Properties

Label 1617.4
Level 1617
Weight 4
Dimension 198872
Nonzero newspaces 32
Sturm bound 752640
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(752640\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1617))\).

Total New Old
Modular forms 284640 200620 84020
Cusp forms 279840 198872 80968
Eisenstein series 4800 1748 3052

Trace form

\( 198872 q - 101 q^{3} - 250 q^{4} - 96 q^{5} - 207 q^{6} - 384 q^{7} + 136 q^{8} - 37 q^{9} - 224 q^{10} - 100 q^{11} - 812 q^{12} - 602 q^{13} - 624 q^{14} - 679 q^{15} + 30 q^{16} + 252 q^{17} + 1107 q^{18}+ \cdots + 11513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1617))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1617.4.a \(\chi_{1617}(1, \cdot)\) 1617.4.a.a 1 1
1617.4.a.b 1
1617.4.a.c 1
1617.4.a.d 1
1617.4.a.e 1
1617.4.a.f 1
1617.4.a.g 1
1617.4.a.h 2
1617.4.a.i 2
1617.4.a.j 2
1617.4.a.k 2
1617.4.a.l 2
1617.4.a.m 2
1617.4.a.n 5
1617.4.a.o 5
1617.4.a.p 5
1617.4.a.q 7
1617.4.a.r 7
1617.4.a.s 7
1617.4.a.t 7
1617.4.a.u 8
1617.4.a.v 8
1617.4.a.w 10
1617.4.a.x 10
1617.4.a.y 10
1617.4.a.z 10
1617.4.a.ba 12
1617.4.a.bb 12
1617.4.a.bc 16
1617.4.a.bd 16
1617.4.a.be 16
1617.4.a.bf 16
1617.4.c \(\chi_{1617}(538, \cdot)\) n/a 240 1
1617.4.e \(\chi_{1617}(881, \cdot)\) n/a 400 1
1617.4.g \(\chi_{1617}(197, \cdot)\) n/a 482 1
1617.4.i \(\chi_{1617}(67, \cdot)\) n/a 400 2
1617.4.j \(\chi_{1617}(148, \cdot)\) n/a 984 4
1617.4.l \(\chi_{1617}(263, \cdot)\) n/a 944 2
1617.4.n \(\chi_{1617}(815, \cdot)\) n/a 800 2
1617.4.p \(\chi_{1617}(472, \cdot)\) n/a 480 2
1617.4.r \(\chi_{1617}(232, \cdot)\) n/a 1680 6
1617.4.t \(\chi_{1617}(50, \cdot)\) n/a 1928 4
1617.4.v \(\chi_{1617}(146, \cdot)\) n/a 1888 4
1617.4.x \(\chi_{1617}(244, \cdot)\) n/a 960 4
1617.4.ba \(\chi_{1617}(428, \cdot)\) n/a 4008 6
1617.4.bc \(\chi_{1617}(188, \cdot)\) n/a 3360 6
1617.4.be \(\chi_{1617}(76, \cdot)\) n/a 2016 6
1617.4.bg \(\chi_{1617}(214, \cdot)\) n/a 1920 8
1617.4.bh \(\chi_{1617}(100, \cdot)\) n/a 3360 12
1617.4.bj \(\chi_{1617}(19, \cdot)\) n/a 1920 8
1617.4.bl \(\chi_{1617}(80, \cdot)\) n/a 3776 8
1617.4.bn \(\chi_{1617}(116, \cdot)\) n/a 3776 8
1617.4.bp \(\chi_{1617}(64, \cdot)\) n/a 8064 24
1617.4.br \(\chi_{1617}(10, \cdot)\) n/a 4032 12
1617.4.bt \(\chi_{1617}(89, \cdot)\) n/a 6720 12
1617.4.bv \(\chi_{1617}(32, \cdot)\) n/a 8016 12
1617.4.by \(\chi_{1617}(13, \cdot)\) n/a 8064 24
1617.4.ca \(\chi_{1617}(20, \cdot)\) n/a 16032 24
1617.4.cc \(\chi_{1617}(8, \cdot)\) n/a 16032 24
1617.4.ce \(\chi_{1617}(4, \cdot)\) n/a 16128 48
1617.4.cg \(\chi_{1617}(2, \cdot)\) n/a 32064 48
1617.4.ci \(\chi_{1617}(5, \cdot)\) n/a 32064 48
1617.4.ck \(\chi_{1617}(40, \cdot)\) n/a 16128 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1617))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1617)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(231))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(539))\)\(^{\oplus 2}\)