Defining parameters
Level: | \( N \) | = | \( 1617 = 3 \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 32 \) | ||
Sturm bound: | \(752640\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1617))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 284640 | 200620 | 84020 |
Cusp forms | 279840 | 198872 | 80968 |
Eisenstein series | 4800 | 1748 | 3052 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1617))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1617))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1617)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(231))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(539))\)\(^{\oplus 2}\)