 0.0972564 0.995259i \(-0.468993\pi\)
0.0972564 + 0.995259i \(0.468993\pi\)
\(284\) −4078.08 −0.852075
\(285\) −799.153 −0.166097
\(286\) 1643.37 0.339771
\(287\) 0 0
\(288\) −1861.93 −0.380956
\(289\) 4152.00 0.845105
\(290\) −142.222 −0.0287984
\(291\) 2454.54 0.494458
\(292\) 3185.78 0.638471
\(293\) −1290.46 −0.257303 −0.128651 0.991690i \(-0.541065\pi\)
−0.128651 + 0.991690i \(0.541065\pi\)
\(294\) 0 0
\(295\) 1222.05 0.241188
\(296\) 1465.64 0.287799
\(297\) −297.000 −0.0580259
\(298\) −11847.9 −2.30311
\(299\) −2307.42 −0.446294
\(300\) 1820.52 0.350359
\(301\) 0 0
\(302\) −9016.68 −1.71805
\(303\) −1660.94 −0.314913
\(304\) 6421.09 1.21143
\(305\) 774.382 0.145380
\(306\) 3125.29 0.583860
\(307\) −3882.39 −0.721757 −0.360879 0.932613i \(-0.617523\pi\)
−0.360879 + 0.932613i \(0.617523\pi\)
\(308\) 0 0
\(309\) 4599.66 0.846814
\(310\) −2407.58 −0.441100
\(311\) −6548.48 −1.19399 −0.596994 0.802246i \(-0.703638\pi\)
−0.596994 + 0.802246i \(0.703638\pi\)
\(312\) 1209.06 0.219390
\(313\) 382.812 0.0691304 0.0345652 0.999402i \(-0.488995\pi\)
0.0345652 + 0.999402i \(0.488995\pi\)
\(314\) −2251.55 −0.404657
\(315\) 0 0
\(316\) −6534.32 −1.16324
\(317\) 8659.95 1.53436 0.767178 0.641434i \(-0.221660\pi\)
0.767178 + 0.641434i \(0.221660\pi\)
\(318\) 4966.54 0.875817
\(319\) 132.042 0.0231753
\(320\) 416.181 0.0727038
\(321\) 990.112 0.172158
\(322\) 0 0
\(323\) −7807.45 −1.34495
\(324\) 429.491 0.0736438
\(325\) −4687.96 −0.800126
\(326\) 9753.77 1.65709
\(327\) 4399.22 0.743968
\(328\) 300.094 0.0505180
\(329\) 0 0
\(330\) 390.986 0.0652215
\(331\) −10596.6 −1.75964 −0.879821 0.475304i \(-0.842338\pi\)
−0.879821 + 0.475304i \(0.842338\pi\)
\(332\) −1866.03 −0.308469
\(333\) −1340.66 −0.220624
\(334\) 10020.9 1.64168
\(335\) −1128.93 −0.184119
\(336\) 0 0
\(337\) −3561.41 −0.575675 −0.287838 0.957679i \(-0.592936\pi\)
−0.287838 + 0.957679i \(0.592936\pi\)
\(338\) −1893.42 −0.304699
\(339\) 3246.27 0.520098
\(340\) −1639.97 −0.261588
\(341\) 2235.24 0.354971
\(342\) −2691.73 −0.425592
\(343\) 0 0
\(344\) −2647.21 −0.414907
\(345\) −548.977 −0.0856693
\(346\) −1845.99 −0.286824
\(347\) −195.225 −0.0302024 −0.0151012 0.999886i \(-0.504807\pi\)
−0.0151012 + 0.999886i \(0.504807\pi\)
\(348\) −190.945 −0.0294130
\(349\) −614.409 −0.0942366 −0.0471183 0.998889i \(-0.515004\pi\)
−0.0471183 + 0.998889i \(0.515004\pi\)
\(350\) 0 0
\(351\) −1105.97 −0.168183
\(352\) −2275.69 −0.344588
\(353\) −1545.91 −0.233090 −0.116545 0.993185i \(-0.537182\pi\)
−0.116545 + 0.993185i \(0.537182\pi\)
\(354\) 4116.15 0.617997
\(355\) 2498.45 0.373532
\(356\) −4016.46 −0.597955
\(357\) 0 0
\(358\) 2215.55 0.327082
\(359\) 2724.00 0.400466 0.200233 0.979748i \(-0.435830\pi\)
0.200233 + 0.979748i \(0.435830\pi\)
\(360\) 287.657 0.0421135
\(361\) −134.643 −0.0196301
\(362\) 9286.68 1.34833
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) −1951.78 −0.279892
\(366\) 2608.30 0.372508
\(367\) −9559.12 −1.35962 −0.679812 0.733386i \(-0.737939\pi\)
−0.679812 + 0.733386i \(0.737939\pi\)
\(368\) 4410.95 0.624828
\(369\) −274.505 −0.0387267
\(370\) 1764.92 0.247983
\(371\) 0 0
\(372\) −3232.38 −0.450514
\(373\) 7269.54 1.00912 0.504561 0.863376i \(-0.331654\pi\)
0.504561 + 0.863376i \(0.331654\pi\)
\(374\) 3819.80 0.528121
\(375\) −2333.54 −0.321342
\(376\) −1868.35 −0.256257
\(377\) 491.696 0.0671714
\(378\) 0 0
\(379\) 12989.3 1.76047 0.880234 0.474540i \(-0.157385\pi\)
0.880234 + 0.474540i \(0.157385\pi\)
\(380\) 1412.46 0.190679
\(381\) 3141.92 0.422482
\(382\) 8673.73 1.16174
\(383\) −2308.92 −0.308043 −0.154021 0.988068i \(-0.549222\pi\)
−0.154021 + 0.988068i \(0.549222\pi\)
\(384\) −3563.36 −0.473546
\(385\) 0 0
\(386\) 8809.71 1.16166
\(387\) 2421.49 0.318065
\(388\) −4338.27 −0.567635
\(389\) −5270.18 −0.686912 −0.343456 0.939169i \(-0.611598\pi\)
−0.343456 + 0.939169i \(0.611598\pi\)
\(390\) 1455.95 0.189038
\(391\) −5363.31 −0.693694
\(392\) 0 0
\(393\) 7670.72 0.984572
\(394\) −12331.7 −1.57680
\(395\) 4003.27 0.509940
\(396\) 524.933 0.0666133
\(397\) 12746.8 1.61145 0.805724 0.592291i \(-0.201776\pi\)
0.805724 + 0.592291i \(0.201776\pi\)
\(398\) −17461.8 −2.19920
\(399\) 0 0
\(400\) 8961.66 1.12021
\(401\) −6003.06 −0.747578 −0.373789 0.927514i \(-0.621942\pi\)
−0.373789 + 0.927514i \(0.621942\pi\)
\(402\) −3802.50 −0.471769
\(403\) 8323.59 1.02885
\(404\) 2935.63 0.361518
\(405\) −263.129 −0.0322839
\(406\) 0 0
\(407\) −1638.59 −0.199562
\(408\) 2810.31 0.341008
\(409\) −8220.38 −0.993818 −0.496909 0.867803i \(-0.665532\pi\)
−0.496909 + 0.867803i \(0.665532\pi\)
\(410\) 361.373 0.0435291
\(411\) −2092.59 −0.251144
\(412\) −8129.68 −0.972137
\(413\) 0 0
\(414\) −1849.08 −0.219511
\(415\) 1143.23 0.135226
\(416\) −8474.22 −0.998756
\(417\) −298.352 −0.0350369
\(418\) −3289.90 −0.384962
\(419\) −2847.79 −0.332037 −0.166019 0.986123i \(-0.553091\pi\)
−0.166019 + 0.986123i \(0.553091\pi\)
\(420\) 0 0
\(421\) −1481.78 −0.171538 −0.0857688 0.996315i \(-0.527335\pi\)
−0.0857688 + 0.996315i \(0.527335\pi\)
\(422\) 9410.94 1.08559
\(423\) 1709.04 0.196445
\(424\) 4465.99 0.511528
\(425\) −10896.6 −1.24367
\(426\) 8415.35 0.957101
\(427\) 0 0
\(428\) −1749.98 −0.197636
\(429\) −1351.74 −0.152127
\(430\) −3187.77 −0.357507
\(431\) 978.752 0.109385 0.0546924 0.998503i \(-0.482582\pi\)
0.0546924 + 0.998503i \(0.482582\pi\)
\(432\) 2114.20 0.235462
\(433\) 15417.0 1.71108 0.855538 0.517740i \(-0.173226\pi\)
0.855538 + 0.517740i \(0.173226\pi\)
\(434\) 0 0
\(435\) 116.983 0.0128940
\(436\) −7775.42 −0.854071
\(437\) 4619.28 0.505653
\(438\) −6574.04 −0.717168
\(439\) −5719.23 −0.621785 −0.310893 0.950445i \(-0.600628\pi\)
−0.310893 + 0.950445i \(0.600628\pi\)
\(440\) 351.581 0.0380931
\(441\) 0 0
\(442\) 14224.2 1.53071
\(443\) −9355.29 −1.00335 −0.501674 0.865057i \(-0.667282\pi\)
−0.501674 + 0.865057i \(0.667282\pi\)
\(444\) 2369.56 0.253275
\(445\) 2460.70 0.262131
\(446\) −12965.2 −1.37650
\(447\) 9745.33 1.03118
\(448\) 0 0
\(449\) 8588.44 0.902703 0.451351 0.892346i \(-0.350942\pi\)
0.451351 + 0.892346i \(0.350942\pi\)
\(450\) −3756.75 −0.393544
\(451\) −335.506 −0.0350296
\(452\) −5737.62 −0.597069
\(453\) 7416.58 0.769231
\(454\) −17780.9 −1.83810
\(455\) 0 0
\(456\) −2420.45 −0.248570
\(457\) 13105.9 1.34151 0.670753 0.741681i \(-0.265971\pi\)
0.670753 + 0.741681i \(0.265971\pi\)
\(458\) 22990.0 2.34552
\(459\) −2570.68 −0.261414
\(460\) 970.289 0.0983478
\(461\) 3602.92 0.364002 0.182001 0.983298i \(-0.441743\pi\)
0.182001 + 0.983298i \(0.441743\pi\)
\(462\) 0 0
\(463\) −12636.3 −1.26838 −0.634190 0.773177i \(-0.718667\pi\)
−0.634190 + 0.773177i \(0.718667\pi\)
\(464\) −939.943 −0.0940426
\(465\) 1980.33 0.197496
\(466\) 14242.7 1.41584
\(467\) −14027.3 −1.38995 −0.694976 0.719033i \(-0.744585\pi\)
−0.694976 + 0.719033i \(0.744585\pi\)
\(468\) 1954.74 0.193073
\(469\) 0 0
\(470\) −2249.87 −0.220805
\(471\) 1851.99 0.181179
\(472\) 3701.31 0.360946
\(473\) 2959.60 0.287701
\(474\) 13483.9 1.30662
\(475\) 9384.92 0.906547
\(476\) 0 0
\(477\) −4085.18 −0.392133
\(478\) −13018.7 −1.24573
\(479\) −10283.7 −0.980946 −0.490473 0.871456i \(-0.663176\pi\)
−0.490473 + 0.871456i \(0.663176\pi\)
\(480\) −2016.16 −0.191718
\(481\) −6101.76 −0.578413
\(482\) 16241.9 1.53486
\(483\) 0 0
\(484\) 641.585 0.0602540
\(485\) 2657.86 0.248839
\(486\) −886.279 −0.0827211
\(487\) 5602.07 0.521260 0.260630 0.965439i \(-0.416070\pi\)
0.260630 + 0.965439i \(0.416070\pi\)
\(488\) 2345.42 0.217566
\(489\) −8022.87 −0.741936
\(490\) 0 0
\(491\) 17867.1 1.64222 0.821109 0.570772i \(-0.193356\pi\)
0.821109 + 0.570772i \(0.193356\pi\)
\(492\) 485.174 0.0444580
\(493\) 1142.88 0.104408
\(494\) −12250.9 −1.11578
\(495\) −321.602 −0.0292019
\(496\) −15911.7 −1.44043
\(497\) 0 0
\(498\) 3850.66 0.346490
\(499\) −4310.61 −0.386713 −0.193356 0.981129i \(-0.561937\pi\)
−0.193356 + 0.981129i \(0.561937\pi\)
\(500\) 4124.41 0.368899
\(501\) −8242.62 −0.735036
\(502\) 21092.5 1.87530
\(503\) 21922.9 1.94333 0.971664 0.236368i \(-0.0759570\pi\)
0.971664 + 0.236368i \(0.0759570\pi\)
\(504\) 0 0
\(505\) −1798.52 −0.158482
\(506\) −2259.99 −0.198555
\(507\) 1557.41 0.136424
\(508\) −5553.19 −0.485006
\(509\) −414.595 −0.0361033 −0.0180517 0.999837i \(-0.505746\pi\)
−0.0180517 + 0.999837i \(0.505746\pi\)
\(510\) 3384.17 0.293831
\(511\) 0 0
\(512\) 10036.2 0.866290
\(513\) 2214.06 0.190552
\(514\) 9457.74 0.811601
\(515\) 4980.67 0.426164
\(516\) −4279.86 −0.365137
\(517\) 2088.82 0.177691
\(518\) 0 0
\(519\) 1518.40 0.128421
\(520\) 1309.21 0.110409
\(521\) −12637.0 −1.06264 −0.531322 0.847170i \(-0.678304\pi\)
−0.531322 + 0.847170i \(0.678304\pi\)
\(522\) 394.026 0.0330384
\(523\) 8622.02 0.720870 0.360435 0.932784i \(-0.382628\pi\)
0.360435 + 0.932784i \(0.382628\pi\)
\(524\) −13557.6 −1.13028
\(525\) 0 0
\(526\) 30224.5 2.50542
\(527\) 19347.1 1.59919
\(528\) 2584.03 0.212984
\(529\) −8993.79 −0.739196
\(530\) 5377.95 0.440760
\(531\) −3385.70 −0.276698
\(532\) 0 0
\(533\) −1249.35 −0.101530
\(534\) 8288.20 0.671658
\(535\) 1072.13 0.0866395
\(536\) −3419.26 −0.275540
\(537\) −1822.38 −0.146446
\(538\) 6898.49 0.552816
\(539\) 0 0
\(540\) 465.067 0.0370617
\(541\) 6030.56 0.479250 0.239625 0.970866i \(-0.422976\pi\)
0.239625 + 0.970866i \(0.422976\pi\)
\(542\) −5359.02 −0.424704
\(543\) −7638.67 −0.603695
\(544\) −19697.2 −1.55241
\(545\) 4763.63 0.374407
\(546\) 0 0
\(547\) −4459.63 −0.348593 −0.174296 0.984693i \(-0.555765\pi\)
−0.174296 + 0.984693i \(0.555765\pi\)
\(548\) 3698.56 0.288311
\(549\) −2145.43 −0.166785
\(550\) −4591.58 −0.355974
\(551\) −984.337 −0.0761055
\(552\) −1662.72 −0.128207
\(553\) 0 0
\(554\) −23451.0 −1.79845
\(555\) −1451.72 −0.111031
\(556\) 527.323 0.0402221
\(557\) −8263.96 −0.628645 −0.314323 0.949316i \(-0.601777\pi\)
−0.314323 + 0.949316i \(0.601777\pi\)
\(558\) 6670.20 0.506043
\(559\) 11020.9 0.833874
\(560\) 0 0
\(561\) −3141.94 −0.236458
\(562\) −769.400 −0.0577494
\(563\) 11358.0 0.850235 0.425118 0.905138i \(-0.360233\pi\)
0.425118 + 0.905138i \(0.360233\pi\)
\(564\) −3020.64 −0.225517
\(565\) 3515.17 0.261742
\(566\) 3377.48 0.250823
\(567\) 0 0
\(568\) 7567.21 0.559002
\(569\) −9877.17 −0.727720 −0.363860 0.931454i \(-0.618541\pi\)
−0.363860 + 0.931454i \(0.618541\pi\)
\(570\) −2914.70 −0.214182
\(571\) 5265.18 0.385886 0.192943 0.981210i \(-0.438197\pi\)
0.192943 + 0.981210i \(0.438197\pi\)
\(572\) 2389.13 0.174641
\(573\) −7134.49 −0.520153
\(574\) 0 0
\(575\) 6446.95 0.467576
\(576\) −1153.03 −0.0834080
\(577\) −19193.1 −1.38478 −0.692390 0.721524i \(-0.743442\pi\)
−0.692390 + 0.721524i \(0.743442\pi\)
\(578\) 15143.3 1.08976
\(579\) −7246.34 −0.520116
\(580\) −206.762 −0.0148023
\(581\) 0 0
\(582\) 8952.28 0.637601
\(583\) −4993.00 −0.354698
\(584\) −5911.48 −0.418868
\(585\) −1197.58 −0.0846390
\(586\) −4706.63 −0.331790
\(587\) 21860.1 1.53708 0.768538 0.639805i \(-0.220985\pi\)
0.768538 + 0.639805i \(0.220985\pi\)
\(588\) 0 0
\(589\) −16663.2 −1.16569
\(590\) 4457.11 0.311011
\(591\) 10143.3 0.705989
\(592\) 11664.3 0.809800
\(593\) 5715.59 0.395803 0.197901 0.980222i \(-0.436587\pi\)
0.197901 + 0.980222i \(0.436587\pi\)
\(594\) −1083.23 −0.0748240
\(595\) 0 0
\(596\) −17224.4 −1.18379
\(597\) 14363.0 0.984657
\(598\) −8415.73 −0.575493
\(599\) 14681.1 1.00143 0.500714 0.865613i \(-0.333071\pi\)
0.500714 + 0.865613i \(0.333071\pi\)
\(600\) −3378.12 −0.229852
\(601\) −12450.1 −0.845011 −0.422505 0.906360i \(-0.638849\pi\)
−0.422505 + 0.906360i \(0.638849\pi\)
\(602\) 0 0
\(603\) 3127.71 0.211227
\(604\) −13108.4 −0.883072
\(605\) −393.069 −0.0264141
\(606\) −6057.85 −0.406078
\(607\) −9521.00 −0.636648 −0.318324 0.947982i \(-0.603120\pi\)
−0.318324 + 0.947982i \(0.603120\pi\)
\(608\) 16964.7 1.13160
\(609\) 0 0
\(610\) 2824.36 0.187467
\(611\) 7778.34 0.515021
\(612\) 4543.55 0.300101
\(613\) −29.5388 −0.00194627 −0.000973133 1.00000i \(-0.500310\pi\)
−0.000973133 1.00000i \(0.500310\pi\)
\(614\) −14160.0 −0.930702
\(615\) −297.243 −0.0194894
\(616\) 0 0
\(617\) −13875.2 −0.905342 −0.452671 0.891678i \(-0.649529\pi\)
−0.452671 + 0.891678i \(0.649529\pi\)
\(618\) 16776.1 1.09196
\(619\) 10367.2 0.673169 0.336584 0.941653i \(-0.390728\pi\)
0.336584 + 0.941653i \(0.390728\pi\)
\(620\) −3500.13 −0.226724
\(621\) 1520.94 0.0982823
\(622\) −23883.9 −1.53964
\(623\) 0 0
\(624\) 9622.39 0.617314
\(625\) 11779.1 0.753860
\(626\) 1396.21 0.0891433
\(627\) 2706.07 0.172361
\(628\) −3273.30 −0.207992
\(629\) −14182.8 −0.899053
\(630\) 0 0
\(631\) 5081.22 0.320571 0.160285 0.987071i \(-0.448759\pi\)
0.160285 + 0.987071i \(0.448759\pi\)
\(632\) 12125.0 0.763141
\(633\) −7740.88 −0.486054
\(634\) 31584.9 1.97854
\(635\) 3402.18 0.212616
\(636\) 7220.36 0.450166
\(637\) 0 0
\(638\) 481.587 0.0298844
\(639\) −6921.96 −0.428527
\(640\) −3858.53 −0.238315
\(641\) 9720.65 0.598974 0.299487 0.954100i \(-0.403184\pi\)
0.299487 + 0.954100i \(0.403184\pi\)
\(642\) 3611.18 0.221997
\(643\) 22740.9 1.39473 0.697365 0.716716i \(-0.254355\pi\)
0.697365 + 0.716716i \(0.254355\pi\)
\(644\) 0 0
\(645\) 2622.07 0.160068
\(646\) −28475.6 −1.73430
\(647\) 27862.7 1.69304 0.846520 0.532357i \(-0.178694\pi\)
0.846520 + 0.532357i \(0.178694\pi\)
\(648\) −796.956 −0.0483138
\(649\) −4138.08 −0.250283
\(650\) −17098.1 −1.03176
\(651\) 0 0
\(652\) 14180.0 0.851737
\(653\) 26111.3 1.56480 0.782399 0.622778i \(-0.213996\pi\)
0.782399 + 0.622778i \(0.213996\pi\)
\(654\) 16045.0 0.959343
\(655\) 8306.12 0.495492
\(656\) 2388.31 0.142146
\(657\) 5407.41 0.321101
\(658\) 0 0
\(659\) −22590.4 −1.33535 −0.667676 0.744452i \(-0.732711\pi\)
−0.667676 + 0.744452i \(0.732711\pi\)
\(660\) 568.416 0.0335236
\(661\) 30178.4 1.77580 0.887899 0.460039i \(-0.152164\pi\)
0.887899 + 0.460039i \(0.152164\pi\)
\(662\) −38648.3 −2.26905
\(663\) −11699.9 −0.685351
\(664\) 3462.57 0.202370
\(665\) 0 0
\(666\) −4889.72 −0.284494
\(667\) −676.188 −0.0392535
\(668\) 14568.4 0.843817
\(669\) 10664.4 0.616307
\(670\) −4117.48 −0.237421
\(671\) −2622.19 −0.150862
\(672\) 0 0
\(673\) 3391.09 0.194230 0.0971151 0.995273i \(-0.469038\pi\)
0.0971151 + 0.995273i \(0.469038\pi\)
\(674\) −12989.3 −0.742330
\(675\) 3090.08 0.176203
\(676\) −2752.65 −0.156614
\(677\) 3271.32 0.185712 0.0928559 0.995680i \(-0.470400\pi\)
0.0928559 + 0.995680i \(0.470400\pi\)
\(678\) 11839.9 0.670663
\(679\) 0 0
\(680\) 3043.10 0.171614
\(681\) 14625.5 0.822982
\(682\) 8152.47 0.457733
\(683\) −31941.5 −1.78947 −0.894734 0.446600i \(-0.852635\pi\)
−0.894734 + 0.446600i \(0.852635\pi\)
\(684\) −3913.24 −0.218752
\(685\) −2265.93 −0.126389
\(686\) 0 0
\(687\) −18910.2 −1.05017
\(688\) −21068.0 −1.16746
\(689\) −18592.9 −1.02806
\(690\) −2002.25 −0.110470
\(691\) −12811.1 −0.705292 −0.352646 0.935757i \(-0.614718\pi\)
−0.352646 + 0.935757i \(0.614718\pi\)
\(692\) −2683.70 −0.147426
\(693\) 0 0
\(694\) −712.034 −0.0389459
\(695\) −323.066 −0.0176325
\(696\) 354.314 0.0192963
\(697\) −2903.97 −0.157813
\(698\) −2240.90 −0.121518
\(699\) −11715.2 −0.633918
\(700\) 0 0
\(701\) 17225.0 0.928076 0.464038 0.885815i \(-0.346400\pi\)
0.464038 + 0.885815i \(0.346400\pi\)
\(702\) −4033.73 −0.216871
\(703\) 12215.3 0.655344
\(704\) −1409.26 −0.0754453
\(705\) 1850.60 0.0988621
\(706\) −5638.31 −0.300568
\(707\) 0 0
\(708\) 5984.06 0.317648
\(709\) −2822.10 −0.149487 −0.0747434 0.997203i \(-0.523814\pi\)
−0.0747434 + 0.997203i \(0.523814\pi\)
\(710\) 9112.43 0.481667
\(711\) −11091.1 −0.585018
\(712\) 7452.88 0.392287
\(713\) −11446.7 −0.601239
\(714\) 0 0
\(715\) −1463.71 −0.0765588
\(716\) 3220.97 0.168119
\(717\) 10708.4 0.557757
\(718\) 9935.09 0.516399
\(719\) −30929.8 −1.60429 −0.802147 0.597127i \(-0.796309\pi\)
−0.802147 + 0.597127i \(0.796309\pi\)
\(720\) 2289.33 0.118498
\(721\) 0 0
\(722\) −491.076 −0.0253129
\(723\) −13359.7 −0.687207
\(724\) 13501.0 0.693038
\(725\) −1373.80 −0.0703747
\(726\) −1323.95 −0.0676809
\(727\) −8100.81 −0.413263 −0.206632 0.978419i \(-0.566250\pi\)
−0.206632 + 0.978419i \(0.566250\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −7118.60 −0.360919
\(731\) 25616.7 1.29613
\(732\) 3791.95 0.191468
\(733\) −31494.1 −1.58699 −0.793494 0.608578i \(-0.791740\pi\)
−0.793494 + 0.608578i \(0.791740\pi\)
\(734\) −34864.4 −1.75323
\(735\) 0 0
\(736\) 11653.9 0.583652
\(737\) 3822.75 0.191062
\(738\) −1001.18 −0.0499378
\(739\) −24848.3 −1.23689 −0.618444 0.785829i \(-0.712237\pi\)
−0.618444 + 0.785829i \(0.712237\pi\)
\(740\) 2565.84 0.127462
\(741\) 10076.9 0.499571
\(742\) 0 0
\(743\) −16842.2 −0.831600 −0.415800 0.909456i \(-0.636498\pi\)
−0.415800 + 0.909456i \(0.636498\pi\)
\(744\) 5997.95 0.295558
\(745\) 10552.6 0.518949
\(746\) 26513.8 1.30126
\(747\) −3167.32 −0.155136
\(748\) 5553.23 0.271452
\(749\) 0 0
\(750\) −8510.96 −0.414369
\(751\) 16080.6 0.781346 0.390673 0.920529i \(-0.372242\pi\)
0.390673 + 0.920529i \(0.372242\pi\)
\(752\) −14869.4 −0.721050
\(753\) −17349.4 −0.839637
\(754\) 1793.33 0.0866171
\(755\) 8030.93 0.387120
\(756\) 0 0
\(757\) −19231.4 −0.923351 −0.461675 0.887049i \(-0.652751\pi\)
−0.461675 + 0.887049i \(0.652751\pi\)
\(758\) 47375.2 2.27011
\(759\) 1858.93 0.0888997
\(760\) −2620.94 −0.125094
\(761\) −11402.7 −0.543164 −0.271582 0.962415i \(-0.587547\pi\)
−0.271582 + 0.962415i \(0.587547\pi\)
\(762\) 11459.3 0.544787
\(763\) 0 0
\(764\) 12609.9 0.597132
\(765\) −2783.62 −0.131558
\(766\) −8421.19 −0.397219
\(767\) −15409.4 −0.725423
\(768\) −16071.2 −0.755102
\(769\) −35970.1 −1.68675 −0.843377 0.537322i \(-0.819436\pi\)
−0.843377 + 0.537322i \(0.819436\pi\)
\(770\) 0 0
\(771\) −7779.37 −0.363381
\(772\) 12807.5 0.597090
\(773\) 18318.2 0.852339 0.426170 0.904643i \(-0.359863\pi\)
0.426170 + 0.904643i \(0.359863\pi\)
\(774\) 8831.75 0.410143
\(775\) −23256.1 −1.07792
\(776\) 8050.02 0.372396
\(777\) 0 0
\(778\) −19221.6 −0.885769
\(779\) 2501.11 0.115034
\(780\) 2116.66 0.0971650
\(781\) −8460.18 −0.387617
\(782\) −19561.3 −0.894514
\(783\) −324.102 −0.0147924
\(784\) 0 0
\(785\) 2005.40 0.0911792
\(786\) 27977.0 1.26960
\(787\) −33414.1 −1.51345 −0.756724 0.653734i \(-0.773201\pi\)
−0.756724 + 0.653734i \(0.773201\pi\)
\(788\) −17927.8 −0.810470
\(789\) −24860.9 −1.12176
\(790\) 14600.9 0.657565
\(791\) 0 0
\(792\) −974.057 −0.0437015
\(793\) −9764.51 −0.437261
\(794\) 46490.7 2.07795
\(795\) −4423.57 −0.197343
\(796\) −25386.0 −1.13038
\(797\) 24235.5 1.07712 0.538560 0.842587i \(-0.318968\pi\)
0.538560 + 0.842587i \(0.318968\pi\)
\(798\) 0 0
\(799\) 18079.8 0.800521
\(800\) 23677.0 1.04639
\(801\) −6817.38 −0.300724
\(802\) −21894.6 −0.963997
\(803\) 6609.06 0.290447
\(804\) −5528.07 −0.242487
\(805\) 0 0
\(806\) 30358.1 1.32670
\(807\) −5674.28 −0.247515
\(808\) −5447.31 −0.237173
\(809\) −24799.7 −1.07777 −0.538883 0.842381i \(-0.681153\pi\)
−0.538883 + 0.842381i \(0.681153\pi\)
\(810\) −959.694 −0.0416299
\(811\) −32827.3 −1.42136 −0.710680 0.703515i \(-0.751613\pi\)
−0.710680 + 0.703515i \(0.751613\pi\)
\(812\) 0 0
\(813\) 4408.01 0.190155
\(814\) −5976.32 −0.257334
\(815\) −8687.44 −0.373384
\(816\) 22366.0 0.959518
\(817\) −22063.0 −0.944783
\(818\) −29981.7 −1.28152
\(819\) 0 0
\(820\) 525.363 0.0223738
\(821\) 12560.5 0.533942 0.266971 0.963705i \(-0.413977\pi\)
0.266971 + 0.963705i \(0.413977\pi\)
\(822\) −7632.19 −0.323848
\(823\) −3054.70 −0.129380 −0.0646902 0.997905i \(-0.520606\pi\)
−0.0646902 + 0.997905i \(0.520606\pi\)
\(824\) 15085.3 0.637768
\(825\) 3776.76 0.159382
\(826\) 0 0
\(827\) 34363.5 1.44491 0.722453 0.691420i \(-0.243015\pi\)
0.722453 + 0.691420i \(0.243015\pi\)
\(828\) −2688.19 −0.112827
\(829\) −20243.3 −0.848103 −0.424051 0.905638i \(-0.639392\pi\)
−0.424051 + 0.905638i \(0.639392\pi\)
\(830\) 4169.63 0.174373
\(831\) 19289.4 0.805225
\(832\) −5247.80 −0.218671
\(833\) 0 0
\(834\) −1088.16 −0.0451798
\(835\) −8925.39 −0.369911
\(836\) −4782.85 −0.197869
\(837\) −5486.51 −0.226573
\(838\) −10386.6 −0.428160
\(839\) 29046.6 1.19523 0.597616 0.801782i \(-0.296115\pi\)
0.597616 + 0.801782i \(0.296115\pi\)
\(840\) 0 0
\(841\) −24244.9 −0.994092
\(842\) −5404.39 −0.221197
\(843\) 632.862 0.0258564
\(844\) 13681.6 0.557987
\(845\) 1686.42 0.0686562
\(846\) 6233.27 0.253315
\(847\) 0 0
\(848\) 35542.8 1.43932
\(849\) −2778.11 −0.112302
\(850\) −39742.3 −1.60371
\(851\) 8391.24 0.338012
\(852\) 12234.2 0.491946
\(853\) −13618.2 −0.546635 −0.273317 0.961924i \(-0.588121\pi\)
−0.273317 + 0.961924i \(0.588121\pi\)
\(854\) 0 0
\(855\) 2397.46 0.0958963
\(856\) 3247.23 0.129659
\(857\) 18214.9 0.726033 0.363016 0.931783i \(-0.381747\pi\)
0.363016 + 0.931783i \(0.381747\pi\)
\(858\) −4930.11 −0.196167
\(859\) 12474.1 0.495471 0.247736 0.968828i \(-0.420314\pi\)
0.247736 + 0.968828i \(0.420314\pi\)
\(860\) −4634.38 −0.183757
\(861\) 0 0
\(862\) 3569.74 0.141051
\(863\) −32488.1 −1.28147 −0.640734 0.767763i \(-0.721370\pi\)
−0.640734 + 0.767763i \(0.721370\pi\)
\(864\) 5585.79 0.219945
\(865\) 1644.18 0.0646285
\(866\) 56229.7 2.20642
\(867\) −12456.0 −0.487921
\(868\) 0 0
\(869\) −13555.8 −0.529169
\(870\) 426.665 0.0166268
\(871\) 14235.1 0.553776
\(872\) 14427.9 0.560311
\(873\) −7363.61 −0.285476
\(874\) 16847.6 0.652036
\(875\) 0 0
\(876\) −9557.34 −0.368622
\(877\) −31820.0 −1.22518 −0.612592 0.790399i \(-0.709873\pi\)
−0.612592 + 0.790399i \(0.709873\pi\)
\(878\) −20859.4 −0.801788
\(879\) 3871.39 0.148554
\(880\) 2798.07 0.107185
\(881\) 32871.3 1.25705 0.628525 0.777789i \(-0.283659\pi\)
0.628525 + 0.777789i \(0.283659\pi\)
\(882\) 0 0
\(883\) 11692.0 0.445603 0.222802 0.974864i \(-0.428480\pi\)
0.222802 + 0.974864i \(0.428480\pi\)
\(884\) 20679.1 0.786779
\(885\) −3666.15 −0.139250
\(886\) −34121.0 −1.29381
\(887\) 6697.21 0.253518 0.126759 0.991934i \(-0.459543\pi\)
0.126759 + 0.991934i \(0.459543\pi\)
\(888\) −4396.91 −0.166161
\(889\) 0 0
\(890\) 8974.75 0.338016
\(891\) 891.000 0.0335013
\(892\) −18848.8 −0.707516
\(893\) −15571.6 −0.583522
\(894\) 35543.6 1.32970
\(895\) −1973.33 −0.0736998
\(896\) 0 0
\(897\) 6922.27 0.257668
\(898\) 31324.1 1.16403
\(899\) 2439.22 0.0904922
\(900\) −5461.56 −0.202280
\(901\) −43216.8 −1.59796
\(902\) −1223.67 −0.0451705
\(903\) 0 0
\(904\) 10646.6 0.391706
\(905\) −8271.41 −0.303813
\(906\) 27050.1 0.991918
\(907\) −26086.9 −0.955019 −0.477509 0.878627i \(-0.658460\pi\)
−0.477509 + 0.878627i \(0.658460\pi\)
\(908\) −25849.9 −0.944778
\(909\) 4982.82 0.181815
\(910\) 0 0
\(911\) −15265.3 −0.555174 −0.277587 0.960701i \(-0.589535\pi\)
−0.277587 + 0.960701i \(0.589535\pi\)
\(912\) −19263.3 −0.699419
\(913\) −3871.17 −0.140325
\(914\) 47800.3 1.72986
\(915\) −2323.15 −0.0839354
\(916\) 33422.8 1.20559
\(917\) 0 0
\(918\) −9375.88 −0.337092
\(919\) −1939.37 −0.0696124 −0.0348062 0.999394i \(-0.511081\pi\)
−0.0348062 + 0.999394i \(0.511081\pi\)
\(920\) −1800.45 −0.0645208
\(921\) 11647.2 0.416707
\(922\) 13140.7 0.469378
\(923\) −31504.0 −1.12347
\(924\) 0 0
\(925\) 17048.4 0.605996
\(926\) −46087.7 −1.63557
\(927\) −13799.0 −0.488909
\(928\) −2483.36 −0.0878451
\(929\) −6356.47 −0.224488 −0.112244 0.993681i \(-0.535804\pi\)
−0.112244 + 0.993681i \(0.535804\pi\)
\(930\) 7222.73 0.254669
\(931\) 0 0
\(932\) 20706.0 0.727734
\(933\) 19645.4 0.689349
\(934\) −51161.0 −1.79233
\(935\) −3402.20 −0.118999
\(936\) −3627.19 −0.126665
\(937\) −11467.9 −0.399828 −0.199914 0.979813i \(-0.564066\pi\)
−0.199914 + 0.979813i \(0.564066\pi\)
\(938\) 0 0
\(939\) −1148.44 −0.0399125
\(940\) −3270.85 −0.113493
\(941\) 37590.1 1.30223 0.651117 0.758978i \(-0.274301\pi\)
0.651117 + 0.758978i \(0.274301\pi\)
\(942\) 6754.64 0.233629
\(943\) 1718.13 0.0593320
\(944\) 29457.1 1.01562
\(945\) 0 0
\(946\) 10794.4 0.370988
\(947\) −51388.2 −1.76335 −0.881674 0.471858i \(-0.843583\pi\)
−0.881674 + 0.471858i \(0.843583\pi\)
\(948\) 19602.9 0.671597
\(949\) 24610.8 0.841833
\(950\) 34229.1 1.16899
\(951\) −25979.8 −0.885861
\(952\) 0 0
\(953\) 18421.2 0.626151 0.313075 0.949728i \(-0.398641\pi\)
0.313075 + 0.949728i \(0.398641\pi\)
\(954\) −14899.6 −0.505653
\(955\) −7725.47 −0.261770
\(956\) −18926.5 −0.640301
\(957\) −396.125 −0.0133803
\(958\) −37507.0 −1.26492
\(959\) 0 0
\(960\) −1248.54 −0.0419756
\(961\) 11500.9 0.386052
\(962\) −22254.6 −0.745860
\(963\) −2970.34 −0.0993954
\(964\) 23612.5 0.788909
\(965\) −7846.58 −0.261752
\(966\) 0 0
\(967\) 24037.9 0.799386 0.399693 0.916649i \(-0.369117\pi\)
0.399693 + 0.916649i \(0.369117\pi\)
\(968\) −1190.51 −0.0395295
\(969\) 23422.4 0.776506
\(970\) 9693.83 0.320877
\(971\) 25003.2 0.826355 0.413177 0.910651i \(-0.364419\pi\)
0.413177 + 0.910651i \(0.364419\pi\)
\(972\) −1288.47 −0.0425183
\(973\) 0 0
\(974\) 20432.1 0.672162
\(975\) 14063.9 0.461953
\(976\) 18666.2 0.612182
\(977\) 12020.5 0.393625 0.196812 0.980441i \(-0.436941\pi\)
0.196812 + 0.980441i \(0.436941\pi\)
\(978\) −29261.3 −0.956721
\(979\) −8332.35 −0.272015
\(980\) 0 0
\(981\) −13197.7 −0.429530
\(982\) 65165.4 2.11763
\(983\) 39887.0 1.29420 0.647100 0.762405i \(-0.275982\pi\)
0.647100 + 0.762405i \(0.275982\pi\)
\(984\) −900.281 −0.0291666
\(985\) 10983.5 0.355293
\(986\) 4168.37 0.134633
\(987\) 0 0
\(988\) −17810.3 −0.573505
\(989\) −15156.2 −0.487298
\(990\) −1172.96 −0.0376556
\(991\) 28304.5 0.907289 0.453645 0.891183i \(-0.350124\pi\)
0.453645 + 0.891183i \(0.350124\pi\)
\(992\) −42039.1 −1.34551
\(993\) 31789.8 1.01593
\(994\) 0 0
\(995\) 15552.8 0.495534
\(996\) 5598.09 0.178095
\(997\) −33825.5 −1.07449 −0.537244 0.843427i \(-0.680535\pi\)
−0.537244 + 0.843427i \(0.680535\pi\)
\(998\) −15721.8 −0.498664
\(999\) 4021.99 0.127377
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.u.1.7 8
7.2 even 3 231.4.i.a.67.2 16
7.4 even 3 231.4.i.a.100.2 yes 16
7.6 odd 2 1617.4.a.v.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.i.a.67.2 16 7.2 even 3
231.4.i.a.100.2 yes 16 7.4 even 3
1617.4.a.u.1.7 8 1.1 even 1 trivial
1617.4.a.v.1.7 8 7.6 odd 2